2022年小学体积的教学设计(十五篇)
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
小学体积的教学设计篇一
本节课是在学生认识了体积和容积的意义后教学的。本节教材的主要内容是认识体积、容积单位。教材先呈现了长度单位1厘米,面积单位1平方厘米和体积单位1立方厘米,并指出常用的体积单位有立方米、立方分米、立方厘米。然后教材安排了做一做活动让学生通过实际操作活动,体会1立方厘米、1立方分米、1立方米的实际大小。再让学生通过说一说把体积单位与生活中熟悉的事物联系起来,感受1立方厘米、1立方分米、1立方米的实际意义。后面在认识体积单位的基础上认识容积单位。教材的的编写体现出三个方面的意图:一是把体积单位与学过的长度单位、面积单位联系起来,体会统一单位的重要性,同时对这三种单位有一个直观的区别;二是注重实际操作,获得大量的感性经验;三是紧密联系生活实际,感受体积单位的实际意义。我的教学设计也围绕着这三方面来进行,为了让学生有充分的活动时间,我把体积单位与容积单位分开教学,第一课时教学体积单位。
小学生思维是具象的,小学高年级学生的思维正处于具体运算阶段向形式运算阶段的过渡发展期。因此,小学阶段学习的几何是属于经验几何或实验几何,这些内容的学习都是建立在小学生的经验和活动基础上的。对于小学生的学习方法而言,他们对几何图形的认识是通过操作、实验而获得的,几何的相关概念与关系的获得也是以操作为基础的,学生从一年级就开始接触几何,到五年级他们对几何教学中的动手操作活动并不陌生,并有一定的动手操作能力和经验,但本班学生对操作活动中的自律性还不是很强,教学中应注意对操作活动时纪律的控制。
1、常用的体积单位:立方厘米、立方分米、立方米,初步建立1立方厘米、1立方分米和1立方米的实际大小的表象。
2、知道物体含有多少个1立方厘米,体积就是多少立方厘米。
3、引导学生经历观察、类比、举例、等学习活动,积累数学活动的经验。
4、通过数学,增强空间观念,发展空间想象力。
帮助学生建立体积是1立方米、1立方分米、1立方厘米的大小表象,能正确应用体积单位估算常见物体的体积。
能联系已有知识正确区分长度单位、面积单位、体积单位,清楚各自含义。
教师准备棱长1厘米和1分米的正方体各一个,1立方米演示模型架。学生准备棱长1厘米、1分米的正方体各一个,米尺1根。
ppt课件
1、填单位:
老师身高155( ) 教室的面积为48( )
游泳池水深2( )占地面积250( )
师:这是我们以前学过的单位,它们是什么单位同学们还记得吗?
课件出示:长度单位 面积单位 1厘米的长度 1平方厘米的大小。
2、师:上节课我们认识了物体的体积,你们还记得什么是体积吗?那么体积的单位又是什么呢?
师:常用的体积单位有立方厘米、立方分米、立方米。
1、认识1立方厘米
(1)出示1立方厘米模型:这就是1立方厘米,让学生拿出自己做的棱长是1厘米的正方体,看看和老师的1立方厘米是否一样大。
(2)分组观察﹑探究交流,然后汇报,你知道了什么?
操作要求:
看一看:1立方厘米的体积有多大?
量一量:1立方厘米正方体棱长是多少?
说一说:什么是1立方厘米?
想一想:体积是1立方厘米的物体有多大,把它印在头脑里。
举一举:生活中哪些物体体积约为1立方厘米(如蚕豆﹑玻珠、手指末节等)
拼一拼:2立方厘米、5立方厘米、10立方厘米
(3)汇报交流。
(4)教师小结:棱长是1厘米的正方体,体积是1立方厘米。板书记法。
2、认识1立方分米
(1)出示1立方分米模型,告诉学生这就是1立方分米。
(2)学生拿出学具分组观察、探究、汇报,你知道了什么?
看(大小) 量(长短) 说 (概念) 想(有多大)
举一举:(粉笔盒、菠萝等)
拼 (体积)
(3)汇报交流,教师小结并板书。
3、认识1立方米
(1)根据以上的体积单位推测,什么样的体积是1立方米(板书)
(2)我用三把米尺在墙角搭了一个体积是1立方米正方体框架,让学生估一估能容纳多少个学生,然后试一试。
(3)8个学生一组,用米尺搭一个1立方米的空间,看一看,把一立方米的大小印在头脑里。
(4)哪些物体体积约为1立方米?(太阳能水塔、讲台等)
5、比较长度单位、面积单位、体积单位的不同
(1)课件在长度单位和面积单位的旁边出示1立方厘米的图形。
(2)让学生观察有什么不同。
(3)小结:长度单位表示距离大小,面积单位表示表面大小,体积单位表示空间大小。
您现在正在阅读的《体积单位》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《体积单位》教学设计1、完成练一练第1题。
2、选择适当的单位名称填在括号里。
(1)五(1)班教室占有空间约是150( )。
(2)一个成人鞋盒体积约是6( )。
(3)一块橡皮的体积约是8( )。
(4)一把椅子高90( )。
(5)一张单人床的面积约是2( )。
3、连线
一台洗衣机的体积约为 40立方厘米
书包的体积 0.3立方米
碳素墨水盒的体积 20立方分米
4、说说身边物体的体积
说说本节课有哪些收获。
在本节课的教学中,我注重从小学生空间观念形成的心理特点方面手,做了以下尝试,取得了不错的效果。
教学初我让学生通过填单位回顾旧知,知道测量长度需要用长度单位,测量面积需要用面积单位。然后自然而然就引出测量体积就需要体积单位了。并在教学完体积单位后与长度单位、面积单位进行了比较,让学生从直观形象到内在含义真正理解体积单位。
学生空间观念的形成具有很强的直观性,比较感知的是图形的外显性属性特征。所以在教学中,我充分利用直观教具,调动学生的感官,通过触摸、类比等学习活动,帮助学生并建立1立方厘米、1立方分米、1立方米的实际大小的体积观念。学生真正是在亲身经历和体验积单位,从而在头脑中形成表象,积累经验,有助于以后计算和估算物体的体积。另外,在教学中我还引导学生将三个体积单位结合起来,进行对比,并列举生活中的实例,激发学生的欲,让学生在活动中理解应用数学知识解决实际的。
在三个常用的体积单位的新知教学中,我采用了分层推进的教学策略。老师先引导学生通过摸一摸、量一量、比一比、举个例子等学习活动,并学习1立方厘米。然后将主动权交给学生,让学生利用1立方厘米的方法在小组内自主活动,1立方分米,最后1立方米。这样不仅培养了学生小组合作学习的能力,同时也提高了学生参与尝试的兴趣。
在让学生感受每个体积单位有多大时,我让学生找一找身边哪些物体的体积大约是1立方厘米、1立方分米、1立方米,学生有的提到我的一个指头头大约是1立方厘米,我随机抓住这一教学资源,追问道:你们每个手指大约又是多少立方厘米呢?在例举1立方分米时,学生说粉笔盒的体积大约1立方分米,有一次我买的烤红薯大约1立方分米等等。在感受1立方米有多大时,我用三把米尺在墙角搭了一个体积是1立方米正方体框架,并让学生估一估能容纳多少名同学,然后亲自让同学们站到里边看一看,然后分组搭1立方米的框架。通过例举与体验,不但让学生体会到身边处处有数学,而且也有利于促进学生每个体积单位大小的建立。
小学体积的教学设计篇二
【复习内容】
教科书第12册105页常见几何体体积公式及其推导过程的“整理与反思”和106-107页“练习与实践”第7-11题。
【知识要点】
1.立体图形体积计算方法:
长方体的体积=长×宽×高(v=abh)
正方体的体积=棱长×棱长×棱长(v=a3)
圆柱的体积=底面积×高(v=sh)
圆锥的体积=底面积×高×(v=sh)
2.长方体、正方体、圆柱体积公式的统一:v=sh
3.解决几何体体积和表面积的综合实际问题(注意表面积与体积的联系和区别)
4.圆柱体积公式的创新:圆柱的体积=侧面积的一半×半径
【教学目标】
1.进一步理解常见几何体的体积计算公式及其推导过程,体会相关体积公式的内在联系,感受探索几何体体积计算方法的一般策略。
2.在解决问题的过程中,发展学生灵活应用相关数学知识和方法的能力。
3.进一步感受数学与生活的密切联系,体会学习数学的重要性。
立体图形是六年级教学的,圆柱、圆锥还是本册教材的新授内容。因此,立体图形的知识容易回忆,复习的目的不局限于回忆,还要整合知识,进一步精简和优化原有的认知结构。首先让学生说说长方体的体积公式及其推导过程。再让学生说说由长方体的体积公式可以推出哪些几何体的体积公式,各是怎样推导的。在此基础上,让学生在教材提供的示意图中填一填,并进一步思考:能不能用一个公式统一表示长方体、正方体和圆柱的体积计算方法?从而使学生认识到:由于长方体中长乘宽的结果就是长方体的底面积,正方体中相应两条棱长相乘的结果就是正方体的底面积,所以长方体、正方体和圆柱的体积公式可以统一为“v=sh”。通过这些整合,学生对立体图形的认识能提升一个层次,不再孤立地理解、记忆各个立体图形的体积的计算方法。
本节课主要完成“练习与实践”的第7~11题。第7~9题都可先让学生说说“要解答教材提出的问题,要先算出这些物体的表面积,还是体积或容积”。在此基础上,再让学生列式解答,还应适当提醒学生注意不同单位的换算。第10题可以先让学生说说这个包装箱上标注的“380×266×530”所表示的含义,再让学生分别解答教材提出的两个问题。第11题可以先让学生依次解答教材提出的问题,再通过交流使学生进一步明确这里的每一个问题分别求的是这个圆柱形状水池的什么。解决这些实际问题时,要重视过程,让学生在独立解答以后进行充分的交流,体会知识的应用是灵活的,策略与方法是多样的。
1.长方体的体积(六上p25例9例10)
2.正方体的体积(六上p26)
3.圆柱的体积(六下p25、26例4)
4.圆锥的体积(六下p29、30例5)
(一)揭示课题
这节课我们复习立体图形的体积计算。
(二)回顾与整理
1.提问:你能说一说各立体图形体积的计算公式吗?
