数学史论文有参考文献(优质9篇)
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
数学史论文有参考文献篇一
读完《数学史》,心底不由得一阵感动。那是一种什么感觉呢?是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。每一代人都在数学这座古老的大厦上添加一层楼。当我们为这个大厦添砖加瓦时,有必要了解它的历史。
通过这本书,我对数学发展的概况有了一个较为全面的了解。书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。
数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。
数学的历史源远流长。我了解到,在早期的人类社会中,()是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。
数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。
在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。
第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。
第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。
第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。
天才的思想往往是超前的,这些凡夫俗子的确很难理解他们。但是时间会证明一切!
数学是一门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不近不会推翻原有的理论,而且总是包容原先的理论。例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如涵数、导数、积分等概念的推广均包含乐古典定义作为特例。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。
而中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。从远古以至宋、元,在相当长一段时间内,中国一直是世界数学发展的主流。明代以后由于政治社会等种种原因,致使中国传统数学濒于灭绝,以后全为西方欧几里得传统所凌替以至垄断。数千年的中国数学发展,为我们留下了大批有价值的史料。
人们为什么长久以来称数学为“科学的女皇”呢?也许是女皇让人无法亲近的神秘感和让人们向往和陶醉的面容,让人情不自禁地联想起数学吧!
数学史论文有参考文献篇二
总之,在职业技术教育当中,想要将数学史的价值发挥出来,还需要两者的相互整合,有赖于所有的教学工作者的探讨与摸索,也希望本文中对于数学史的教育价值的分析与阐述能够为之后的工作尽一份微薄之力。
参考文献:。
[1]张国定.全面认识新课程下数学史的教育价值[j].教学与管理,2010,(25)。
[2]岳荣华.发掘数学史在数学教学中的教育功能[j].衡水学院学报,,(01)。
数学史论文有参考文献篇三
课堂是教师的主阵地,也是推进数学新课程改革的主战场。教师按课程的规定,为学生获得数学知识经验、个性发展提供最有效的途径与方法;为学生终身发展,形成科学的世界观、价值观奠定基础。在新的理念下究竟如何展开课堂教学是值得研究的问题。本文就如何进行教学设计谈几点认识。
一、教学设计应有利于发挥学生的主体作用。
学生是学习的主体,所有的新知识只有通过学生自身的“再创造”,才能纳入其认知结构中,才可能成为一个有效的知识。传统课堂设计往往是“教师问,学生答;教师写,学生记”。在这样教学下,学生机械被动地学习,师生缺乏主动对话、沟通、交流。新课程标准要求教师必须转变角色,尊重学生的自主性,以新的理念指导设计教学。在教学过程中,要根据不同学习内容,使学生学习成为在教师指导下自动的建构过程。教师在设计教学目标、组织教学活动等方面,应面向全体学生,突出学生的主体性,充分发挥学生的主观能动性,让学生自主参与探究问题。
二、教学设计应有利于培养学生的合作精神。
当代科学的发展已呈现既高度分化,又高度综合的趋势,单凭个人的力量无法胜任科学研究工作。据统计,诺贝尔奖金有60%是集体获得。美国女科学家哈里特·朱克曼在《科学的精神》一书中说:荣获诺贝尔奖金的研究成果大都是通过合作获得的。
