最新数学史论文(大全8篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
数学史论文篇一
读完《这才是好读的数学史》之后,我最想表达的就是对数学悠长的历史的感叹,这本书让我了解到从3.7万年前到现在21世纪的数学的发展与进步,也明白了数学在生活中的重要性。
下面我将介绍几点我印象最深刻的内容:
在书中第一章:开端中介绍了四大文明古国的数学文化,包括当时的人们用什么材质的东西来记录数学,用数学干什么以及保存情况如何。在这一章讲述古巴比伦的数学是写了他们数学中几个特征,包括以60的幂表示数字,所以接近4000年后的今天为什么仍然把一小时分成60分,把一分钟分成60秒。在这一章中也讲了我国古代的数学文化,在书中介绍了《算经十书》《九章算术》等中国古代的数学经典,由于种种原因导致当时的数学文化的损失,但作者实事求是,没有写一些没有历史根据的东西,再一次让我感受到这本书的严谨。
书中是按国家的顺序进行安排的,因为如果按时间顺序安排的话,很容易弄混淆,作者按照时间线上在某个时间点上最重要的事情的国家来安排,体现了本书“好读”的特点。
在书中有一个细节让我注意,每一章最后都会有一段来推荐一些关于本章内容更详细的讲解的书目,甚至详细到了具体在哪一章,在书的最后把对应的书名写了出来(虽然是英语的,我看不懂)从中可以看到作者对待数学的严谨和细致。
我非常喜欢在书中的一句话“学习数学就像认识一个人一样,你对他(她)的过去了解的越多,你现在和将来就能越理解他(她),并与其互动。”这句话感觉就像说中了我的感受,我认为阅读完之后,自己不仅会对数学更有兴趣,而且在以后学习数学的时候更加认真对待。
文档为doc格式。
数学史论文篇二
摘要:在对数学背景的统计中,我们发现,数学史知识的引入占了很大的比重。
关键词:引入教学史、穿插教学命题。
随着数学教育理念的转型和数学教学观念的变革,我国的基础教育发生了重大的变化。自9月实施新课程标准以来,我国在数学教材的写上也相应地发生了很大的变化。受传统的教育机制的影响,我国以前的数学教育偏重于机械训练和题海战术,教学不从学生的生活实际出发,无论是教材还是教学都脱离知识背景,没有教学情境,这种应试教育已不适应国际数学教育的发展潮流,已不符合现代素质教育的要求。现在的基础教育中,虽然不同的学校使用的新教材版本不同,但都是根据新一轮的课程改革标准编写的。这些教材无论从教学理念,还是数学内容上与人教版教材(人教社)发生了很大的变化。出版的《全日制义务教育数学课程标准(实验稿)》在3个学段的教材编写建议中,也都明确提出应介绍有关的数学背景知识,“在对数学内容的学习过程中,教材中应当包含一些辅助材料,如史料、进一步研究的问题、数学家介绍、背景材料等”[1]。现行使用的新教材在教材的编写上,数学背景知识的引入增加,而且背景知识的水平也有了较大的提高,“背景不仅包括个人生活,公共常识还,还包括科学情景”[2]。
在对数学背景的统计中,我们发现,数学史知识的引入占了很大的比重。新人教版九年义务教育数学教材中有关数学史知识的引入,无论是数量还是质量都比以前有很大的提高。新版中的数学史知识题材更广泛,引入更详细生动,“在引入数学史知识的同时,穿插一些数学名题,包括一些悬而未决的数学题,并注意渗透数学思想方法”[3]。数学史知识的引入教材,既能增加学生学习数学的兴趣,更能帮助他们了解数学知识的历史发展过程,增加学生的数学文化素养,这对理解数学中的有关内容会有很大的帮助。
一、激发学生学习数学的兴趣。
教材中引入数学史知识有助于提高学生的学习兴趣,增强学生学习数学的信心。
在中小学现在使用的`新教材中,很多概念,知识点的引入,不再是直接给出。而是创造一种智力和社会交换的环境,让学生置身于这种环境中,这样,为数学教学中情景教学提供了材料。数学史知识的引入,通常是以讲故事的方式进行,符合儿童的心理特征。就大多数中学生而言,数学与其他学科相比确实是比较抽象、枯燥和乏味,那么如何把数学课讲得引人入胜、生动活泼就成为数学教师的一大课题。作为数学教师不仅要透彻地了解所教的数学,而且还要从宏观上来认识数学知识的发生与发展,从而能够丰富教学内容。实际上,知识丰富引入生动的老师在授课时更能激发起学生学习数学的兴趣,而那些照本宣科、就事论事的老师在授课时只能让学生觉得数学是枯燥无味的。例如在教授一些定理时,以前的老师就是直接给出定理,然后再举例子,这样教的结果是导致学生学习时死记硬背、生搬硬套,如果结合数学史的历史故事,引入它们的来源及历史演变过程,定会引起学生学习的兴趣。再如,老师在教授二元一次方程组时,引入鸡兔同笼问题、百鸡问题,必然会引起学生的兴趣。兴趣是最好的老师,学不好数学的一个关键就是不喜欢、没兴趣!数学较其他学科来说,本来理论性就强,学生感到抽象,如果教材板着脸孔,再加上教师照本宣科,学生就更觉得数学枯燥无味,久而久之,就会厌学,甚至怕学。故事总比单纯的知识有趣,从故事引入数学知识,在背景情境中学习数学能激起学生学习数学的兴趣,而数学家的刻苦钻研的精神与卓越成就,数学中一些有趣问题的解决,以及数学中一些悬而未决的问题,更够激发学生学习的极大兴趣。