学生口答计算公式。(板书公式)
2.请大家回忆一下各立体图形体积公式的推导过程,想一想它们之间的联系,与同学们进行交流。
3.提问:你认为这些计算公式哪一个是最基础的?为什么?
能不能用一个公式统一表示长方体、正方体和圆柱体的体积计算方法?你是怎样想的?
(三)练习与实践
1.求下面各立体图形的体积和表面积。
(1)棱长是6厘米的正方体
(2)长方体的长是6分米,宽是5分米,高是1.2米
(3)底面半径3分米、高5分米的圆柱
(4)底面周长12.56厘米,高0.3分米的圆锥(只求体积)
学生独立解答。
2.学生解答后提问:
“第一个正方体的表面积和体积相等”这句话对吗?为什么?
你能说说表面积和体积的区别吗?(含义、计算方法、计量单位)
解题以后你还有什么体会?(认真审题、正确选择方法、细心计算)
3.填一填。
(1)小明用小正方体魔方搭一个大正方体,至少需要()个魔方。这个大正方体的表面积是原来小正方体的()倍。
(2)将1立方分米的大正方体切成体积是1立方厘米的小块,并将这些小块拼成一排,能摆()米长。
(3)圆锥体的底面积缩小3倍,高扩大3倍,体积()。
(4)等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是()立方米。
学生填空后说说想的过程。
4.解决实际问题。
(1)一个长方体沙坑,长5米,宽1.8米。要填40厘米厚的沙,每立方米沙重1.5吨。这个沙坑大约要填沙多少吨?
(2)学校有一个圆柱形状的储水箱,它的侧面由一块边长6.28分米的正方形铁皮围成。这个储水箱最多能储水多少升?(接缝略去不计)
(3)一种计算机包装箱,标明的尺寸(单位:mm)是380×266×530。它的体积是多少立方分米?做这个包装箱至少需要多少平方分米硬纸板?(用计算器计算,得数保留两位小数)
提问:第1题求需要沙子的重量,先要求出什么?第2题呢?第3题的两个问题有什么不同?
解决这些问题,你认为要注意什么问题?
(四)拓展与延伸
讨论:圆柱的体积还可以怎样计算?(侧面积的一半乘以半径)
练习:一个圆柱体铁块,侧面积是79.128平方分米,底面半径是3分米,它的体积是多少立方分米?
(五)课堂总结
表面积和体积有什么区别?在复习过程中,你觉得还有哪些困难?
(六)布置作业p106—107第9、11题。
小学体积的教学设计篇三
(1)(老师出示铅锤):你有办法知道这个铅锤的体积吗?
(2)学生发言:(把它放进盛水的量杯里,看水面升高多少……)
(3)教师评价:这种方法可行,你利用上升的这部分水的体积就是铅锤的体积,间接地求出了铅锤的体积。真是一个爱动脑筋的孩子。
(4)提出疑问:是不是每一个圆锥体都可以这样测量呢?(学生思考后发言)
(5)引入:如果每个圆锥都这样测,太麻烦了!类似圆锥的麦堆也能这样测吗?(学生发表看法),那我们今天就来共同探究解决这类问题的普遍方法。(老师板书课题)
设计意图:情景的创设,激发了学生学习的兴趣,使学生产生了自己想探索的需求,情绪高涨地积极投入到学习活动中去。
(一)、探究圆锥体积的计算公式。
1、大胆猜测:
(1)圆锥的体积该怎样求呢?能不能通过我们已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)
(2)圆锥和我们认识的哪种立体图形有共同点?(学生答:圆柱)为什么?(圆柱的底面是圆,圆锥的底面也是圆……)
(3)请你猜猜圆锥的体积和圆柱的体积有没有关系呢?有什么关系?(学生大胆猜测后,课件出示一个圆锥与3个底、高都不同的圆柱,其中一个圆柱与圆锥等底等高),请同学们猜一猜,哪一个圆锥的体积与这个圆柱的体积关系最密切?(学生答:等底等高的)
(4)老师拿教具演示等底等高。拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的。”
(5)学生用上面的方法验证自己做的圆锥与圆柱是否等底等高。(把等底等高的放在桌上备用。)
2、试验探究圆锥和圆柱体积之间的关系
我们通过试验来研究等底等高的圆锥体积和圆柱体积的关系。
(1)课件出示试验记录单:
a、提问:我们做几次实验?选择一个圆柱和圆锥我们比较什么?
b、通过实验,你发现了什么?
(2)学生分组用等底等高的圆柱圆锥试验,做好记录。教师在组间巡回指导。
(3)汇报交流:
你们的试验结果都一样吗?这个试验说明了什么?
(4)老师用等底等高的圆柱圆锥装红色水演示。
先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?把圆柱装满水往圆锥里倒,几次才能倒完?
(教师让学生注意记录几次,使学生清楚地看到倒3次正好把圆柱装满。)
(5)学生拿小组内不等底等高的圆锥,换圆锥做这个试验几次,看看有没有这样的关系?(学生汇报,有的说我用自己的圆锥装了5次,才把圆柱装满;有的说,我装了2次半……)
(6)试验小结:上面的试验说明了什么?(学生小组内讨论后交流)
(这说明圆柱的体积是与它等底等高圆锥体积的3倍.也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。)
3、公式推导
(1)你能把上面的试验结果用式子表示吗?(学生尝试)
(2)老师结合学生的回答板书:
圆锥的体积公式及字母公式:
(3)在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)
进一步强调等底等高的圆锥和圆柱才存在这种关系。
设计意图:放手让学生自主探究,在实践中真正去体验圆柱和圆锥之间的关系。
(二)圆锥的体积计算公式的应用
1、已知圆锥的底面积和高,求圆锥的体积。
(1)出示例2:现在你能求出老师手中的铅锤的体积吗?(已知铅锤底面积24平方厘米,高8厘米)学生尝试解决。
(2)提问:已知圆锥的底面积和高应该怎样计算?