为促进学生的合作交流,教学设计时应考虑到把班级分成几个小组,有明确的责任分工,教师能有效地组织学生的合作学习、交流。这样设计有助于培养学生的合作精神和竞争意识,同时有助于教师的.因材施教,弥补一个教师难以面向有差异的众多学生的教学不足,从而真正体现“不同的人在学习上有不同的发现”的教学目标。在教学学习中,个人努力与合作学习相结合则能促进学生对数学的理解,在交流与讨论中,能够澄清认识,纠正错误。这有助于扩展思路,提高能力,培养合作精神,体会分工协作带来的快乐。
三、教学设计应有利于培养学生的应用意识。
《新课程标准》大大增加了数学建模内容,也就是运用数学思想、方法和知识解决实际问题,已经成为不同层次数学教育重要和基本的内容。因此,我们有必要改变传统教学观念,着力加强数学应用意识的培养,并将之渗透到整个课堂教学过程中。所以教师必须认真研究课程标准,设计富有情趣、联系生活的教学活动,让学生有更多机会从周围熟悉的事物中学习数学,理解数学,使学生自觉地联系数学以及其他学科的知识,让学生参与提出问题、分析问题、解决问题这一全过程,并深刻体会数学的应用价值。
如在学习必修五第一章《数列》最后一节时,可以让学生先去调查亲戚、朋友购房时所选择的付款方式;学习《解三解形》最后一节时,可以让学生设计恰当的方式去测量学校旗杆的高度。
由此看出,这种模式的一个关键点就是围绕学生日常生活来展开,由学生身边的事引出数学问题,使学生体会到数学与生活的紧密和谐关系,可以让他们真正应用数学,并引导他们学会做事。
四、教学设计应有利于培养学生的创新意识。
关注学生的学习以后,还要给他一定的空间,让他突破自己。教学中教师要精心设计教学,不应停留在简单的变式和肤浅的问答形式上,而应让他在学习某些内容时,自己有一些新的发现,获得一些相对他自己而言的新结论。使学生在“观察、联想、类比、归纳、猜想和证明”等一系列探究过程中,体会成功的快乐,从而激发学生创新的欲望。
如在《空间向量与立体几何》一章的教学设计中,一般先复习《平面向量》,然后让学生自己研究,大多数同学类比平面向量的研究方法,能总结出空间向量的计算和应用。这一方法展示了学生对知识的深刻理解,反映更高层次的思维水平,培养学生创新精神的过程,应该看成是培养学生自我发展能力的过程。从多个角度来认识,我们做事情的时候,不必十分在乎学生初级创造的结果,而要重视学生在这个创造过程中人格的建立、能力的发展、学科素养的成长。
随着《课程标准》改革深化,教学理念、教学模式、教学内容等都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,更加适应《新课标》的发展要求,培养好每一个学生。
数学史论文有参考文献篇四
人们通常认为数学只是简单的加减乘除,是一门理科性质的学科,仅重视了表面的数字运算,却忽略了数学与其他学科知识间的逻辑联系。在数学学习中,我们不难发现,要对数学学习内容理解、掌握,必须要有很好的观察能力、想象能力、推理能力。而掌握了这些能力,可以为培养其他学科所需的科学素质及逻辑思维能力打下良好的基础。所有的学科不是独立存在,而是相互联系的。以下是我对学习数学重要性的几点看法。
1.培养逻辑思维能力。逻辑思维指对事物观察、概括、推理,然后采用逻辑方法,正确表达自己意见的能力。逻辑思维能力不仅在数学学习中体现出来,也是学习其他学科所必备的。
2.开发非智力因素。非智力因素指兴趣、情感等与智力无关的心理因素。兴趣体现在激发学生解决问题的求知欲,从而产生较高的学习动机。这在其他学科中也需要,只有具备良好的动机,加上浓厚的兴趣,才可能对一门学科有兴趣,这就成为学好学科知识的首要条件。
3.培养科学文化素质。无论学习什么学科,都不能以自己的妄想来断定结果。没有事实为依据的知识,只能误导学生。因此要用科学的观点来学习新的知识。
二、培养学生的数学思维的重要性。
学生的数学能力受到先天素质、家庭教育、外界因素等的影响。有的学生学习能力强,依据自己的理解及老师的讲解,能很快地掌握知识,他们不仅能很快地解决问题,而且会有自己的独特的`理解,能凭借原有的知识去掌握新的知识。有的学生只能通过死记硬背来记住知识,没有自己的理解,学习起来也就相对费劲,他们的思维无条理,混乱,面对没见过的题目,无从下手。对于这种情况,在教学中只有注重培养数学思维才能解决根本问题。因此,认识培养数学思维的重要性是必需的。
1.数学思维能力与知识、技能紧密结合。
教学过程不是简单地传授知识,还是全面培养学生各种素质的过程。学习知识的过程,就是运用各种思维解决问题的过程,在学习中不注意培养数学思维,就无法较好地理解所学的知识,有可能养成死记硬背的习惯。
2.判断能力体现了数学思维能力。
学习的根本任务是让学生学会对身边的事情进行真假判断,对教材上的内容、老师的讲解质疑。学生要用自己的数学思维提出自己的观点,发表有个性的见解。
3.数学思维能力体现了学生的综合素质。
总结能力即灵活地运用所学知识概括自己观点的能力,它要求学生首先具有推理思维能力和发散思维能力。另外,总结能力是综合素质的表现,所以数学思维能力也体现了学生的综合素质。