二、.帮助学生理解数学。
教科书中的数学教学知识,都是成熟的科学知识。我们从教材上看到的知识,都是数学家们的发现结果,是数学成果浓缩的形式。这些数学结论的起源是怎样的,又是怎样发展演变的?通过数学史知识,我们可以了解当时的数学家为什么和怎样研究数学的。例如勾股定理,如果仅仅给出定理证明,学生也能够掌握,但是,如果教材引入中国古代教学家的证明以及古希腊毕达哥拉斯对这个定理的发现,就会增加学生学习这个定理的兴趣。苏联数学教育家斯托利亚尔说过:“数学教学是数学活动(思维活动)的教学,而不仅是数学活动的结果———数学知识的教学”[4]。学习数学重要的是学习过程,而不是学习数学的结论。教材上的数学公式、定理都是前人苦心钻研经的哲学思想,我们从书本上,已看不到数学发展过程,只看到数学结论,妨碍了我们对这些数学知识的理解。教材中的数学教学内容,是成熟的科学知识,但对学生来说就是全新的,是一个再发现的过程,正确引导学生对知识的再发现,对于学生学习数学知识是很有帮助的。荷兰数学家赖登说过:“传统的数学教育中出现了一种不正常的现象,我们把它们称作违反数学法的颠倒,那就是说数学家们从不按照他们发现创造真理的过程来介绍他们的工作,至于教科书做得更为彻底,往往把表达思维过程与实际创造的过程完全颠倒,因面严重的阻塞了再发现与再创造的通道”[5]。中小学数学教材中引入数学内容相关的数学史知识,对提高学生的数学思想方法和学生的思维能力有很大的帮助。“数学发展的历史,实际就是数学思想方法的发展过程”[6],而数学教材中的知识是对数学史知识快速,集中的再现,通过引入与数学知识相关的数学史知识,再现了数学知识形成和发展的过程,使学把握知识的来龙去脉,同时数学们解决问题的过程和发现创造数学知识的思维活动过程也清晰的呈现给了学生,让学生了解数学家们是怎样去思考问题的,对于培养学生合理的推理和对学生渗透数学思想方法有很大的帮助。
三、培养学生的人文精神。
素质教育要求改变原来授受型的教学,教学要激发学生独立思想,培养学生探究问题的能力,理解知识产生和发展的过程,培养学生的科学精神和解决问题的能力。中小学数学中引入数学史知识,营造了一种科学情景,让学生在学习数学中感受古今中外数学家的探究精神和严谨的治学态度,激发学生的探究热情。从而有利于培养学生的探究的学习态度和精神,新一轮的课程改革,要求我们不能只重视思维的结果,更重要的是重视思维的过程。通过数学史知识的引入,再现数学知识的发展过程,让学生从数学家的思维方法获得思想启迪,树立科学世界观。
《九年义务教育数学新课程标准》指出,在初中教材中引入数学史知识,让学生感受数学的人文精神。数学史知识的作用,体现在对人的观念、思想和思维方式的一种潜移默化的影响,也体现在对人类在数学活动中的探索精神和进取精神的崇尚。在教材中和数学教学中引入数学史知识,对学生进行人文精神培养,培养学生探索未知,追求真理的人文精神。数学是一门不断变化发展的学科,它是运动的,体现了辩证法。数学中的许多定理、公式都是通过归纳、演绎的方法得到的,体现了人们认识世界的科学方法。通过数学家们刻苦钻研、锲而不舍的的历史故事,教育学生树立坚忍顽强的信念。
张奠宙先生曾指出:在数学教育中,特别是中学的数学教学过程中,运用数学史知识是进行素质教育的重要方面.。九年义务教育数学新课程重视培养学生的数学能力,同时注重对学生进行科学人文教育。现行初中数学教材中增加了大量的数学史资料,我们在数学教学中要充分利用这些资源,培养学生的数学思维能力,同时加强对学生的科学人文教育,帮助学生树立起正确的人生观、世界观,培养学生科学的思想方法和高尚的道德品质。
参考文献:
[1]中华人民共和国教育部制订.全日制义务教育数学新课程标准人教社,
[2]九年义务教育小学数学教材人教社。
[3]九年义务教育初中数学教材人教社2007。
[4]《教育学原理》华东师范大学出版社2005。
[5]李文林《数学史概论》科学出版社2001。
[6]钱佩玲《中学数学思想方法》北京师范大学出版社。
数学史论文篇三
16世纪到17世纪,可以说是一个数学史路上一个里程碑,在16世纪早期,学者们创造了代数,他们被称为“未知数计算家”,在那个时期,代数占据了数学史的中心位置,而到了16世纪末17世纪初,人类开始了新的探索,代数与几何共存,以此来研究天文,工程,航海,甚至是政治上的一些问题:开勒普用希腊圆锥描述太阳系,托马斯・哈里奥特则发展代数,笛卡尔把代数和几何结合,从而开始理解彗星,光等现象,这一时期,可以说是各种数学成就在此出生,但最出名的,还是微积分,当时人们无法用数字表现出天体的运动,无法表现一些抽象的物体,于是牛顿与莱布尼茨发明了微积分,但微积分始终还是较为抽象,不就后,当时最著名的数学家――欧拉也做出了一系列成就:三角形中的几何学,多面体的基本定理,有趣的是,欧拉甚至将数应用于船舶,中彩票或是过桥,欧拉将自己生活的方方面面都往数学上想,在他的世界中,数学无处不在。