(3)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算。
2、已知圆锥的底面半径和高,求圆锥的体积。
(1)出示例题:
底面半径是3平方厘米,高12厘米的圆锥的体积。
(2)学生尝试解答
(3)提问:已知圆锥的底面半径和高,可以直接利用公式
v=1/3兀r2h来求圆锥的体积。
3、已知圆锥的底面直径和高,求圆锥的体积。
(1)出示例3:
工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数)
(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)
(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)
(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)
(5)提问
4、已知圆锥的底面直径和高,可以直接利用公式。
v=1/3兀(d/2)2h来求圆锥的体积。
设计意图:公式的延伸让学生对所学知识做到灵活应用,培养了学生活学活用的本领。
小学体积的教学设计篇四
体积和容积是比较抽象的概念,教材中是让学生在充分体验的基础上理解他们的意义。教材首先借助学生已有的生活经验,让学生交流物体的大小和容器盛放东西的多少,感受“物体有大有小,容器盛放的物体有多有少。”接着,教材围绕“土豆和红薯哪一个大”的问题,引导学生开展实验活动。从中发现两个物体放入水中后都占据了一定的空间,而且水面上升的高度不一样,说明这两个物体所占空间的大小不一样。然后,教材揭示体积的概念。最后,教材通过学生实验研究“哪个杯子装水多,”在学生感受容器所能容纳物体体积的大小打基础上,揭示容积的概念。随后,教材还设计了搭物体等活动,使学生进一步体会体积和容积的意义。这节课的重点就是形成体积和容积的两个具有抽象性的概念。概念形成一般采用不完全归纳的方法,大致有以下几个步骤:(1)引导学生注意观察教师所提供的感性材料,或者从学生已有的经验中,作出新的探讨。(2)在感性认识的基础上,从各种属性或特征中,找出本质的属性或特征,舍弃非本质的属性或特征。(3)由这些本质属性或特征,抽象概括成一般的概念。
《体积和容积》是学生学习几何体积的开始,在学习这个内容之前,学生在他们的生活中已经具备了许多关于体积和容积的具体的感性积累,本节课老师在充分了解学生的基础上,主要充当了一个“先行组织者”为学生的有意义的学习呈现典型材料,在学生已知和未知之间架起一座沟通的桥梁,帮助学生自主建构正确的概念。
1、知识与技能目标:
①通过具体的实验活动,了解体积和容积的实际含义,初步理解体积和容积的概念。
②能够知道体积和容积之间的联系与区别。
2、过程与方法目标:
①在操作、交流中,感受物体体积的大小,发展学生的空间观念。
②培养学生观察、操作、概括的能力以及利用所学知识合理灵活地分析、解决实际问题的能力。
3、情感与态度目标:
在学生的合作交流中,注意数学与生活的密切联系,激发学生学习数学的兴趣。
教学重点:通过具体的实验活动,理解体积与容积的含义。教学难点:理解体积与容积之间的联系与区别。
课件、两个容积一样的烧杯、土豆、红薯,纸杯,和纸杯差不多大的瓶子
1、谈话:同学们一定听过《乌鸦喝水》的故事。在这个故事中乌鸦是用数学方法来解决问题的。你们想知道乌鸦用了什么数学方法吗?下面我们再来欣赏一下乌鸦喝水的故事吧!
2、师生欣赏《乌鸦喝水》片段。思考:乌鸦为什么能喝到水了?
看完了,老师想问:乌鸦为什么能喝到水了?(石子是占有一定空间的,石子的投入挤压了水的位置,水面慢慢升高了。)今天老师带领大家认识两位新朋友:(板书)体积与容积
a、感受物体体积的存在,理解物体体积的含义。
1、师:刚刚的乌鸦聪明吧?我想你们一定也很聪明。我们一起来看,老师手里有一个红薯,如果我把它放进盛有水的杯子中,会发生什么现象?(学生发言)
2、师:那好,我们一起来看一下。(将红薯放进杯子,水挤上来了)你们说对了,很好。那么这个实验说明了什么?(红薯也占有一定的空间)
3、(举着黑板擦和粉笔盒)这两个物体呢?它们也占有空间吗?
其实所有物体都占有一定的空间。在数学中,物体所占空间的大小,叫做物体的体积。(板书)(学生齐读概念)
请观察一下,哪个物体体积大,哪个物体体积小?
如电视机体积大,水槽体积小。黑板擦的体积大,粉笔的体积小。你能这样对比着举几个例子吗?请同学们说给同桌说说
谁能愿意把你列举的例子说给大家听听?(学生发言)
4、这样的例子很多很多。老师手中的这两个东西,请同学们看一下,谁的体积大,谁的体积小?
(状况一:有不同的意见了,看来我们出现分歧了,怎么办?状况二:同学说的很对,那你能找到方法来验证你说的吗?)如何作比较比较的方法很多,那我们就用你们的方法试一试
5、(学生示范)将土豆,红薯放进两个装有一样多的水杯里,水都挤上来了,说明了什么呀?(土豆和番薯都占有一定的空间,都有体积)
继续观察两个水杯里的水,你们发现了什么呢?
(水面不一样高了)
通过实验我们知道了土豆和番薯都有体积,而且它们的体积有大有小。(回到实验)番薯和土豆比,番薯(土豆)占的空间小,说明它的(体积小);番薯(土豆)占的空间大,说明它的(体积大)
6、通过实验观察,我们知道物体的体积有大有小。
(出示书本第42页的试一试)两个小朋友用体积一样的小正方体搭了两个形状不一样的长方体,谁搭的长方体体积大?
(出示书本第42页练一练第1题:同一物体,形状改变了,但是体积不变)让学生用同样一块橡皮泥随便怎么捏,捏成形状不一样的就行。(出示书本第42页练一练第2题)
b、理解什么是容器的容积,感受容器容积的存在。
7、师拿纸杯,演示里面有一定的(空间),它能盛一定的东西,像这样能盛东西的物体,我们称它为容器。你还能举出哪些容器?(学生发言)一个纸杯,一个和纸杯差不多大的瓶子,哪个装水多呢?请你设计一个实验解决这个问题。
通过刚刚的实验,我们知道了容器所能容纳的物体有多有少。容器所能容纳物体的体积,叫做容器的容积。(板书)
纸杯装的水多,所以纸杯的容积大,瓶子装的水少,瓶子的容积小
8、接下来,老师将纸杯倒半杯水,这时候所装的水量是不是杯子的容积?为什么?那要装多少水才是杯子的容积?(再倒满,此时水的体积才是杯子的容积。)
9、出示书本第42页第3题(如果每个杯子的大小不同,那么3杯就可能等于2杯)
c、理解体积与容积的区别与联系。
学生齐读体积与容积的概念。
师:你认为物体的体积与容积有什么区别和联系吗?仔细观察:
(1)谁的体积大?(木盒的体积大)
2、魔方和木盒都有容积吗?为什么?(木盒有容积,只有容器才有容积)。再通俗地说,实心的物体只有体积没有容积,空心的物体既有体积也有容积。
(2)盒子的体积与盒子的容积哪个大?(对于同一个容器,它的体积大与容积。当容器壁很薄的时候,容积近似等于体积)
现在我们用今天学到的知识来解决一些问题吧!出示课件:课堂检测题
1.求一个无盖木箱用料的多少,是求木箱的(表面积)。
2.求一个无盖木箱占的空间有多大,是求木箱的(体积)。
3.求一个无盖木箱能容纳多少东西,是求木箱的(容积)。我会判断
1.冰箱的容积就是冰箱的体积。(x)
2.游泳池注入半池水,水的体积就是游泳池的容积。(x)
3.两个体积一样大的盒子,它们的容积一样大.( x ) 4.汽车上的油箱,油箱里装满汽油,汽油的体积就是油箱的容积。(√)选择填空:
(1)盛满一杯牛奶,(②)的体积就是(①)的容积。
①杯子②牛奶
(2)装满沙子的沙坑,(①)的体积就是(②)的容积。
①沙子②沙坑
(3)做一个长方体油桶,需要多少铁皮,是求长方体的(①)。
①表面积②体积③容积
(4)求一个长方体木块占空间的大小,是求长方体的(②)。
①表面积②体积③容积
(5)求一个油桶能装油多少升,是求油桶的(③)。
①表面积②体积③容积
师:通过学习你有什么收获?
小学体积的教学设计篇五
用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。
教学难点:转化前后的沟通。
每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。
1.板书:圆柱的体积。
问:圆柱的体积怎么计算?体积和容积有什么区别?
2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题。)
【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。
1.创设情境,提出问题。
每个小组桌子上有一个没有装满水的矿泉水瓶。
教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)
预设1:瓶子还有多少水?(剩下多少水?)
预设2:喝了多少水?(也就是瓶子的空气部分。)
预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)
2.你觉得你能轻松解决什么问题?
(1)预设1:瓶子有多少水?(怎么解决?)
学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。
教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度)
小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。请你准备好直尺,或许等会儿有用哦!
(2)预设2:喝了多少水?
学生:喝掉部分的形状是不规则,没有办法计算。
教师:当物体形状不规则时,我们想求出它的体积可以怎么办?
教师相机引导:能否将空气部分变成一个规则的立体图形呢?
学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?
引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度)
小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难得到你吗?
(3)怎么求这个矿泉水瓶的容积?引导学生得出:倒置前水的体积+倒置后空气的体积=瓶子容积。
【设计意图】课本中的例题呈现如下,
例题是直接呈现转化方法的,我是想先屏蔽相关数据信息和方法,通过激发学生解决问题的内在需求,根据自己的生活学习经验来想办法解决,才有了对数学情境的改编,以期通过转化、观察、对比,让学生发现倒置前后两部分立体图形之间的相同点,沟通两部分体积之间的内在联系,顺利地把新知转化为旧知,分散了难点,从而找到解决问题的方法。
3.小组合作,测量计算。
(矿泉水瓶内直径为6cm)
教师:方法找到了,接下来能否正确求出瓶子的容积就看你们的了!