三、培养学生的数学思维的几点建议。
小学数学课程新标准的基本要求是培养学生的数学思维能力。数学思维能力包括丰富的空间想象能力,较强的归纳推理能力,善于发现、观察问题。在小学数学教学中,应把培养学生的数学思维能力贯穿在教学各环节中。我们可以通过以下几方面来培养学生的数学思维。
1.从具体到抽象认识来培养数学思维。在学习数学基础知识时,应重视概念定理的学习,由于此方面的知识比较抽象,小学生不易理解,学习起来也较吃力。在教学过程中,教师应从具体实物着手,再逐步脱离具体实物,转入抽象定理,培养学生的抽象思维能力。这样才能加深学生对概念的理解,以便更好地运用相关定理。
2.在教学关键点上培养数学思维。在学习新知识或复习时,都应结合具体的内容来教学。对每节的知识点,教师设置相关的问题让学生思考,间接引导学生对每节的知识进行回忆、分析、理解、推论,以做出正确的回答。最后,还要对每章的内容做总结。这种落实到教学关键点上的特殊的思维培养方法是值得研究的。
3.联系生活实际培养数学思维。理论来源于生活实际,教师应利用自己的生活经验,多讲些生活与数学联系紧密的例子,让数学理论知识从课本走进生活,使得理论知识更具体生动。引导学生运用数学理论知识,解决生活中相关问题,从而培养学生的数学思维,使学生的数学思维能力在学习中增强,从而实现教学的根本目标。
小学数学教学的目的不仅在于让学生掌握知识,而且在于学习方法,培养数学思维能力,以及良好的品质,促进学生全面发展。良好的数学思维能力,不仅在学习数学时有很大的作用,而且是小学生良好综合素质的体现。因此,培养学生的数学思维能力尤为重要。
参考文献:
[1]韦志初.发挥例题习题功效培养数学思维品质[j]。
[2]胡廷欣,童其林.充分利用习题特点培养学生思维品质[j]。
[3]胡水荣.合理使用教具,培养学生数学思维品质[j]。
数学史论文有参考文献篇五
随着近代工业革命和现代科学技术的迅猛发展,人们物质文化生活水平不断提高,艺术参与环境改造的活动越来越多,这是在全世界范围内众所周知的。今天,由工业文明向生态文明转化的可持续发展已成为时代的主题。我国环境设计教育改革需要较为科学的理论进行指导,否则与迅速发展的国家经济、文化形势不相适应。环境设计是一门集艺术、科学、工程技术于一体的应用型新兴学科,以环境规划设计、环境形态艺术、物质环境设计、大众行为心理等为研究核心,以策划、规划、设计、管理四个环节的结合,构成了环境设计纵向系统的整体。环境设计的最终目标是实现人类生存环境的可持续发展,涉及的学科专业领域包括生态学、建筑学、艺术学、行为学、心理学、经济学、社会学、室内设计、景观设计、城市设计、规划设计等。目前,国内大部分高校开设了环境设计专业,课程设置主要由通识课、学科基础课、专业核心课、专业实践课四部分组成。其中,通识课约占总课程量的50%,学科基础课和专业核心课约占40%,专业实践课约占10%。在专业课程中,主要以景观设计、观赏植物配置与造景、景观小品设计、建筑初步设计、室内设计、家具设计为主线设置一系列专题设计课程,课程分类繁细,内容覆盖面广,各自独立,呈点状的板块式分布。教学方式以理论教学为主体,以实验教学和实践教学为补充,在理论教学中充分运用多媒体手段传授设计理论和设计方法,在实验教学和实践教学中则指导学生在本门课程内分阶段地完成专题专项研究,使学生能够运用多种合理的表达方式充分展现自己的设计创意,最终达到本专业的教学目标。生态设计在一些西方国家已经形成了较为完整的市场与教学体系,其设计教育发展程度较高。我国的生态设计基本上还处在探索阶段,各高校的生态设计教育发展程度不均衡,受重视程度也需要加强。因此,国内高校可借鉴国外设计院校的教学模式,积极建立与国外设计院校和相关科研机构的互动关系和交流合作,吸收先进的环境设计专业的办学理念、课程设置、教学方法和研究成果,为培养出符合我国生态文明建设所需的、具有国际化视野的高层次复合型设计人才而肩负起重大责任。在环境设计教育中植入生态设计理念,应根据所处环境的自然条件,充分运用生态学、设计学、环境科学及现代科学技术手段等,创造适合人类生活、工作需要的环境,最终体现出人类的生存环境与生态系统长期相协调的状态,使生态环境得以改善,同时让人类历史文化的精华得以继承。但是长期以来,环境设计教育受社会意识、经济压力、资源条件等因素影响,国内部分高校还没有建立起真正意义上的环境生态设计教学体系。
二、生态设计理念在环境设计教学中的培养途径。
1.建立科学教学构架,开设生态设计课程。