我们不难看出这些数学家的发明的确大大改变了人们的生活,他们掌握了探索世界的钥匙――数学,将数学应用到方方面面,我们现代生活不也是如此,处处是数学,但最重要的是,我们热爱数学。
数学史论文篇四
从小到大,在学习数学的过程中,接触大量的数学题,对数学的历史很少提及。《数学史》,一本专门研究数学的历史,娓娓道来,满足了我的好奇,把数学的发展过程展示出来。
本书于1958年出版,作者j.f.斯科特。书中主要阐述西方数学的发展历史,但也专门用一章讲述印度和中国的数学发展。沿着时间轴,数学的发展经历了从初等到高等的过程。
上古时代的古埃及人和古巴比伦人在平时的生产劳作中运用到了数学知识。
古希腊人继承这些数学知识并不断拓展,成为数学史上一个“黄金时代”,涌现出毕达哥拉斯、柏拉图、亚里士多德、欧几里得、阿基米德,丢番图等一系列耳熟能详的名字。
在黑暗的中世纪,数学发展处于停滞状态,而斐波那契的出现把数学带上复兴。
文艺复兴,数学又进入一个蓬勃发展的时期,对解三次方程和四次方程、三角学、数学符号、记数方法的研究没有停步。“+”、“-”、“=”、“”、“”的符号是在那个时候出现的,同时出了一名数学家韦达――韦达定理的发明者。
17世纪,解析几何出现、力学兴起、小数和对数发明。这些都为微积分的发明奠定了基础。牛顿和莱布尼兹两位大师的研究,在数学领域开辟了一个新纪元。
18世纪,为完善微积分中的概念,各路数学家在数学分析方法上有所发展。欧拉、拉格朗日,柯西等大师采用极限、级数等方法让微积分更加严谨。同时,非欧几何的理论开始萌芽。
纵观全书,数学的发展是由一群人搭建起来的。前人的工作为后人的研究奠定了基础。后人在前人的工作上不断突破和创新。另外,数学中也有哲理,天地有大美而不言。当看到欧拉时,想到欧拉公式;看到韦达,想到韦达定理。公式很简洁,但把规律说清楚了。数学爱好者可以试着解里面的数学题,看看古人在当时是如何研究的,有的方法很笨拙,有的方法很巧妙。读完后,发现学习数学,会解几道数学题是不够的,还要学会去培养自己的思维。毕竟数学家的思维也会受到历史的局限。比如负数开根号,当时被人看来是无法接受,后来发明了虚数。
历史是在不断地前进,数学的发展亦然。想知道数学和历史的跨界,那就来看《数学史》。
数学史论文篇五
流形是20世纪数学有代表性的基本概念,它集几何、代数、分析于一体,成为现代数学的重要研究对象。在数学中,流形作为方程的非退化系统的解的集合出现,也是几何的各种集合和允许局部参数化的其他对象。〔1〕53物理学中,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。
流形是局部具有欧氏空间性质的拓扑空间,粗略地说,流形上每一点的附近和欧氏空间的一个开集是同胚的,流形正是一块块欧氏空间粘起来的结果。从整体上看,流形具有拓扑结构,而拓扑结构是“软”的,因为所有的同胚变形会保持拓扑结构不变,这样流形具有整体上的柔性,可流动性,也许这就是中文译成流形(该译名由着名数学家和数学教育学家江泽涵引入)的原因。
流形作为拓扑空间,它的起源是为了解决什么问题?是如何解决的?谁解决的?形成了什么理论?这是几何史的根本问题。目前国内外对这些问题已有一些研究〔1-7〕,本文在已有研究工作的基础上,对流形的历史演变过程进行了较为深入、细致的分析,并对上述问题给予解答。
二、流形概念的演变。
流形概念的起源可追溯到高斯(,1777-1855)的内蕴几何思想,黎曼(n,1826-1866)继承并发展了的高斯的想法,并给出了流形的描述性定义。随着集合论和拓扑学的发展,希尔伯特(t,1862-1943)用公理化方案改良了黎曼对流形的定义,最终外尔(,1885-1955)给出了流形的严格数学定义。
1.高斯-克吕格投影和曲纹坐标系。
十八世纪末及十九世纪初,频繁的拿破仑战争和欧洲经济的发展迫切需要绘制精确的地图,于是欧洲各国开始有计划地实施本国领域的大地测量工作。1817年,汉诺威政府命令高斯精确测量从哥廷根到奥尔顿子午线的弧长,并绘制奥尔顿的地图,这使得高斯转向大地测量学的问题与实践。高斯在绘制地图中创造了高斯-克吕格投影,这是一种等角横轴切椭圆柱投影,它假设一个椭圆柱面与地球椭球体面横切于某一条经线上,按照等角条件将中央经线东、西各3°或1.5°经线范围内的经纬线投影到椭圆柱面上,然后将椭圆柱面展开成平面。
采用分带投影的方法,是为了使投影边缘的变形不致过大。当大的控制网跨越两个相邻投影带,需要进行平面坐标的邻带换算。高斯-克吕格投影相当于把地球表面看成是一块块平面拼起来的,并且相邻投影带的坐标可以进行换算。这种绘制地图的方式给出了“流形”这个数学概念的雏形。