(1)课件出示:
一个内直径是( )的瓶子里,水的高度是( ),把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是( )。这个瓶子的容积是多少?(测量时取整厘米数)
(2)四人小组合作:
a.组长安排好分工:
要量出所需数据,其他组员要监督好测量方法与结果是否正确,要按要求把题目填完整。
b.组内互相说一说:倒置前后哪两部分的体积不变?
矿泉水瓶的容积=( )+( )。
c.做好以上准备工作后,利用所得数据独立计算,再组内校对结果是否正确。
【设计意图】这一环节让学生大胆动手操作,在实践中不断发现解决问题,在同伴的交流中拓展自己的思维,让学生在合作中建立协作精神。
4.交流反馈。
教师巡查,选择矿泉水瓶中原有水高度分别6、7、8、9厘米的同学板演。
瓶中水高度为6厘米的:
3.14×(6÷2)2×6+3.14×(6÷2)2×13
=3.14×9×(6+13)
≈537(毫升)。
瓶中水高度为7厘米的:
3.14×(6÷2)2×7+3.14×(6÷2)2×12
=3.14×9×(7+12)
≈537(毫升)。
瓶中水高度为8厘米的:
3.14×(6÷2)2×8+3.14×(6÷2)2×11
=3.14×9×(8+11)
≈537(毫升)。
瓶中水高度为9厘米的:
3.14×(6÷2)2×9+3.14×(6÷2)2×10
=3.14×9×(9+10)
≈537(毫升)。
教师:出示某品牌矿泉水瓶的标签,上面写着净含量为550毫升,基本符合。
5.解答正确吗?
教师引导学生回顾反思:刚才我们是怎样解决问题的?
小结:根据具体情况选择合适的转化方法,像这样不规则立体图形的体积可以转化为规则的立体图形来计算。
【设计意图】通过回顾解决问题的过程,帮助学生把本环节的数学活动经验进行总结,引导学生在后续的学习中碰到相似的问题也可同样利用转化的思想来解决。
1.数学书p27做一做。
(1)学生独立思考,解决问题。
(2)把自己的想法与同桌说一说。
(3)交流反馈:重点交流如何转化,倒置后哪两部分体积不变?
求小明喝了多少水实际上是求矿泉水瓶上面无水部分的体积,这部分为不规则的立体图形。
将水瓶倒置后不规则容器转化成了圆柱:该圆柱体积=小明喝了的水。
3.14×(6÷2)2×10=282.6(毫升)。
2.输液100毫升,每分钟输2.5毫升,请观察第12分钟时吊瓶图像中的数据。问整个吊瓶的容积是多少毫升?
(1)请学生计算,并反馈订正。
(2)反馈要点:
整个吊瓶容积=图像中空气部分的容积+还剩下液体的体积。
根据图象,可以得出在第12分钟吊瓶有80毫升是空的。
剩下液体的体积=100-2.5×12=70(毫升)。
即整个吊瓶容积=80+70=150(毫升)。
【设计意图】从生活中常见的吊瓶问题引出,感受数学与生活的密切联系,能根据图像提取解决问题的有效信息 ,既提升了所学知识,又关注了学生的思考,培养学生的分析、解决问题能力。
3.如下图,一个底面周长为9.42厘米的圆柱体,从中间斜着截去一段后,它的体积是多少?
(1)思考:这是一个不规则的立体图形,要求它的体积,它不能像瓶子里的水一样可以流动变形转化,怎么办?
(2)讨论方法:
a.重叠:假设把两个大小一样的斜截体拼成一个底面周长为9.42厘米,高为(4+6)厘米的圆柱,这个立体图形的体积是新圆柱体积的一半。
b.切割:把这个立体图形分为两部分,下面是一个底面周长为9.42厘米,高为4厘米的圆柱体,上面是一个高为(6-4)厘米的圆柱斜截体,且体积是高为(6-4)厘米的圆柱体积的一半。
(3)用自己认可的方法计算,并进行反馈。
解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。
解法二: 3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。
(4)反馈小结:可以有不同的转化方法来解决问题。
【设计意图】不满足于一种方法的转化,展示多种方法,开拓学生的思维。
教师:回忆一下,今天这节课有什么收获?
教师和学生共同小结:求不规则的立体图形的体积可以将它转化成为规则的立体图形,这节课我们主要是将不规则的立体图形转化成为圆柱,用圆柱的体积计算方法来解决问题。
在解决问题时,主要要弄清楚转化前后两部分之间的关系。
【设计意图】通过小结,让学生自主地对回顾本课所学知识进行梳理总结,通过归纳与提炼,让学生明确转化思想在数学学习中的重要性。
小学体积的教学设计篇六
1.运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4.借助实物演示,培养学生抽象、概括的思维能力。
1.通过观察、实验、讨论,学生理解所学知识。
2.通过新旧知识的转化贯通,学生对所学知识形成体系,领悟数学思想迁移的重要性。
3.在讲解例题与巩固练习中,学生掌握基本的解题方法。
1.使学生感觉到数学就在身边,激发其学习数学的兴趣。
2.通过实验操作及设问,培养其创造性思维和大胆的猜想。
圆柱体体积的计算
圆柱体体积的公式推导方法
本节的内容是这单元的重点的内容,且与实际生活有着密切关系。在教学上对于圆柱体积的计算,首先应从圆的面积推导人手,可以借助一些教具演示及鼓励学生实验操作来明确。
圆柱的体积公式演示教具,多媒体课件
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。
(5)在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?
2,复习相关知识,为新课教学作铺垫。
(1)什么叫物体的体积?我们学过什么立体图形的`体积计算?(学生自由回答)
(2)出示圆柱体物品,指名学生指出各部分名称。
设疑揭题:
我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。。
1.探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决上面三个问题:
① 把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)
② 拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③ 圆柱的体积=底面积×高 字母公式是v=sh(板书公式)
讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:v=sh)(设计意图:要用这个公式计算圆柱的体积必须知道什么条件?
填表:请同学看屏幕回答下面问题,
④ 底面积(㎡)高(m)圆柱体积(m3)
4 3
5 6
9 2
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,)
例:一个圆柱形油桶,底面内直径是6分米,高是7分米.它的容积约是多少立方分米?(得数保留整立方分米)
解: d=6dm,h=7dm.r=3dm
s底 =πr2=3.14×32 =3.14×9 =28.26(dm2)
v =s底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分
(设计意图:使学生注意解题格式,注意体积的单位为三次方)
1.求下面圆柱体的体积。(单位:厘米)
同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题。
⑤ ,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?
1.一个长方形的纸片长是6分米,宽4分米.用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由.(结果保留π)
2.一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、
1.谈谈这节课你有哪些收获。
2.解题时需要注意那些方面。
1.课后练习1,2题
2.拓展练习2题
圆柱的体积
长方体的体积=底面积x高
圆柱——长方体 圆柱的体积=底面积x高
v=sh
小学体积的教学设计篇七
九年义务教育六年制小学数学第十二册p32页。
1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。
2、通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。
3、进一步培养学生将所学知识运用和服务于生活的能力。
灵活运用圆柱圆锥的有关知识解决实际问题。
同教学难点。
练习的过程是学生将所学知识内化、升华的过程,练习过程中既有基础知识的合理铺垫,又有不同程度的提高,练习的内容有明显的阶梯性。力求使不同层次的学生都学有收获。
一、复习铺垫、内化知识。1. 圆锥体的体积公式是什么?我们是如何推导的?
2.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。
(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。
(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。
(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。
3.求下列圆锥体的体积。
(1)底面半径4厘米,高6厘米。
(2)底面直径6分米,高8厘米。
(3)底面周长31.4厘米.高12厘米。
4、教师根据学生练习中存在的问题,集体评讲。同座位的同学先说一说圆锥体积公式的推导过程。
学生独立练习,互相批改,指出问题。
学生交流一下这几题在解题时要注意什么?
二、丰富拓展、延伸练习。1.拓展练习:
(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?
(2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?
2.完成31页第5题。讨论下列问题:
(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?
(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?
3.分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?
学生分组讨论,教师参与其中,以有疑问的方式参与讨论。
三、充分提高,全面升华。
1.展示一个圆锥形的沙堆,小组讨论一下用什么方法可以测量出它的体积。
2.教师给每一组一小袋米。让学生在桌子上堆成一个近似的圆锥体,通过合作测量的形式求出它的体积。
3.讨论练习八蒙古包所占空间的大小的方法。
(1)蒙古包是由哪几个部分组成的?
(2)上部的圆锥和下部的圆柱有哪些相同的地方,有哪些不同的地方?
(3)同学们能独立地求出蒙古包所占的空间的大小吗?请试一试。
4.交流一下本节课的收获。
学生分组讨论后动手实践并计算。
学生先交流。
四、全课总结,内化知识。
1.提问:
(1)同学们掌握了圆锥体的哪些知识?
(2)你用圆锥体的体积的有关知识解决现实生活中的哪些问题?