环境设计教育教学改革应将重点放在生态设计理念的培养方面,将生态设计相关课程内容纳入人才培养方案。并不是在设计课程中给学生讲一些概念性的理论就能使学生完全理解生态设计理念,生态设计教育要具体落实到专业课程教学中,根据居住区景观设计、街道区景观设计、商业区景观设计、滨水区景观设计、建筑设计、室内设计等各种不同的环境专题设计课程,结合设计案例在教学过程中倡导适度设计,逐步使学生形成一种从生态设计的角度解决环境设计问题的思维习惯。最终使学生在今后的设计过程中树立科学的设计观,秉持生态设计理念,探索低能耗、低污染的环境设计方法和途径。教师应是生态设计教育的倡导者和实施者,只有谨记“天下兴亡,匹夫有责”的教育者,才能将生态设计的可持续观念深深植入学生的大脑。教师言传身教所传递的信息将会影响学生未来的环境设计观,这是一种倡导保护生态环境的`正能量,相信这种力量的影响力会越来越大。建立科学教学构架,贯彻科学发展观,体现可持续设计,就要优化课程体系,适当增设生态设计课程。教师应遵循“理论—方法—实践”的环境生态设计教学思路,尽可能在大学二年级以前开设诸如设计学概论、环境学概论、城市规划原理、景观生态学等基础理论课程,使学生建立基本的目标概念和设计观念。在大学三、四年级时,应系统地将生态环境策划、生态环境元素、生态设计方法、生态设计法规融入环境专题设计课程教学,并辅以一定的实验教学与实训实务等。
2.树立生态设计意识,积极感知生态环境。
树立生态设计意识,需要培养学生形成一种生态观的设计思维习惯,积极感知生态环境。在课堂教学中,生态设计的内容是核心,教师要适时、适当地将生态设计理念及其重要性传递给学生,从而构建人与自然的和谐关系。在任何给定的设计中,学生都要仔细分析生态给环境中的建筑物、构筑物、道路、水景、人群等带来的价值,不是先设计环境中的建筑物、构筑物、道路等再考虑生态性,而是要从生态的角度进行环境中建筑物、构筑物、道路等的设计。环境设计绝不能脱离生态理念而凸现个性创意,任何时候都要从塑造生态环境的角度创造环境的构成形式。另外,对于环境设计的创作成果,师生也不能只注重方案多么个性,效果图多么漂亮,构成形式多么震撼,而要学会关注环境的长期寿命,即通过生态观与环境的融合实现可持续发展。只有当这种生态设计理念真正深入人心,学生才会在作业训练或设计实践中更积极地感知生态环境,认真思考设计与环境的关系。
3.关注设计生命周期,节约能源物质消耗。
以往的环境设计教育中,对于环境外在形象、功能特点、艺术感的训练较为偏重,而材料、构造、工艺、技术等课程由于与实践脱节,环境设计专业的学生难以理解和消化。因此,材料、构造、工艺、技术等课程是环境设计专业学生学习的软肋。虽然许多高校针对这类知识设置了一部分材料、构造、工艺、技术等方面的课程,但是其教学的实际效果并不理想。材料、构造、工艺、技术等知识是设计立意中极其重要的组成部分,倘若在设计作品中所使用的材料本身就缺乏生态观的考虑,那么整件设计作品的生态性将荡然无存。在材料选用方面,具有生态性的材料形式非常讲究,环境设计师应尽可能地采用当地材料和自然材料,因地制宜地选择合理的构造技术和建造形式,同时以能循环使用、降解再生的材料为主,并且高度重视环境的使用寿命。在环境设计中,自然景观元素和生态系统保护显得非常重要,如自然水体景观、原始森林的保护,应尽可能减少能源消耗以及土地、水、生物资源的使用。通常情况下,为了尽可能地减少能源和物质的消耗,设计师应视自然资源为宝,在环境设计中合理地利用自然中的光、风、水体、植被、土壤等,使其服务于环境的新功能,以提高资源的利用率。如,一些西方国家的环境设计将关闭的工厂和废弃的场地注入鲜活的生命力,使其利用生态技术恢复后再次被人们使用,成为市民追求时尚潮流的休闲娱乐场地。因此,设计师应充分关注环境设计的整个生命周期,减少能源和物质的消耗,包括材料选择、构造技术、施工建设、使用管理和废弃过程,这样会大大降低环境设计场地的耗能和耗材,实现节约能源、节约资源、回归自然、舒适健康的美好愿望。
4.把握生态设计原则,尊重自然环境设计。
今天生活在城市中的人们远离自然环境,自然元素、自然气息和自然过程在日常生活中日趋淡化,人们对大自然的渴望成为环境设计师的诉求。设计师需要合理把握生态设计原则,尊重自然环境设计,体现当地的传统文化和乡土情怀,顺应场地的自然条件,因地制宜,合理利用原有场地的各种资源,创造出充满生态之美的环境,以满足人们与大自然亲近的心理。因此,环境设计师应善于从自然界中汲取灵感,将环境中的建筑物、构筑物、广场、庭院、绿化、水体等是否尊重自然、显露自然作为判断环境设计成败与否的关键。建筑物、构筑物等矗立于环境中,称为实景,在此基础上给观赏者创造的一种想象空间称为虚景,建筑物、构筑物等与其共同构成的环境空间能够形成虚景与实景的融合,也就是虚实相生、虚实相应的意境。这就是中国传统美学观中“虚”与“实”的辩证思想,追求“状难写之景如在目前,含不尽之意见于言外”的艺术风格,与中国山水画、山水诗词的创作精神“求‘神韵’于‘大象’”是一致的。