大地测量的实践导致了高斯曲面论研究的丰富成果。由于地球表面是个两极稍扁的不规则椭球面,绘制地图实际上就是寻找一般曲面到平面的保角映射。高斯利用复变函数,得出两个曲面之间存在保角映射的充要条件是两个曲面的第一类基本量成比例。高斯关于这一成果的论文《将一给定曲面投影到另一曲面而保持无穷小部分相似性的一般方法》使他获得了1823年哥本哈根科学院的大奖,也使他注意到当比例常数为1时,一个曲面可以完全展开到另一个曲面上。高斯意识到这个成果的重要性,在论文的标题下面写下了一句话:“这些结果为重大的理论铺平了道路。”〔8〕189这里重大的理论就是高斯后来建立的内蕴几何学。
全面展开高斯的内蕴几何思想的是他1827年的论文《关于曲面的一般研究》,这是曲面论建立的标志性论述。〔2〕163高斯在这篇文章中有两个重要创举:第一,高斯曲率只依赖于曲面的度量,即曲面的第一基本形式;第二,测地三角形内角和不一定等于180°,它依赖于三角形区域的曲率积分。高斯的发现表明,至少在二维情况下可以构想一种只依赖于第一基本形式的几何,即曲面本身就是一个空间而不需要嵌入到高维空间中去。〔3〕32,〔4〕308高斯在这两篇论文中都使用曲纹坐标(u,v)表示曲面上的一个点,这相当于建立了曲面上的局部坐标系。突破笛卡尔直角坐标的局限性是高斯迈出的重要一步,但问题是:曲纹坐标只适用于曲面的局部,如果想使曲面上所有的点都有坐标表示,就需要在曲面上建立若干个局部坐标系,那么这些坐标系是否彼此协调一致?这是高斯的几何的基础。高斯当时不具备足够的数学工具来发展他的几何构想,但高斯对空间的认识深刻地影响了黎曼。
2.黎曼的“关于几何基础的假设”
黎曼在1851年的博士论文《单复变函数的一般理论》中,为研究多值解析函数曾使用黎曼面的概念,也就是一维复流形,但流形是什么还没有定义。在高斯的几何思想和赫巴特(t,1776-1841)的哲学思想的影响下,黎曼1854年在哥廷根做了着名演讲《关于几何基础的假设》,演讲中他分析了几何的全部假设,建立了现代的几何观。〔5〕2全文分三部分,第一部分是n维流形的概念,第二部分是适用于流形的度量关系,第三部分是对空间的应用。
黎曼在开篇中提到:“几何学事先设定了空间的概念,并假设了空间中各种建构的基本原则。关于这些概念,只有叙述性的定义,重要的特征则以公设的形态出现。这些假设(诸如空间的概念及其基本性质)彼此之间的关系尚属一篇空白;我们看不出这些概念之间是否需要有某种程度的关联,相关到什么地步,甚至不知道是否能导出任何的相关性。从欧几里得到几何学最着名的变革家雷建德,这一领域无论是数学家还是哲学家都无法打破这个僵局。这无疑是因为大家对于多元延伸量的概念仍一无所知。因此我首先要从一般量的概念中建立多元延伸量的概念。”〔9〕411从开篇中我们可以看到黎曼演讲的目的所在:
建立空间的概念,因为这是几何研究的基础。黎曼为什么要建立空间的概念?这与当时非欧几何的发展有很大关系。罗巴切夫斯基(hevsky,1793-1856)和波约(,1802-1860)已经公开发表了他们的非欧几何论文,高斯没有公开主张非欧几何的存在,但他内心是承认非欧几何并做过深入思考的。然而就整个社会而言,非欧几何尚未完全被人们接受。黎曼的目的之一,是以澄清空间是什么这个问题来统一已经出现的各种几何;并且不止如此,黎曼主张一种几何学的全局观:作为任何种类的空间里任意维度的流形研究。
黎曼在第一部分中引入了n维流形的概念。他称n维流形为n元延伸量,把流形分为连续流形与离散流形,他的研究重点是把连续流形的理论分为两个层次,一种是与位置相关的区域关系,另一种是与位置无关的大小关系。用现代术语来讲,前者是拓扑的理论,后者是度量的理论。黎曼是如何构造流形呢?他的造法类似于归纳法,n+1维流形是通过n维流形同一维流形递归地构造出来的;反过来,低维流形可以通过高维流形固定某些数量简缩而成。这样每一个n维流形就有n个自由度,流形上每一点的位置可以用n个数值来表示,这n个数值就确定了一个点的局部坐标。黎曼这种构造流形的方法显然是受到赫巴特的影响。赫巴特在《论物体的空间》中提到:
“从一个维度前进到另一个维度所依据的方法,很明显是一个始终可以继续发展的方法,然而现在还没有人会想到按空间的第三个维度去假设空间的第四个维度。”〔10〕197可看出黎曼受到赫巴特的启发并突破了三维的限制按递归的方法构造了n维流形,这种构造方法体现了几何语言高维化的发展趋势。从本质上讲,黎曼的“流形”概念与当时格拉斯曼(h.ann,1809-1877)的“扩张”概念和施莱夫利(l.schlafli,1814-1895)的“连续体”概念基本一致.〔6〕83流形应具有哪些特征呢?黎曼提到:
“把由一个标记或者由一条边界确定的流形中的特殊部分称为量块(quanta),这些量块间数量的比较在离散情形由数数给出,在连续情形由测量给出。测量要求参与比较的量能够迭加,这就要求选出一个量,作为其他量的测量标准。”〔9〕413黎曼在此使用的量块体现了现在拓扑学中的邻域概念的特征,“参与比较的量能够迭加”则是要求两个量块重叠的部分有统一的测量标准,即保证任意两个局部坐标系的相容性,这在后来由希尔伯特发展为n维流形局部与n维欧氏空间的同胚。黎曼这种引入点的坐标的方法并不是很清晰的,这种不清晰来自他缺乏用邻域或开集来覆盖流形进而建立局部坐标系的思想。11〕8在文章第二部分黎曼讨论了流形上容许的度量关系。他在流形的每一点赋予一个正定二次型,借助高斯曲率给出相应的黎曼曲率概念。进一步,黎曼陈述了一系列曲率与度量的关系。曲面上的度量概念,等价于在每一点定义一个正定的二次型,亦称为曲面的第一基本形式。自高斯以来,第一基本形式的内蕴几何学几乎一直占据着微分几何的中心位置。从后来的希尔伯特和外尔的流形的定义可看出,他们都延续了高斯的内蕴几何思想。
3.希尔伯特的公理化方法。
从19世纪70年代起,康托尔(g.cantor,1845-1918)通过系统地研究欧几里得空间的点集理论,创立了一般集合论,给出了许多拓扑学中的概念。康托尔的研究为点集拓扑学的诞生奠定了基础,这使得希尔伯特能够利用一种更接近于拓扑空间的现代语言发展流形的概念。希尔伯特在1902年的着作《几何基础》中引进了一个更抽象的公理化系统,不但改良了传统的欧几里得的《几何原本》,而且把几何学从一种具体的特定模型上升为抽象的普遍理论。在这部着作中他尝试以邻域定义二维流形(希尔伯特称之为平面,而把欧氏平面称为数平面),提出了二维流形的公理化定义:
“平面是以点为对象的几何,每一点a确定包含该点的某些子集,并将它们叫做点的邻域。
(1)一个邻域中的点总能映射到数平面上某单连通区域,在此方式下它们有唯一的逆。这个单连通区域称为邻域的像。
(2)含于一个邻域的像之中而点a的像在其内部的每个单连通区域,仍是点a的一个邻域的像。若给同一邻域以不同的像,则由一个单连通区域到另一个单连通区域之间的一一变换是连续的。
(3)如果b是a的一个邻域中的任一点,则此邻域也是b的一个邻域。
(4)对于一点a的任意两个邻域,则存在a的第三个邻域,它是前两个邻域的公共邻域。
(5)如果a和b是平面上任意两点,则总存在a的一个邻域它也包含b.”
〔12〕150可以看出在希尔伯特的定义中,(1)和(2)意味着在平面(二维流形)的任意一点的邻域到数平面(欧氏平面)的某单连通区域上都能建立同胚映射。(3)-(5)意图是要在平面(二维流形)上从邻域的角度建立拓扑结构。希尔伯特的定义延续了黎曼指明的两个方向:流形在局部上是欧氏的(这一点黎曼已经以量块迭加的方式提出),在整体上存在一个拓扑结构。这个拓扑结构希尔伯特显然要以公理的方法建立(这一工作后来由豪斯道夫完成,豪斯道夫发展了希尔伯特和外尔的公理化方法,在1914年的着作《集论基础》中以邻域公理第一次定义了拓扑空间),〔13〕249但与豪斯道夫的邻域公理相比,他的定义还不完善,比如(3)中描述的实际上是开邻域。另外,他没有提流形须是一个豪斯道夫空间。希尔伯特已经勾勒出流形的基本框架,随着拓扑学的发展,外尔完善了希尔伯特的工作,给出了流形的现代形式的定义。
4.外尔对流形的现代形式的定义。
(a)给定一个称为”流形f上的点“的集合,对于流形f中的每一点p,f的特定的子集称为f上点p的邻域。点p的每一邻域都包含点p,并且对于点p的任意两个邻域,都存在点p的一个邻域包含于点p的那两个邻域中的每一个之内。如果u0是点p0的一个邻域,并且点p在u0内,那么存在点p的一个邻域包含于u0.如果p0和p1是流形f上不同的两个点,那么存在p0的一个邻域和p1的一个邻域使这两个邻域无交,也就是这两个邻域没有公共点。
(b)对于流形f中每一定点p0的每一个邻域u0,存在一个从u0到欧氏平面的单位圆盘k0(平面上具有笛卡尔坐标x和y的单位圆盘x2+y21)内的一一映射,满足(1)p0对应到单位圆盘的中心;(2)如果p是邻域u0的任意点,u是点p的邻域且仅由邻域u0的点组成,那么存在一个以p的像p′作为中心的圆盘k,使得圆盘k中的每一点都是u中一个点的像;(3)如果k是包含于圆盘k0中的一个圆盘,中心为p′,那么存在流形f上的点p的邻域u,它的像包含于k.”〔15〕17可以看出,(a)从邻域基的角度定义了f是一个豪斯道夫空间。(b)中的映射为一一的、双向连续的(即同胚)映射,这样(b)定义了f中任意一点都有一个邻域同胚于欧氏空间中的一个开集。外尔给出的这个定义正是现代形式的流形的定义,尽管外尔的定义是针对二维的情形,但本质上给出了流形精确的数学语言的定义,并且推广到高维没有任何困难。
一般认为,高维流形的公理化定义由维布伦(,1880-1960)和怀特黑德(ead,1861-1947)于1931和1932年给出,即把流形作为带有最大坐标卡集和局域坐标连续以及各阶可微变换的点集。实际上,这种看法没有足够重视外尔1919年对黎曼讲演的注释,特别是未能利用外尔1925年的长文《黎曼几何思想》。事实上,除了未对高阶微分结构予以明确区分外,外尔的注释和长文中实质上包含了高维微分流形的定义。