2.学有余力的同学思考38页思考题。
3.作业:练习八6、7、8
学生独立练习
小学体积的教学设计篇八
1、在具体的情境中自主探索并掌握长方体体积公式,能应用公式正确计算长方体体积,并解决一些简单的实际问题。
2、通过操作、观察、猜想和归纳等数学活动,经历体积公式的探索过程,不断积累立体图形的学习经验,增强空间观念,发展数学思维。
3、进一步体会数学与实际生活的联系,获得学习成功体验,激发数学学习兴趣。
教师准备用1cm3小正方体拼摆成的长方体模型,长方体包装盒,多媒体课件;各小组准备1cm3的正方体和实验记录单。
一、创设情境,导入新课
谈话:上节课,我们已经认识了体积和体积单位。今天,老师带来了一个用1cm3的小正方体摆成的长方体(出示长4cm、宽3cm、高2cm的长方体模型),你有办法知道这个长方体的体积是多少立方厘米吗?
明确:要知道一个物体的体积,就要看这个物体中包含多少个体积单位。
演示:按长方体模型的长、宽、高各含有的小正方体个数,算出长方体的体积)
揭题:刚才,老师的这个长方体模型是用1立方厘米的小正方体摆成的,但生活中有很多长方体或正方体的物体是不能分割的。譬如,这个长方体的包装盒(出示),它的体积又有什么办法知道呢?这节课,我们一起来研究长方体和正方体体积的计算方法。(板书课题)
[设计意图:通过数一个长方体中含有的1cm3小正方体的个数,使学生进一步理解求一个物体的体积,就是求这个物体包含的体积单位的个数。同时也为后面有序地数出小正方体的个数作一些孕伏。]
二、操作探究,发现规律
启发:在三年级,我们学过长方形面积,还记得是怎样推导长方形面积公式的吗?
学生回忆后,电脑演示推导长方形面积公式的过程。
出示长方体直观图,讨论:你认为,长方体的体积可能与它的什么有关?我们可以用怎样的方法研究长方体的体积?
学生可能想到长方体的体积与它的长、宽、高有关;可以把长方体分割成若干个棱长1厘米、1分米或1米的正方体,长方体中含有体积单位的个数就是它的体积。
谈话:同学们的想法有没有道理呢?我们来看大屏幕,(多媒体演示)我们来想象一下:如果一个长方体的长增加或缩短,它的体积会怎样?如果改变它的宽或者高,体积会发生怎样的变化?
谈话:看来,同学们的猜想确实有道理。要研究长方体的体积与它的长、宽、高到底有什么关系,我们需要一些长方体作为研究对象。下面,我们一起来摆出一些长方体。
明确活动要求:
(1)同桌合作,用若干个1cm3的正方体任意摆出4个不同的长方体并编上序号。
(2)观察摆出的长方体的长、宽、高,所用小正方体的个数,以及它们的体积各是多少,完成记录表。
(3)填完表格后,同桌核对数据,并交流自己的发现。
学生按要求操作、交流,教师巡视。
组织反馈。(指名汇报收集到的数据,并以其中的一个长方体为例,说说怎样看出它的长、宽、高的厘米数的。正方体的个数又是怎样数的,摆出的长方体的体积是多少,根据表中数据,自己有什么发现。)
板书:长方体的体积=长×宽×高。
启发:同学们通过用1cm3的小正方体摆长方体的活动,发现了长方体体积等于它长、宽、高的乘积。是不是所有的长方体的体积都是它长、宽、高的乘积呢?这就需要我们进一步验证。
[设计意图:引导学生由探索长方形面积的经验,通过类比把探索平面图形面积的方法迁移到立体图形中来,既有利于培养学生初步的推理能力,也是具体的学习方法的指导;用1cm3的小正方体摆长方体的操作,旨在引导学生通过操作和交流,初步发现长方体体积与它的长、宽、高的关系,并在这一过程中,培养动手操作能力,发展数学思考,感悟归纳的思想方法。]
三、再次探索,验证规律
出示4×1×1的长方体图,谈话:这是一个长4cm、宽1cm、高1cm的长方体,你知道它的体积是多少吗?
学生可能想到用4个1cm3的小正方体摆成一排正好可以得到这个长方体,它的体积是4cm3;也可能用“4×1×1”算出它的体积。
根据学生的回答在长方体上画出相应的分割线,确认这个长方体的体积是4cm3。(见图1)
出示4×3×1的长方体图,谈话:这个长方体的长、宽、高分别是几cm?如果不用1cm3的小正方体,你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先在长方体上画一画,再和同学交流。
提问:这个长方体的体积是多少?你是怎样想的?(根据学生的回答出示图2)
明确:在这个长方体中,沿着长一排可以摆4个1cm3的小正方体,沿着宽可以摆3排,所以,这个长方体的体积可以用“4×3×1”来计算。
出示4×3×2的长方体图,谈话:我们再来看这个长方体,它的长、宽、高分别是几cm?你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先试一试。
反馈:这个长方体的体积是多少cm3?你是怎样想的?(学生的回答后,出示图3)
提问:如果用的小正方体来摆第3个长方体,沿着长一排可以摆几个?沿着宽可以摆几排?沿着高可以摆几层?它的体积可以怎样计算?
再问:如果有一个长方体,长5cm,宽4cm,高3cm,摆出这个长方体一共要用多少个1cm3的正方体?它的体积是多少cm3?
引导学生用示意图表示出思考过程。
[设计意图:对三个长方体的探究,引导学生经历了“想象—画图—说理”的过程,使学生随着排数、层数的递增,清晰地体会到长方体的体积与它的长、宽、高的关系。第4个长方体只给出了长、宽、高的数据,意在促使让学生依托已经获得的直观经验,将摆的过程内化为有序地算(数)的过程。至止,长方体体积计算方法已呼之欲出。]
四、引导概括,得出公式
提问:通过刚才的活动,你认为长方体的体积与它的长、宽、高有什么关系?我们前面提出的猜想正确吗?
揭示长方体的体积公式,指出:以后我们可以直接用公式计算长方体的体积。
讲解:如果用v表示长方体的体积,a、b、h分别表示长方体的长、宽、高,你能用字母表示出长方体的体积公式吗?
板书:v=abh。
和同桌说一说你还知道了什么?
让学生口算各题的得数,并交流计算时的思考过程。
五、巩固练习,应用拓展
1、完成“试一试”。
出示长方体的包装盒,谈话:刚开始上课,我们还不能求这个包装盒的体积是多少,现在你能解决了吗?要求这个长方体包装盒的体积,需要知道哪些条件?有办法知道这些数据吗?
指导测量、记录数据后独立解答。
出示正方体的包装盒,这是一个棱长12cm的正方体纸盒,它的体积是多少cm3?
学生独立完成后,组织反馈。
2、完成第26页“练一练”第1题。
先让学生看图说一说每个长方体或正方体的长、宽、高(或棱长)各是多少cm,再口算出它们的体积,并数一数每个立体图形是由多少个1cm3的小正方体摆成的。
3、完成练习六第2题。
出示题目,让学生自由读题。
提问:计算冷藏车的容积,为什么要从里面量?
学生独立完成计算,并组织反馈。
六、全课小结,梳理学法
提问:今天,我们一起学习了什么?通过这节课的学习,你有哪些收获?回顾这堂课的学习过程,我们是怎样探索出长方体的体积公式的?