如地形变化多端的场地拥有特殊的地形环境,场地中往往呈现出某一地段多岩石、多沙土、多植物、多冰雪、多雾等现象,具有较为丰富的自然现象和自然环境,那么环境中的建筑物、构筑物等设计可充分利用这种自然现象和自然环境的优势,将岩石、沙土、植物、冰雪、雾等作为环境设计的一部分,再利用阳光、风雨、微地形和微气候为环境空间营造意境。结语社会对环境设计师的要求越来越高,教育改革应针对市场的改变而与时俱进,甚至预见社会发展趋势。环境设计专业人才培养模式的建构思路是以动态发展、动态更新为前提的,这不仅是新形势对环境设计教育功能的要求,也是各高校努力探索的必要前提。因为不能保持先进的教育,就无法保证环境设计专业的人才培养质量,更无从谈起对环境设计教育的贡献。
生态设计理念融入环境设计教学,是实现环境设计科学发展的一个质的飞跃。为了实现人类社会的可持续发展,培养高等人才的环境设计教育应肩负重任。环境设计教育者必须秉持可持续的生态设计理念,把握好我国环境设计教育前进的方向,摒弃不切实际的环境外在形态艺术化和片面追求经济增长、物质享乐的实用价值观,构建一种尊重他人、观照后人、公平对待自然、充满人文理性的文明观、生态观和价值观,让生态设计理念成为未来环境设计师必须遵循的职业道德。
数学史论文有参考文献篇六
为使设计方案得到完整的体现,设计者必须研究画面中各种视觉要素间的构成方法和排列顺序,确立各个部分在受众视觉中的刺激程度,使受众的视线按照设计者编排的视觉流程线方向流动,按主题要求分层次地引导读者解读主题。
二、招贴版式编排在海报中的应用。
1.招贴版式编排在公益海报中的应用。
随着社会的发展变化和公益事业的进步,我国的公益海报紧随时代的步伐,数量日益增加。在某种意义上,公益海报可以看成一个城市、一个国家公益事业和精神文明发展的缩影。它是对社会民众自身情感的呼唤,唤起人们的感同身受的思考,从而形成强烈的诉求力。公益海报的视觉冲击力要比其他海报的强烈,一定要在第一时间抓住观者的心理,对人的内心起到震撼的作用,感染每一个人,这样才能达到公益海报的效果。因此,公益海报多以醒目鲜亮的大色块的形式表现,主体内容则多以简单的形式表现,通俗易懂,一目了然。日本设计大师福田繁雄非常有名的反战海报采用对角线构图,斜线视觉流程使整个画面有种不稳定的感觉。黄色的背景和黑色的枪口、子弹形成了鲜明的对比。福田繁雄运用了矛盾空间的表现形式,打出去的子弹并不是朝外飞,而是朝着反方向运动,在给读者带来趣味性的同时,更使读者思考。左上角的文案也简单醒目地再次点题。
2.招贴版式编排在文化海报中的应用。
文化海报与公益海报、商业海报的区别在于它根植于现实,传达出特定时空的具体信息,不同于公益海报的社会责任感,也不同于商业海报的商业目的与功利性。文化招贴版式编排中,一般缩小文字标题面积,注意字形与大小的选择。依靠形象图形这种更为广泛的美术语言增加直观的感受,因为文化海报不必像商业海报那样需要详细解说商品的特性和具体指标。
3.招贴版式编排在商业海报中的应用。
商业海报是指宣传商品、商业服务、企业的商业性广告海报,通过大众传播媒体,将自己的商品及供货销售信息公布于世。它具有明确的目的性,通过文字、色彩、图形向公众介绍商品,报道服务内容和文艺节目,使消费者认识和接受。在商业海报的版式设计中,信息的传播主要依靠视觉语言的表达,其中文字起主导作用。设计者根据商业的信息内容,对文字进行视觉流程的编排设计,合理、有效地运用文字和字体的视觉语言元素。海报的色彩设计是将广告信息通过图形、文字、色彩的编排以平面的形式呈现出来,用色彩增强设计美感和艺术效果,最终达到视觉传达的`艺术效果和商业目的。结语随着时代的发展,新颖的招贴设计版式总是摆脱规范化的束缚,将平淡的字符、图形经过有序的组合,形成不同寻常的空间关系,让人耳目一新。设计者要具有较高的审美观察力、创造性的思维方式,有一定的胆识和技术知识。招贴版式应不断与设计版式融合,版式中简洁的编排依然具有很强的生命力,恰当的空间运用在视觉流程的引导下更能凸显主题,具有强烈的视觉感。
数学史论文有参考文献篇七
函数在当今社会应用广泛,在数学,计算机科学,金融,it等领域发挥着举足轻重的作用;在数学发展的历史上,函数这一概念从提出到如今渗透到数学的各个层面,都在数学学科中有着不可撼动的地位。学好函数、了解函数的发展历史不仅能提高我们对函数概念的认知度,还能有助于我们更好的运用函数解决实际问题。
1函数产生的社会背景。
函数(function)这一名称出自清朝数学家李善兰的着作《代数学》,书中所写“凡此变数中函彼变数者,则此为彼之函数”。而在16、17世纪的欧洲,漫长的中世纪已经结束,文艺复兴给人们的思想带来了觉醒,新兴的资本主义工业的繁荣和日益普遍的工业生产,促使技术科学和数学急速发展,这一时期的许多重大事件向数学提出了新的课题;哥白尼提出地动说,促使人们思考:行星运动的轨迹是什么、原理是什么。牛顿通过落下的苹果发现万有引力,又自然使人想到在地球表面抛射物体的轨迹遵循什么原理等等。函数就是在这样的一个思维爆炸的时代下渐渐被数学家们所认知和提出。