三、流形理论的发展。
我们上面提到的流形指拓扑流形,它的定义很简单,但很难在它上面工作,拓扑流形的一种---微分流形的应用范围较广。微分流形是微分几何与微分拓扑的主要研究对象,是三维欧氏空间中曲线和曲面概念的推广。可以在微分流形上赋予不同的几何结构(即一些特殊的张量场),对微分流形上不同的几何结构的研究就形成了微分几何不同的分支。常见的有:
1.黎曼度量和黎曼几何。
仿紧微分流形均可赋予黎曼度量,且不是惟一的。有了黎曼度量,微分流形就有了丰富的几何内容,就可以测量长度、面积、体积等几何量,这种几何称为黎曼几何。黎曼这篇《关于几何学基础的假设》的就职演说,通常被认为是黎曼几何学的源头。但在黎曼所处的时代,李群以及拓扑学还没有发展起来,黎曼几何只限于小范围的理论。大约在1925年霍普夫(,1894-1971)才开始对黎曼空间的微分结构与拓扑结构的关系进行研究。随着微分流形精确概念的确立,特别是嘉当(,1869-1951)在20世纪20年代开创并发展了外微分形式与活动标架法,李群与黎曼几何之间的联系逐步建立了起来,并由此拓展了线性联络及纤维丛的研究。
2.近复结构和复几何。
微分流形m上的一个近复结构是m的切丛tm的一个自同构,满足j·j=-1.如果近复结构是可积的,那么就可以找到m上的全纯坐标卡,使得坐标变换是全纯函数,这时就得到了一个复流形,复流形上的几何称为复几何。
3.辛结构和辛几何。
微分流形上的一个辛结构是一个非退化的闭的二次微分形式,这样的流形称为辛流形,辛流形上发展起来的几何称为辛几何。与黎曼几何不同的是,辛几何是一种不能测量长度却可以测量面积的几何,而且辛流形上并没有类似于黎曼几何中曲率这样的局部概念,这使得辛几何的研究带有很大的整体性。辛几何与数学中的代数几何,数学物理,几何拓扑等领域有很重要的联系。
四、结语。
以上谈到的是流形的公理化定义的发展历史,其线索可概括为高斯---黎曼---希尔伯特---外尔。导致流形概念诞生的根本原因在于对空间认识的推广:从平直空间上的几何,到弯曲空间上的流形概念的历史演变几何,再到更抽象的空间---流形上的几何。流形概念的一步步完善与集合论和拓扑学的发展,特别是邻域公理的建立密不可分,(微分)流形已成为微分几何与微分拓扑的主要研究对象,并发展成多个分支,如黎曼几何、复几何、辛几何等。所以说,几何学发展的历史就是空间观念变革的历史,伴随着一种新的空间观念的出现和成熟,新的数学就会在这个空间中展开和发展。
参考文献。
〔3〕conceptofmanifold,1850-1950[c]//yofdam:elseviersciencepublisheres,1999:25-64.
〔4〕[德]莫里斯·克莱因。古今数学思想:第三册[m].万伟勋,石生明,孙树本,等,译。上海:上海科学技术出版社,2003.
数学史论文篇六
在这个寒假里,我接触到了《数学史》这本书。这本书介绍了数学从有记载的源头向最初的算术、几何、统计学、运筹学等领域不断深化发展的历史进程,以及如今数学的发展。
这本书分为两篇,上篇是数学简史,下篇是数学概念小史。这本书中令我印象最深的数学家就是费马。皮埃尔・德・费马是属于文艺复兴时期传统的人,他处于重新发掘古希腊知识的中心,但是他却问了一个希腊人没有想到过要问的问题―费马大定理。这个问题困惑了世人358年,直到1994年的9月19日安德鲁・怀尔斯才宣布解开这个问题。这个问题起源于古希腊时代,它联系着毕达哥拉斯所建立的数学的基础和现代数学中各种最复杂的思想。费马大定理的故事和数学的历史有着密不可分的联系,它对于“是什么推动着数学发展”,或者是“是什么激励着数学家们”提供了一个独特的见解。费马大定理是一个充满勇气、欺诈、狡猾和悲惨的英雄传奇的核心,牵涉到数学王国中所有最伟大的英雄。巴里・梅休尔评论说,在某种意义上每个人都在研究费马问题,但只是零星地而没有把它作为目标,因为这个证明需要把现代数学的整个力量聚集起来才能完全解答。安德鲁所做的就是再一次把似乎是相隔很远的一些数学领域结合在一起。因而,他的工作似乎证明了自费马问题提出以来数学所经历的多元化过程是合理的。
读了数学史后,我认为数学在我们的生活中扮演着不可或缺的角色,只有学好数学,学会应用数学,我们才能在这个正在向数字化发展的社会稳稳地站住脚跟。
数学史论文篇七
在数学的教学中也会将美国本土的数学家的研究内容融入到专科数学的教学中,没讲到一个数学问题都会将涉及到这个知识点的相关的数学家的研究历史详细的告诉学生,使学生们更能了解到数学的发展是如何一步步发展到今天这个样,但无论怎么发展数学的历史永远是当今每个学生都要必须学习的地方,这样的教学中更好的将数学史融入到数学的教学中,不仅在教学中讲解本土的数学家还会将到不同国度的数学家但对数学的贡献。因此在美国可以更好的将数学史融入到数学教学中。