七、课堂作业
练习六第1题。
小学体积的教学设计篇九
苏教版义务教育教科书《数学》六年级下册第18-19页练习三第10—16题,思考题以及动手做。
1.通过知识梳理、交流展示等,使学生进一步理解圆柱表面积和体积的区别,能选择恰当的方法解决问题,在浸没实验中,能测算出不规则物体的体积,积累活动经验,提升实验素养。
2.使学生经历观察、操作、比较、分析、估计、类比、归纳等活动过程,培养学生初步的比较、分析、综合、抽象、概括,以及简单的判断、推理能力,提高转化的意识和能力,发展数学思考,增强空间观念。
3.通过丰富的数学学习活动,使学生进一步体会数学与生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。
圆柱和圆锥这部分内容是学生认识了圆,掌握了长方体和正方体的形状特征以及表面积与体积计算方法的基础上编排,是小学数学最后教学的形体知识。与长方体、正方体一样,圆柱也是基本的几何形体,在日常生活和生产劳动中经常能够看到。教学圆柱能够扩大学生认识几何形体的范围,丰富对形体的认识,有利于解决更多的实际问题。教学圆柱,也能够丰富学生认识几何形体的活动经验,深入理解体积的意义,有利于完善认知结构,发展空间观念,有利于转化能力和推理能力的进一步提高。
学生在过去的学习中已经积累了十分丰富的图形与几何的学习经验,特别是圆面积的计算方法,长方体、正方体、圆柱和圆锥的特征,长方体、正方体和圆柱的表面积和体积的计算方法等知识的探索过程,以及在这些过程中获得的学习经验和方法,都为本课圆柱体积的综合练习奠定了坚实的基础。本节课,学生通过知识梳理、交流展示等活动,可以进一步理解圆柱表面积和体积的区别,并能选择恰当的方法解决问题,发展数学思考,增强空间观念,进一步体会数学与生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。
从以教定学,到以学定教,再到由学转教。学习金字塔理论告诉我们:最好的学习是讲给别人听,随着教学改革的不断推进,我们从“以教定学”走向了“以学定教”,以学定教,呼唤教育教学回到学生的真实学情、现实认知水平等方面上来,根据学生的“学”,设计教师的“教”,日益凸显了教师是组织者、引导者、合作者的角色定位。叶圣陶先生说过,“教是为了不教”,赋予“以学定教”更多的生长意义,我们在不知不觉中,从“以学定教”转向了“由学转教”,即由学生的学转为由学生来教的更高级的学习生态。教学方式的改变让我们更加明确了学习的意义。
教学重点:用圆柱的表面积和体积公式解决实际问题。教学难点:合理分析问题并选择恰当算法,增强空间观念。
教师准备:反馈器一套;希沃白板、课件及5块互动大屏;投影仪;两份合作学习(实验)单;板贴一套等。
学生准备:底面被平均分成16份的圆柱形学具16套;知识梳理图50张;预学单50张;圆柱形容器及土豆或铁块若干等。
小学体积的教学设计篇十
1.使学生感悟体积的空间观念,建立体积概念。掌握常用的体积单位的意义。学会用体积单位来描述物体的大小。能合理估计物体的体积的大小。
2.通过观察、思考、探究、交流等学习活动,让学生经历知识的形成过程,体验和感悟空间观念。
3.让学生在学习活动中学会学习,获得成功的体验,培养学生的应用意识。
形成体积的概念,理解和掌握常用的体积单位。建立空间观念、形成体积概念。
1.教师准备:课件、2个大小一样的杯子、米、1立方米的实物架、2块大小不同的积木、2个体积差不多大的正方体和正方体、火柴盒20个、1立方厘米的小立方体、1立方分米的立方体。
2.学生准备:每人4-5个1立方厘米的小立方体、1立方分米的立方体,直尺、奶箱子。
一了解学生原有知识情况。
1今天的数学课,我们要学习的内容是体积和体积单位。2关于体积和体积单位你都知道些什么?
根据学生汇报,相应板书。
3看来,同学们对这部分知识并不陌生,有了一定的积累。
老师相信,通过本节课的学习,你一定会对体积和体积单位有进一步的认识。
二认识体积
1.故事导入,初感空间。
①你们知道《乌鸦喝水》的故事吗?谁愿意给大家讲讲?
②这只聪明的乌鸦是怎么喝到水的?
为什么把石头放进瓶子里,水就会升高呢?
2.实验演示。
实验一:感受物体占有空间。
①石头真的占了水的空间了吗?我们一起来做一个实验。
看,老师手上拿的是两个大小相同的杯子。装有一样多的水,其中一个杯子放入一块积木,会出现什么情况?
②水为什么会溢出来呢?
实验二:感受物体占空间有大小
①这回我放这个积木块(稍大),再把水倒入这个杯子,又会有什么现象发生呢?
②实验演示
③溢出的为什么比刚才的多?
④ 小结:也就是说,这2个积木块不但占空间,而且占的空间有大——有小。
⑥那在数学中,我们把物体所占空间的大小叫做物体的体积。
⑦什么叫体积?(指名、齐读、领读)
⑧举生活中物体占空间的例子。
三认识体积单位
1制造矛盾冲突,引出体积单位
①有的物体可以通过观察就能比较出它们体积的大小,快看看哪个体积大?
②意见不统一了。看来光看是不能准确比较这两个盒子的体积了。
③怎么办?引出体积单位。
2认识1 cm
①感受1立方厘米的大小:1 cm有多大呢?谁知道?
②课前老师让大家准备了体积是1 cm的学具,举起来我看看。
注意听要求:请你们用格尺量一量这个正方体到每条棱到长是多少?
④那我们就可以说【棱长是1 cm的正方体,体积是1 cm】
⑤生活中哪些物体的体积是大约是1 cm?
⑥老师这儿有个火柴盒,你估计一下它到体积是多少cm?
到底谁估得准呢?同桌2人用你们手中的1立方厘米的正方体摆一摆,算一算。
⑥汇报:
3认识1dm
①刚才我们用棱长1 cm到正方体测出了火柴盒的体积,
那下面我们还用这个1 cm到小正方体测测奶箱的体积。
为什么?(刚才的方法不是挺好的吗?你看又是介绍方法、技巧的。)
②看来我们得需要一个稍大的体积单位,这个稍大的体积单位就是立方分米。
③ 1 dm又是怎样规定的呢?(结合课件)
④课前大家也准备了棱长是1 dm,也就是10㎝的正方体。
⑤生活中哪些物体的体积是大约是1 dm?
4认识1m 。
①刚才,我们用体积是1 cm的正方体测量了火柴盒的体积;用体积是1 dm的正方体了奶箱的体积。
现在老师想让大家用这些体积单位测量一下教室的体积。
②为什么?看来我们还需要一个更大的体积单位。
③ 1 m有多大呢?
④在这个体积是1 m的正方体框架里大约能容纳多少名同学呢?
⑤想不想知道答案?我们来验证一下。
⑥演示验证。
⑦ 1 m的正方体大约能容纳7人,那我们教室的体积有多少m呢?
四应用知识,解决问题。
1在横线上填出适当的体积单位。
课件出示:
一块橡皮的体积约是10 _________
vcd机的体积约是4 _________
集装箱的体积约是40 _________
小结:在生活中,我们要根据大小不同的物体选择合适的体积单位。
在你的生活中,你见过体积最大的物体的是什么?体积最小的物体是什么?
2组成下面各图的每个小正方体的体积为1 cm,把每个图形的体积填在横线上。
延伸:你还能用4个1 cm的小正方体摆出不同的图形吗?
小结:也就是说无论物体什么形状,含有几个体积单位,它的体积就是多少。
3用8个1 cm的正方体,摆出体积是8 cm的正方体或长方体,你能用几种摆法?
四、总结
除了用数体积单位个数的方法求物体的体积,有没有更快捷、更简单的方法呢?(难道求高楼大厦的体积也用数体积单位的方法吗?
是啊,有,一定有。
时间的关系,谜底下节揭晓!
小学体积的教学设计篇十一
1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?”
(设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)
1、比较大小、探究圆柱的体积与哪些要素有关。
(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?
(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。
(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)
(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。
(设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)
2、大胆猜想,感知体积公式,确定探究目标。
(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。
(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。
(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?
(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。
(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)
(设计意图 : 通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)
4、确定方法,探究实验,验证体积公式。
(1)、首先要求学生利用实验工具,自主商讨确定研究方法。
(2)、学生通过讨论交流确定了两种验证方案。
方案一:将圆柱c放入水中,验证圆柱c的体积。
方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。
(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。(课件出示)
(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?
(5)、学生汇报:实验的结果与猜想的结果基本相同。
(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)
(7)、小结:
要想求出一个圆柱的体积,需要知道什么条件?
(8)、学生自学第8页例4上面的一段话:用字母表示公式。
学生反馈自学情况:
v=sh ( 设计意图 这部分教学采用以小组合作探究的学习方式进行数学活动,充分调动学生各种感官,完成从操作→观察、比较→归纳推理的认知过程,让学生通过自己动手、动脑得到结论。通过让学生自己设计实验方案和自主实验探究的活动,培养了学生的创新精神和实践能力。)
小学体积的教学设计篇十二
使学生通过对具体事物的观察,了解体积的意义及体积单位,感受1立方米、1立方分米、1立方厘米有多大。
了解体积的意义及体积单位,感受1立方米、1立方分米、1立方厘米有多大。
感受1立方米、1立方分米、1立方厘米有多大。
一、教学体积。
1、师生互动。
感受教师占的空间大,学生占的空间小。
2、小实验。
感受大石头占的空间大,小石头占的空间小。
3、观察比较。
鞋盒占的空间大,火柴盒占的空间小。
4、举例生活中物体所占空间的大小。
5、总结体积的意义。
二、教学体积单位。
通过教师描绘两个物体组合的样子,猜一猜它们体积的大小,从而引出计量体积的大小要有一个统一的标准(体积单位)。
课件展示三种体积单位的规定方法:
棱长是1厘米的正方体的体积是1立方厘米。
棱长是1分米的正方体的体积是1立方分米。
棱长是1米的正方体的体积是1立方米。
通过观察学具、举例子、测量实物创造以一体积单位为单位的组合体。
分别教学1立方米、1立方分米、1立方厘米。
让学生感知1立方米、1立方分米、1立方厘米的大小。
教学过程
导入:同学们,点、线、面、体构成了我们千变万化的数学图形,我们知道线有长短、面有大小,线的长短叫长度,面的大小叫面积,那体有大小吗?体的大小叫什么?带着这个问题,让我们一起走进今天的课堂。
首先老师要和大家分享两个生活现象,考考你的眼力,同学们,有没有信心?