早在函数概念尚未明确之前,数学家已经接触过不少函数,并对他们进行了分析研究。如牛顿在1669年的《分析书》中给出了正弦和余弦函数的无穷级数表示;纳皮尔在1619年阐明的对数原理为后世对数函数的发展提供有力依据。1637年法国数学家笛卡尔创立直角坐标系,使得解析几何得以创力,为函数的提出和表述提供了更加直观的方式;直角坐标系可以很形象的表述两个变量之间的变化关系,但他还未意识到需要提炼一般的函数概念来阐述变量的关系。17世纪牛顿莱布尼兹提出微积分的概念,使得函数一般理论日趋完善,函数的一般概念表述呼之欲出。在1673年莱布尼兹首次使用函数一词来表示“幂”,而牛顿在微积分的研究中也使用了“流量”一词来表示变量之间的关系。函数就是在数学家们不同分支但相同意义的研究下顺应而生。
2函数概念的提出和初步发展。
1718年,瑞士的数学家约翰·伯努利(johannbernoulli)把函数定义为“一个变量的函数是指由这个变量和常量以任何一种方式组成的一种量”。伯努利把变量x和常量按任何公式构成的量叫做x的函数,表示为yx.值得一提的是伯努利家族是一个科学世家,3代人中产生了8位科学家,后裔中有不少人被人们追溯过,这是非常罕见的。约翰·伯努利的函数定义在为后世的函数发展提供了便利。
1755年,瑞士数学家欧拉(leonhardeuler)把函数定义为“如果某些变量,以某一些方式依赖于另一些变量;即当后面这些变量变化时,前面这些变量也随之变化,就把前面的这些变量称为后面这些变量的函数”。欧拉的定义与现代函数的定义很接近。在函数的表达上,欧拉不拘于用数学式子来表示函数,破除了伯努利必须用公式表达函数的局限性,他认为函数不一定要用公式来表示,他曾把画在坐标系上的曲线也叫做函数,他认为函数是“函数是随意画出的一条曲线”
3十九世纪的函数-对应关系。
19世纪是数学史上创造精神和严格精神高度发扬的时代,几何,代数,分析等各种分支犹如雨后春笋般竟相发展;函数进入19世纪后,概念理论得到了极大的拓展和完善。
1822年傅立叶发现某些函数可以表示成三角级数,进而提出任何函数都可以展开为三角级数;提出着名的傅立叶级数。使得函数的概念得以改进,把世人对函数的认识推到了一个新的层次。
1823年,法国数学家柯西从定义变量开始给出了函数的定义,指出无穷级数虽然是定义函数的一种有效方法,但定义函数不是一定要有解析表达式,他提出了“自变量”的概念;他给出的定义是“在某些变数间存在一定的关系,当一经给定其中某一变量的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。”这一定义与现在中学课本中的函数定义基本相同。
1837年,德国数学家狄利克雷指出:对于在某区间上的每一个确定的值,都有一个或多个确定的值,那么y就叫做x的函数。狄利克雷的函数定义避免了以往以往函数定义中依赖关系来定义的弊端,简明精确,为大多数数学家所接受。
4现代函数-集合论的函数。
自从德国数学家康托尔提出的集合论被世人广泛接受后,用集合的对应关系来表示函数概念渐渐占据了数学家们的思维。通过集合的概念把函数的对应关系、定义域以及值域进一步具体化。1914年豪斯道夫在《集合论纲要》中用“序偶”来定义函数;库拉托夫斯基在1921年又用集合论定义了“序偶”。这样就使得豪斯道夫的定义更加严谨。
1930年,新的现代函数定义为:若对集合m的任意元素x总有集合n确定的元素y与之对应,则称在集合m上定义一个函数,记为y=f(x)。元素x称为自变量,元素y称为因变量。
5函数发展对当代社会的意义。
函数的发展,对当代社会的生产生活产生了重大的影响;函数概念也随着时代的不断进步而分成了网状的分支,从简单的一次函数到后来复杂的五次函数方程的求解;从简单的反函数,三角函数到后来的复变函数,实变函数。这些函数的常用性质,以及函数的求解都随着人们对函数概念理论的不断深入而发现,进而无数人对其更加深入了研究探讨,函数思想理论也深入渗透到社会各个领域。从教师教学中的函数思想到解决实际问题的数学建模;从计算机编程领域的c函数到调控市场经济的概率理论研究,函数无时无刻不在发挥其强大的作用。了解函数概念发展的过程,就是不断挖掘理解函数内涵的过程,可以使人们对这个客观的世界更加深入的了解,有助于人们丰富视野,并不断的加以发展,适应不断变化的社会需要。
参考文献。
[1]陈路飞。函数发展史[j]。数学爱好者,2006(,2)。
[2]庞懿智。函数的发展史对函数的教学的启示[j]。未来英才,2014,(7)。
[3][美]victor.数学史通论第二版[m]。高等教育出版社,2004.02.