2日本是如何将数学史与专科数学教学整合在一起。
日本是和我国比邻的国家,日本的数学教学中如何使用数学史也是有一定的方法。日本的数学学习,重视基础知识的理解,重视能力、态度和数学的思想方法的培养,并强调“使学生体会到数学学习活动的乐趣”,突出了对情感体验和学习兴趣的重视。无论是小学数学还是中学数学的教学,以及到专科数学的教学中都会将基础知识作为学习的重点,因此在教学中涉及到不同的教学的理念。如:“高明的计算”、“古人乘法的窍门”、“秀吉令人惊奇的故事”、“测量的技巧”、“离不开数学的人们”、“电子计算机的诞生”。它们旨在帮助学生理解数量和图形的有关概念在人类活动中的发展过程,提高学生对数学的兴趣、关心和学习的欲望,给学生以学习数学的动力。因此日本能很好的将数学教学和数学史进行有效的整合,将学生的兴趣作为数学教学的基本,然后通过数学史的内容和数学教学融合在一起,就会激发学生们的学习积极性,这些教学理念和中国的教学有几分相似之处。
3德国是如何将数学史与专科数学教学整合在一起。
德国是一个欧洲国家,发达的经济背后更注重学生的学习,对于数学的教学中更关注他的实践作用,在教学中涉及到的内容也会和数学史联合起来。没有数学的发展历史就不会当前发达的数学,因此在数学的教学涉及到的数学史的内容也很多,在数学的教材中有100多处涉及到数学史,将数学史编到数学的教材中,而不是单独列出数学史作为一个单独的科目,而是有机的将数学史融合到数学的教学中,这样不仅可以让数学教师更容易的将数学教学和数学史联合在一起而且更能将这两者教学很好的告诉学生。德国这种教学方式更能使学生们接受并达到更好的学习效果。如在自然数表达一节就介绍了数表达的历史特别是罗马数系;在韦达定理的应用一节就介绍了数学家韦达。而在大数定律一节则介绍了数学家雅各布伯努利。这些教程中的内容不仅可以给数学教师指出一条更好的教学之路,还能将数学的教学有效的教给学生,学生学到的知识就会更明确。
4其他国家是如何将数学史与专科数学教学整合在一起。
其他国家中对数学的教学和数学史的整合的现状,不同国家得到的结果也不尽相同。欧洲国家中除了德国还有法国,法国指出了数学史要和专科数学教学中的各项内容要一一结合,只要有数学内容就应该涉及到数学史,将数学史有机的融合到数学的教学的每一个章节。欧洲国家中另一个国家英国,英国要求学生们要知道数学史,并对涉及到数学教学中的数学史要详细的.研读如数学家的名字以及他们的业绩和生平。并作为考试内容重点来考察,这样的教学要求可以激起学生们的独立学习的能力,更能将数学史整合到数学的教学中。其他国家还有俄罗斯,作为中国相邻的国家,俄罗斯的数学教学中也涉及到数学史,主要还是将数学史作为一门单独的课程,在教学中涉及的内容也不多,主要还是学生们的自学,对数学史和数学教学的整合存在一定的差距。不同的国家对数学教学的重视程度不同在数学史与数学教学中的整合也存在一定的差距,无论怎么样的发展,数学史作为一个学科也越来越多的受到教师的重视,在整合的路上还有一段路要走。
5结语。
新课改的不断进行,也为我国的教学提出了一些实际的问题,如何做好新课改下的数学教学,这也是每个教学必须要研究好思考的问题,对不同国家中数学史与专科数学教学的整合现状,我们看到的还是不足之处,借鉴不同国家的经验,应用到我国的数学教学中可以更好的教学,还可以看到我们的不足,取长补短,发挥各自的优势。对我国的数学史的了解,以及其他国家的数学史也要了解,数学不仅涉及到本土的内容,还会涉及到不同国家杰出的数学家的贡献,知识是可以共荣,我国的数学教学重要也要多引用其他国家著名的数学家的研究内容用于我国的专科数学教学中,这也是新课改的言外之意,充分的利用各国先进的教学,将数学史融合到专科数学的教学中,充分发挥各自的优势为我国的数学教学做出贡献。数学史与专科数学教学的整合的问题还在不断的进行着,克服当前存在的问题,寻求解决的办法,还是需要一段路要走。
数学史论文篇八
摘要:像其它院校教学一样,在职业技术院校的数学教育中,数学史不仅发挥着不可磨灭的作用,而且能够有效的开发学生的数学思维能力,让学生懂得掌握数学的思想。因此,文章就数学史的教育价值进行了一定程度的分析,以便进一步发挥数学史的教育价值。
只有真正读懂历史、懂得历史的人,才能够对于数学进行进一步的理解。法国著名的数学家亨利庞加莱曾经说过这样一句话:“如果我们想要对数学的未来进行预测,我们首先就需要了解到数学这一门学科的历史以及现状。”随着最近几年职业技术院校的教育改革来看,已经将数学的文化价值推到了台前,也就使得人们对于数学史的关注越来越多。
数学史作为一门科学,研究了数学科学的发展以及规律,换句话说,就是对于数学研究的历史。数学史不仅仅是对数学内容、思想、方法的一种追溯,更多的是对于影响数学发展的各种因素的探索,也包含了在人类文明的发展上,数学史所带来的影响。所以,数学史不仅仅只是包含了数学本身,更多的是包含了文化、历史、哲学等众多的学科,属于一门交叉性较强的学科。