(1)师:请一位同学和老师配合来一个换座游戏,用数学眼光从我们身上你能发现什么数学信息?
师:老师坐在同学的座位上,你有什么感觉呢?
生:地方小、挤
师:为什么感觉挤呢?
生:老师占的空间大,同学占的空间小(板书空间)
(2)师:这是什么
生:石头
师:一大一小两块石头和液面相等大小一样的两个水杯,现在老师要把石头分别放入水杯中,猜想液面会怎样?注意观察。
师:怎样
生:液面都上升了
师:为什么会上升
生:因为石头都占有一定的空间
师:上升的高度一样吗
生:大石头占得空间大,液面上升的高度就大,小石头占得空间小,液面上升的高度就小
(3)师:认真观察比较火柴盒、文具盒、鞋盒哪个占得空间大
生:鞋盒
师:在我们身边,还有比鞋盒所占空间更大的物体吗?
生:书包、音响、凳子、课桌、讲台桌、教室、一排教室、教学楼、地球、宇宙…….
(4)通过比较,我们发现物体不仅占有一定的空间,而且它们所占的空间有大小之分,我们就把物体所占空间的大小叫做物体的体积。(板书)
师:物体所占的空间大,那它的体积就大,物体所占的空间小,那它的体积就小。
师:选择一个你喜欢的物体,用上“体积”这个词描述一下它的大小。(同桌pk)
生:鞋盒的体积大,文具盒的体积小
讲台桌的体积大,课桌的体积小
教学楼的体积大,教室的体积小
师:说的真好
老师这也有两个物体组合,想让你们比比它们的体积大小,请同学闭上眼睛听老师描述两个物体的样子,听完后迅速作出判断。
师:第一个物体是由4个小正方体搭成的,第二个物体是由6个小正方体搭成的
生1:6个的大,因为用的个数多
生2:不确定,因为它们所用的小正方体的大小不确定。
师:到底哪个大呢?看大屏幕(课件展示)
师:6个的一定大吗?为什么用的个数多,体积却不大呢?
生1:因为它用的小正方体小,而它用的小正方体大
生2:因为它们所用的小正方体不一样大
师:如果用数个数的方法比较它们的体积,需要有什么前提条件?
生1:所用每个小正方体的体积一样大
生2:选同样大小的小正方体去搭
师:每个小正方体的体积一样大,也就是要建立一个统一的标准
计量长度的标准是长度单位
计量面积的标准是面积单位
计量体积的标准就是体积单位
看课件演示,像这样选同样大小的小正方体作为统一的体积单位,就可以更准确的计量出物体体积的大小
师:常见的体积单位有立方厘米、立方分米、立方米(板书)
每种体积单位是怎样规定的?我们先一起回顾面积单位的由来。
课件演示
师:面积单位是用什么图形来表示的?(正方形),体积单位会用什么来得到呢?(正方体)
一、师:拿出最小的那个小正方体,量一量它的棱长(1厘米)
a、我们规定,棱长是1厘米的小正方体的体积是1立方厘米(课件)
b、用手捏一捏,感觉它的大小,生活中见过这么小的物体吗?哪些物体的体积接近1立方厘米?
生:骰子、电视按钮、电脑键盘、花生米、一节小手指……
c、师:橡皮的体积大约是几立方厘米?估计一下,你是怎么估计的(找一学生到前面展示方法)
师:生活中还有哪些物体的体积可以用1立方厘米的小正方体去测量
生:粉笔、钢笔、火柴盒、文具盒……
d、用你手中的教具创作一个以立方厘米作单位的物体组合,并说出它的体积,小组内互相比一比,看谁的体积大
e、请同学用12个小正方体任摆一个物体,你知道它的体积是多大呢?(举起来)
师:为什么同学拼的形状不同,体积却一样大呢?
生:因为它们都用了体积是1立方厘米的小正方体12个
二、现在老师想用这个1立方厘米的小正方体测量鞋盒的体积,合适吗?
生:不合适,太小了
师:拿出那个较大的正方体,量一量它的棱长
a、我们规定棱长是1分米的正方体体积是1立方分米(课件)
b、用手捧住它,感受它的大小生活中哪些物体的体积大约是1立方分米
生:粉笔盒、小音箱、茶叶筒、双拳握在一起……
c、鞋盒的体积大约有几立方分米?
师:你是怎么测量的?生活中还有哪些物体的体积可以用立方分米作单位来测量?
生:电视机、微波炉、投影仪、电闸盒、我家的整理箱
d:小组合作,创作一个以立方分米作单位的物体组合
生:我用了几个小正方体,体积是多少
d、师:我想摆一个大正方体,至少用几个这样的小正方体,体积是多少?试试看
三、用刚才认识的两个体积单位去测量教室的体积,行吗?
师:比立方分米更大的体积单位是立方米,谁能仿照前面的规定说出1立方米有多大
生:棱长是1米的正方体的体积是1立方分米(课件)
师:双臂微微打开长约1米
a、4人合作,围一围,创作一个1立方米的空间
b、好,刚才同学们亲身体验了1立方米
师:老师这还有3根一米长的木条,在墙角搭一个1立方米的空间,看看1立方米的空间可以容纳多少人,谁想来试试
师:1立方米的空间可以容纳9个人
c、1立方米的空间可真大,生活中见过这么大体积的物体吗?教室中有没有?除了讲台桌,还有哪些物体的体积约是1立方米(生答完展示课件)
d、不要小看这1立方米
1立方米的水可以倒满500个暖水瓶
1立方米的木材可以做50张课桌的桌面或300个桌腿
师:生活中哪些物体的体积可以用立方米作单位来测量
总结:同学们,刚才我们认识了3种体积单位,为了方便,每种体积单位可以用字母这样表示(板书)
谁能用一句话概括对每种体积单位的理解呢?
生:边演示边叙述,立方厘米很小(只能用手指捏住)、立方分米较大(要用手捧住捧)、立方米最大(要用手臂抱住)
师:同学们,学到这,你能告诉老师对体的大小你是怎么认识的
生:体的大小就是物体所占空间的大小,也就是物体的体积
师:而且计量体积的大小要有统一的标准,即体积单位,这就是我们今天所学的课题(板书:体积和体积单位)
师:以后再去计量一个物体的体积时,首先根据这个物体所占空间的大小选择合适的体积单位,再看这个物体包含有多少个这样的体积单位,从而得到它体积的大小。
小学体积的教学设计篇十三
数学
最新人教版六年级数学下册第三章《圆柱的体积》
〈〈圆柱的体积〉〉是数学课程标准中“空间与图形”领域内容的一部分。〈〈圆柱的体积〉〉一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,而这节课的顺利学习将为以后圆锥体积的学习铺平道路。学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,但是学生还是喜欢用自己的方法解决问题,所以我给学生创设尽情展示自我的空间,通过自主的学习、合作探究、动手操作,让学生感知立体图形间的一些关系,从而解决生活当中常见的问题。由此、我制定以下三维教学目标:
(1)通过学生体验圆柱体体积公式的推导过程,掌握圆柱的体积公式并能应用公式解决实际问题。
(2)通过操作让学生知道知识间的相互转化。
倡导自主学习、小组合作、动手操作的学习方式,培养学生动手操作的能力,合作交流的意识。从而建立空间观念培养学生的逻辑推理能力。
让学生感受数学与生活的联系,体验探索数学奥秘的乐趣,培养学生学习数学的积极情感。
掌握和运用圆柱体积计算公式。
推导圆柱体积计算公式的过程。
采用的教具为ppt课件和学具。(圆柱体切割组合学具,各小组自备所需演示的用具)。 教学过程:
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?
(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
(4)说一说长方体体积的计算公式。
2、出示橡皮泥捏成的圆柱体。
出示问题:大家想一想用什么办法来求出这个圆柱体橡皮泥的体积呢?
(有的学生会想到:老师将它捏成长方体就可以了;还有的学生会想到捏成正方体也可以的!)
3、创设问题情景。
(课件显示)如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?
刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)
(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成任务驱动的探究氛围。)
设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
(一)学生动手操作探究
1、回顾旧知,帮助迁移
(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系? 启发学生回忆得出:圆柱的上下两个底面是圆形;侧面展开是长方形:所以……
(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。
(通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫)
2、小组合作,探究推导圆柱的体积计算公式。
(1)启发猜想:可见,大部分图形公式的推导都可以把所学的转化为学过的。那么你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积可以怎样计算呢? (这是学生会有圆的面积想到把圆柱转化为长方体)
老师激励同学们:大家同意他的猜想吗?但我们还是要小心地验证猜想的科学性。都说实践出真知,接下来同学们以小组为单位拿出学具,动手尝试着进行转化,并说一说转化的过程。
(2)学生以小组为单位操作体验。
老师引导学生探究:
① 说说你们小组是如何转化的。这是一个标准的长方体吗?为什么?
② 如果分割得份数越多,你有什么发现?(电脑演示转化过程)
③ 这是同学们刚才的转化过程。那书上是怎么说的?下面就请同学们打开书,自由读,用直线标记,找出关键句。全班齐读。
(3)现在再请一位同学到前面来演示转化过程。其他同学边观察边思考: ①切割后拼成了一个近似于什么的形体?
②圆柱的体积与拼成后的长方体的体积有什么关系?
③这个长方体的底面积等于圆柱的什么?
④长方体的高与圆柱体的高有什么关系?
(二)教师课件演示
1、课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决问题。 ①把圆柱拼成长方体后,形状变了,体积不变。
(板书:长方体的体积=圆柱的体积)
②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。
(配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③圆柱的体积=底面积×高 字母公式是v=sh(板书公式)讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?
小学体积的教学设计篇十四
1.理解并掌握长方体和正方体体积的计算方法.
2.能运用长、正方体的体积计算解决一些简单的实际问题.
3.培养学生归纳推理,抽象概括的能力.
长方体和正方体体积的计算方法.
长方体和正方体体积公式的推导.
教学用具
教具:1立方厘米的立方体24块,1立方分米的立方体1块.
学具:1立方厘米的立方体20块.
一、复习准备.
1.提问:什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.
教师提问:拼成了一个什么形体?(长方体)
这个长方体的体积是多少?(4立方厘米)
你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)
如果再拼上一个1立方厘米的正方体呢?(5立方厘米)
谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们
来怎样计算长方体和正方体的体积.
板书课题:长方体和正方体的体积
二、新课.
(一)长方体的体积【演示动画“长方体体积1”】
1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆
出的长方体的长、宽、高.
2.学生汇报,教师板书:
教师提问:这些长方体有什么共同点?(体积相等)
不同点?(数据不同)
为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——
12个1立方厘米)
教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?
师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1
立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.
3.【演示动画 “长方体体积2”】
第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.
一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层
第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.
一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层
第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.
一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层
思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长
方体的体积有没有关系?是什么关系?
(长方体的体积正好等于它的长、宽、高的乘积)
教师板书:长方体的体积=长×宽×高
教师:用v表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书: v=abh.
出示投影图:
4.自学例1.
一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?
7×4×3=84(立方厘米)
答:它的体积是84立方厘米.
(二)正方体体积.
1.【演示课件“正方体体积”】
教师提问:此时的长,宽,高各是多少?
变成了什么图形?
这个正方体的体积可以求出来吗?
2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)
棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)
3.归纳正方体体积公式.
教师板书:正方体体积=棱长×棱长×棱长.
用v表体积,a表示棱长
v=a·a·a或者v=
4.独立解答例2.
光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
(分米3)
答:体积是125立方分米.
(三)讨论长方体和正方体的体积计算方法是否相同.
学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中
b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.
三、巩固反馈.
1.口答填表.
长
方
体
长/分米
宽/分米
高/分米
体积(立方分米)
5
1
2
4
3
5
10
2
4
正
方
体
棱长/米
体积(立方米)
6
30
0.4
2.判断正误并说明理由.
① ( )
② ( )
③一个正方体棱长4分米,它的体积是: (立方分米)( )
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )
四、课堂总结.
今天这节课我们了新知识?谁来说一说?
五、课后作业.
1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?
2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?
六、.
1.理解并掌握长方体和正方体体积的计算方法.
2.能运用长、正方体的体积计算解决一些简单的实际问题.
3.培养学生归纳推理,抽象概括的能力.
长方体和正方体体积的计算方法.
长方体和正方体体积公式的推导.
教学用具
教具:1立方厘米的立方体24块,1立方分米的立方体1块.
学具:1立方厘米的立方体20块.
一、复习准备.
1.提问:什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.
教师提问:拼成了一个什么形体?(长方体)
这个长方体的体积是多少?(4立方厘米)
你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)
如果再拼上一个1立方厘米的正方体呢?(5立方厘米)
谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们
来怎样计算长方体和正方体的体积.
板书课题:长方体和正方体的体积
二、新课.
(一)长方体的体积【演示动画“长方体体积1”】
1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆
出的长方体的长、宽、高.
2.学生汇报,教师板书:
教师提问:这些长方体有什么共同点?(体积相等)
不同点?(数据不同)
为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——
12个1立方厘米)
教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?
师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1
立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.
3.【演示动画 “长方体体积2”】
第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.
一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层
第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.
一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层
第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.
一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层
思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长
方体的体积有没有关系?是什么关系?
(长方体的体积正好等于它的长、宽、高的乘积)
教师板书:长方体的体积=长×宽×高
教师:用v表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书: v=abh.
出示投影图:
4.自学例1.
一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?
7×4×3=84(立方厘米)
答:它的体积是84立方厘米.
(二)正方体体积.
1.【演示课件“正方体体积”】
教师提问:此时的长,宽,高各是多少?
变成了什么图形?
这个正方体的体积可以求出来吗?
2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)
棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)
3.归纳正方体体积公式.
教师板书:正方体体积=棱长×棱长×棱长.
用v表体积,a表示棱长
v=a·a·a或者v=
4.独立解答例2.
光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
(分米3)
答:体积是125立方分米.
(三)讨论长方体和正方体的体积计算方法是否相同.
学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中
b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.
三、巩固反馈.
1.口答填表.
长
方
体
长/分米
宽/分米
高/分米
体积(立方分米)
5
1
2
4
3
5
10
2
4
正
方
体
棱长/米
体积(立方米)
6
30
0.4
2.判断正误并说明理由.
① ( )
② ( )
③一个正方体棱长4分米,它的体积是: (立方分米)( )
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )
四、课堂总结.
今天这节课我们了新知识?谁来说一说?
五、课后作业.
1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?
2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?
六、.
小学体积的教学设计篇十五
知识目标
使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,理解相邻的两个体积单位间的进率是1000的道理。
能力目标
能够采用对比的方法,记忆并区分长度单位、面积单位和体积单位。
情感目标
培养学生的学习迁移能力和探究能力,使学生会应用“猜想-验证”的方法解决数学问题。
体积单位的进率。
体积单位的进率的化聚。
一、复习引入
1.填空:
①长方体体积=();
②正方体体积=()。
③常用的体积单位有()、()、();
师:你知道每相邻的两个体积单位之间的进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)
合作探究
二、课程内容
1.体积单位间的进率。
(1)出示:1个棱长是1分米的正方体木块。
图中是一个棱长为1分米的正方体,体积是1立方分米。想一想,它的体积是多少立方厘米呢?
提问:
①当正方体的棱长是1分米时,它的体积是多少?
②当正方体的棱长是10厘米时,它的体积是多少?
③而1分米是多少厘米?1立方分米等于多少立方厘米?
小组合作填表:
《体积单位间的进率》教学设计
小组汇报结论:1立方分米=1000立方厘米
同理得出:1立方米=1000立方分米
小结:相邻两个体积单位之间的进率都是1000。
(2)将长度单位、面积单位、体积单位加以比较:
先让学生填后并比较这三类单位相邻两个单位间的进率有什么不同?为什么?
(3)学习体积单位名数的改写。
思考:①怎样把高一级的体积单位的名数改写成低一级的体积单位的名数?
②怎样把低一级的体积单位的名数改写成高一级的体积单位的名数?
出示例题3:3.8立方米是多少立方分米?2400立方厘米是多少立方分米?
写成如下形式:
3.8立方米=(3800)立方分米2400立方厘米=(2.4)立方分米
⒊出示例4:看见你得到哪些信息?
⑴这个包装箱的体积是多少?
v=50×30×40
=60000cm3
=60dm3
=0.06m3
⑵大家想一想,问题中没有要求我们最终用什么单位,你选择哪一个?为什么?
如果出现这样答,你必须选择那个答案?
答:这个牛奶包装箱的体积是m3。
⑶你还有其他的途径求出体积为0.06m3。先转化单位,再计算。
一根长方体钢材,长4.8米,横截面是一个边长5厘米的正方形。每立方分米钢重7.8千克,这根钢材重多少千克?
小结今天学习的内容。
在具体的解决问题中,要根据题目的要求转化体积单位,还要注意已知条件单位之间的统一。
体积单位间的进率
1立方分米=1000立方厘米
1立方米=1000立方分米