[4]彭林,童纪元。借助函数概念的发展史引入函数概念[j]。中学数学,2011,(11)。
数学史论文有参考文献篇八
高等职业院校的培养目标是,生产、建设、服务和管理第一线需要的髙素质技能型应用人才。高等数学课程是高职院校工科和经济管理各专业人才培养方案中重要的基础课和工具课。数学建模作为髙职数学教学的有机组成部分,是培养学生综合素质、创新意识和科研能力的极好载体。
近年来,高职院校的数学教学改革在教学内容、教学方法、教学手段、考核形式等方面取得了一定的成绩。但至少还存在以下三个问题:第一,虽然高职数学教学内容是本科高等数学“压缩饼干型”的状态有所改观,但仍是知识的简单迁移,教学内容没有从根本上体现面向应用性职业岗位的基本特点。强调学科内容的系统性、具有较高的抽象性、理论性强、偏重计算、忽视应用仍然是数学教学的弊端,学生在学习过程中感到枯燥无味。第二,经过多年的中学数学教学改革,现在许多省(市)已将高等数学的部分内容下放到高中阶段,微积分中极限、导数及其应用、积分等已经是中学数学的必修内容。学生进入髙职院校,再讲微积分,特别是重复讲授简单的极限计算、求导数、求积分,教学内容“炒冷饭”,令学生反感。第三,随着以mathematic、matlab为代表的优秀数学软件的普及,其强大的数值计算、符号运算和图形表示的功能,以及具有使用方便、输出结果可视化、人机界面直观的特点,越来越受到广大师生的欢迎。原先教学的重点内容,如极限、导数、积分的计算问题,运用软件可以方便快捷地解决,不必再花费大量的时间进行复杂计算的训练教学。
2高职院校开展数学建模教学的意义。
2.1数学模型(mathematicalmodel)是用数学符号、数学式子、程序、图形等对实际问题本质属性的抽象和刻划,它能够解释某些客观现象,或预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略。当人们需要从定量的角度分析和研究一个实际问题时,就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。在信息化社会的今天,“数学无所不在”,“计算机无处不在”,计算技术的迅速发展为数学建模的广泛使用提供了可能。
2.2创办于1992年,每年一届的全国大学生数学建模竞赛,目前已成为全国高校规模最大的基础性学科竞赛和课外科技活动之一,也是世界上规模最大的数学建模竞赛,至今已经举办24届,参赛院校和人数逐年增加。年,来自全国33个省(市、自治区、香港和澳门特区)及海外的1326所院校、28574个队(其中专科组3016队)、85000名大学生报名参加本项竞赛。其“创新意识、团队精神、重在参与、公平竞争”的竞赛宗旨,受到大学生的推崇。竞赛也在推动教学改革、促进科学研究、扩大国际交流方面起到了积极的作用。
2.3髙职院校培养目标是技术应用型人才,教会学生用数学的思维、方法和技术,去发现和解决生产、服务和管理一线中的具体问题,才是学习数学的真正意义。数学建模的实践性和应用性,是高职数学教学改革极好的平台。通过数学建模教学,让学生体会到数学思维的生机活力、数学方法的灵活多样、数学应用的无处不在。数学建模比赛是一项微型科学研究活动,其课题源于生产、管理和生活中的实际问题,将实际问题抽象为数学模型并进行求解,再用所求的结果解释实际现象,从中可以使科学研究能力得到训练,思维能力、分析问题和解决问题的能力得到提升。数学建模竞赛一般是没有标准答案的开放性问题,可以采用不同的思路和方法建立模型,这就为培养学生的发散性思维、创新能力提供了平台。数学建模竞赛的结果要求参赛学生提交一份论文,在此过程中,要求学生具有查阅文献、收集资料、了解工程和管理实际背景的自学能力,熟练运用计算机以及数学软件的能力,撰写科技论文的语言表达能力。数学建模竞赛需要三名学生协作完成,是一项团队合作性的工作,需要学生懂得团队合作的.重要性,这有利于培养学生团队意识、合作精神、竞争意识,以及攻坚克难的顽强品质,更好地适应今后的工作挑战。
3髙职院校开展数学建模教学的途径。
3.1对于列入教学计划的高等数学课程,可以通过数学引例、数学实验讲清数学概念。数学概念源于社会生产实践,具有实际意义。例如用曲边梯形面积的计算引进定积分的概念,利用flash动画演示实验帮助学生正确地理解抽象的数学概念。突出无限分割的思想,加强用“微元”分析方法建立积分模型,促使学生理解非均匀积累问题的数学建模的基本步骤,即“分割、近似、求和、取极限”。也可以选择学生日常生活中常见的问题进行数学建模教学。新生小王购买了一部手机计划在中国移动公司入网,现有两款资费标准不同的套餐可供选择:“动感地带”套餐的月租费为20元,每月来电显示费6元,本地电话费每分钟0.2元;“神州行”套餐的本地电话费每分钟0.4元,月租费和来电显示费全免。两种套餐的数据流量费相同。小王的家人和朋友大都在本地,他希望拥有来电显示服务,请问他应该选择何种套餐更省钱?这就是简单的方程模型,设小王每月通话时间为分钟,电话费元。则选择“动感地带”套餐的费用:(元);选择“神州行”套餐的费用:(元)。比较与的大小,即。显然,当小王的每月通话时间超过130分钟时,选择“动感地带”套餐合算,当通话时间小于130分钟时,选择“神州行”套餐省钱。
3.2重视数学教学与专业课程相结合。微积分中的几个重要概念,极限、导数、定积分、微分方程等在各个专业上都有广泛的应用,如复利(人口增长)、最值问题、变力作功等。数学应用是教学的重点也是难点,需要学生正确地理解相关的数学概念。教师要引导学生面对实际问题,透过现象看本质,抓住问题的核心。例如生产和流通企业中广泛使用的经济最优库存量模型,企业管理人员确定计划期内企业生产所需物资的合理订货批量、订货点和订货间隔时间的模型,其目的是在保证正常生产的条件下使库存总费用最少。库存模型分为两大类型:确定型库存模型、随机型库存模型。其中比较简单、常用的经济订货批量模型是确定型库存模型,它是建立在以下条件基础上的:需求是连续且均匀的;不允许缺货;当库存量降至零时可立即得到补充;每批订货量及订货费用不变;单位物资平均库存费用不变。根据上述五个条件,若要求采购和库存费用最小(经济订货批量),这就涉及到抽象、简化、建模、求解等数学建模的基本方法和步骤。