二、数学史在职业技术学校开展的必要性。
在职业技术学院这一大环境之下,很多教师对于数学这一门课程都没有足够的重视,就谈不上数学史的教学了。因为,很多教师和学生都认为职业技术学院的学生就是为了学习专业的技术而来的,对于一些纯理论的东西是可有可无的。因此,在数学系当中,对于数学史的学习就没有引起足够的重视,而数学史知识的严重缺乏也就成为了学生在之后数学教育或者是科研方面的一大阻碍。因此,无论是否是职业技术学校,我们都需要从心里认识到数学史教育的必要性,要了解数学史的教育价值,从而在日常的教学当中,将数学史当做一门重点来抓,从而弥补以往在数学史这一方面的不足。
三、在职业技术教育当中,数学史的价值。
在目前的职业技术院校的教育当中,已经越来越多的融入了数学史的教育,而对于数学教育,数学史的主要作用存在以下几点:
(一)有利于帮助学生理解数学。
当数学家发现数学的时候,其思考是火热的,但是一旦研究结束了,我们面前呈现出来的则是“冰冷”的公式。所以,通过我们对于数学史的了解以及说明,我们就能够了解到在数学的研究当中,数学家是如何思考的、进行的。
例如:为什么古希腊人在开展数学的时候,要使用公理化的方法进行开展?古希腊人所处的是何种时代背景。而古希腊数学与中国的古代教育又存在如何的区别?弄明白了这些情况,对于学生在数学方面的理解能力的提高也有着一定的作用。而对数学老师而言,想要上好数学课,就需要自身具备良好的数学修养。
(二)有利于数学宏观认识的提高。
作为一名专业的数学老师,并非是将书本上的知识传授给学生就完事了,更多的是需要为学生讲解数学发展的历史。作为一名优秀的数学教师,不仅需要授人以业,更多的是需要授人以法,从而做到受人以道。而在这里所说的“法”与“道”就要求了教师能够从宏观方面对于数学发展的情况能够理顺,能够深入到数学的本质当中去。数学史对于创新数学教育来说,起到了引导的作用。在数学史当中详细的对数学家在发现与发明的过程进行了及摘,数学老师对学生进行讲述后,也能够培养学生的'创造力,让学生懂得如何去创造。
例如:在公元263年,在我国古籍《九章算术》的注释当中,刘微对于在圆周长计算当中的“割圆”思想提出了计算,而他在论述当中所说的:“割之弥细,所失弥少,以至于不可割,则与圆周合体,而无所失!”就成为了一种创新的激励,激励着学生的学习。
(三)促进学生培养良好的科学品质、正确的世界观。
在接受职业技术教育的学生当中,大部分都是因为学生上的受过挫折的。尤其是在当今社会下注重分数轻视能力的大背景下,很多学生在思想上认为自己无法和考上了名牌大学的学生相比较,从而失去了自信心,给自己带上了“差生”的帽子。而这一种消极的状态则在学生日常的方方面面表现了出来。因此,他们在课堂之上除了掌握基本的知识点之外,更重要的是培养良好的人文素养。
数学史为数学教育德育功能的实现提供了一定的帮助。进行数学史教学能够提升学生对于数学学习的兴趣,也能够达到活跃数学课堂氛围的效果,从而有利于教学效率的提高。对于我国现代数学家的伟大贡献的讲述,能够起到一定的激励作用。而丰富的数学史料的融入能够培养出学生正确的价值观、情感以及态度。展示在数学领域当中古今中外的数学家的崇高精神以及伟大的人格对于学生培育学科精神、完善道德都起到了不可磨灭的作用。此外,在史料当中,对于数学家所犯的“低级”措施的恰当引出,对于学生正确的、理性的看待学习当中的失败,形成良好的科学品行也起到了至关重要的作用。
(四)数学史为之后的科研事业打下了坚实的基础。
对于学生以后的数学研究工作来说,数学史是良好的方法论基础。“科学能够带给我们丰富的知识,但是历史却能够让我们拥有智慧。”现阶段的职业技术学生的学生也不可能从而很多的数学科研工作。但是,数学史对于以后志向在数学方面的学生,仍然起到了重要的作用。
数学史能够提升学生的科研意识的培养。通过数学史的学习,学生能够清楚的了解到数学问题的提出、解决以及哪些问题一直困扰着大家。数学史也能够为了学生之后的科研方向提供一定的基础。目前来说,数学的各个分支发展是极为不平衡的。很多分支虽然起步相对较晚,但是依然存在较大的进步控制,而这就成为了数学工作者一展才华的天堂。虽然,目前的职业技术学校的学生对于各个数学分支的认识相对有限,并且这一种有限的认识会影响到学生以后的选择。但是数学史的融入,不但可以帮助学生理顺数学的发展,还能够为他们之后的发展提供专业性的意见。因此,数学史的教育价值显而易见。
总之,在职业技术教育当中,想要将数学史的价值发挥出来,还需要两者的相互整合,有赖于所有的教学工作者的探讨与摸索,也希望本文中对于数学史的教育价值的分析与阐述能够为之后的工作尽一份微薄之力。
参考文献:。
[1]张国定.全面认识新课程下数学史的教育价值[j].教学与管理,,(25)。
[2]岳荣华.发掘数学史在数学教学中的教育功能[j].衡水学院学报,,(01)。