3.3开设数学建模讲座和选修课,可以普及数学建模的基本常识,激发学生的学习兴趣,从而为挑选优秀学生组建数学建模比赛集训队伍做准备。根据学生的知识水平,精选建模案例,如足球队排名问题、交通信号问题、投资组合问题、人口模型问题,它们既是经典的数学建模案例,又是学生感兴趣的话题,选讲这些问题有利于培养学生应用数学的思想方法观察、分析、理解和解决实际问题的能力。
3.4举办小型数学建模比赛,锻炼选手,积累经验,积极参加全国大学生数学建模大赛。指导老师需要将不同专业背景、知识能力互补的学生组织起来,进行培训。采用实战的形式,要求学生根据实际问题,去挖掘、采集有用的信息,提出模型的假设、再完成模型建立、计算、分析、编程、验证、写作等。
4结语。
髙职院校开展数学建模教学是数学教学由知识本位向能力本位转变的重要载体,对学生数学思维的熏陶、数学方法的运用、应用数学的意识,以及综合运用学科知识分析问题、解决问题的能力培养,具有十分重要的意义。
实践表明,把数学建模教学引入高职数学课程教学是必要的,也是可行的。
数学史论文有参考文献篇九
中华民族是一个具有悠久历史和灿烂文化的民族,在灿烂的文化瑰宝中数学在世界数学发展史中也同样具有许多耀眼的光环。研究中国的数学发展历程有着重要的现实意义。
1中国古代数学的发展史。
1.1起源与早期发展。数学是研究数和形的科学,是中国古代科学中一门重要的学科。中国数学发展的萌芽期可以追溯到先秦时期,最早的记数法在殷墟出土的甲骨文卜辞中可以找到记数的文字。如独立的记数符号一到十,百、千、万,最大的数字为三万,还有十进制的记数法。
在春秋时期出现中国最古老的计算工具---算筹,使用算筹进行计算称为筹算,中国古代数学的最大特点就是建立在筹算基础之上。古代的算筹多为竹子制成的同样长短和粗细的小棍子,用算筹记数有纵、横两种方式,个位用纵式,十位用横式,以此类推,并以空位表示零。这与西方及阿拉伯数学是明显不同的。
在几何学方面,在《史记·夏本记》中记录到夏禹治水时已使用了规、矩、准、绳等作图和测量工具,勾股定理中的“勾三股四弦五”已被发现。
1.2中国数学体系的形成与奠基时期。这一时期包括秦汉、魏晋、南北朝,共400年间的数学发展历史。中国古代的数学体系形成在秦汉时期,随着数学知识的不断系统化、理论化,相应的数学专书也陆续出现,如西汉初的《算数书》、西汉末年的《周髀算经》、东汉初年的《九章算术》以及南北朝时期的《孙子算经》、《夏侯阳算经》、《张丘建算经》等一系列算学着作。
《周髀算经》编纂于西汉末年,提出勾股定理的特例及普遍形式以及测太阳高、远的陈子测日法;《九章算术》成书于东汉初年,以问题形式编写,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章,特点在于注重理论联系实际,形成了以筹算为中心的数学体系。
中国数学在魏晋时期有了较大的发展,其中赵爽和刘徽的工作被认为是中国古代数学理论体系的开端。赵爽证明了数学定理和公式,详尽注释了《周髀算经》,其中一段530余字的“勾股圆方图”注文是数学史上极有价值的文献。刘徽的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。
在南北朝时期数学的发展依然蓬勃,出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学着作。最具代表性的着作是祖冲之、祖父子撰写的《缀术》,圆周率精确到小数点后六位,推导出球体体积的正确公式,发展了二次与三次方程的解法。
1.3中国古代数学发展的盛衰时期。宋、元两代是中国古代数学空前繁荣,硕果累累的全盛时期。出现了一批着名的数学家和数学着作,其中最具代表性的数学家是秦九韶和杨辉。秦九韶在其着作的《数学九章》中创造了“大衍求1术”(整数论中的一次同余式求解法),被称为“中国剩余定理”,在近代数学和现代电子计算设计中起到重要的作用。他所论的“正负开方术”(数学高次方程根法),被称为“秦九韶程序”。现在世界各国从小学、中学、大学的数学课程,几乎都接触到他的定理、定律、解题原则。杨辉,中国南宋时期杰出的数学家和数学教育家,他在1261年所着的《详解九章算法》一书中,给出了二项式系数在三角形中的一种几何排列,这个三角形数表称为杨辉三角。“杨辉三角”在西方又称为“帕斯卡三角形”,但杨辉比帕斯卡早400多年发现。
随后从十四世纪中叶明王朝建立到明末的1582年,数学除了珠算外出现全面衰弱的局面。明代最大的成就是珠算的普及,出现了许多珠算读本,珠算理论已成系统,标志着从筹算到珠算转变的完成。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。
2中国近现代数学的发展史。
中国近现代数学发展时期是指从20世纪初至今的一段时间,开始于清末民初的大批留学生的回国后,各地大学的数学教育有了明显的起色,很多回国人员后成为着名的数学家和数学教育家,在世界都具有重要的影响,为中国近现代数学发展做出了重要贡献,这些着名的数学家及其贡献主要有:
2.1陈景润及其代表作。陈景润是世界着名解析数论学家之一。1966年,陈景润攻克了世界着名数学难题“哥德巴赫猜想”中的(1+2),在哥德巴赫猜想的研究上居世界领先地位,距摘取这颗数论皇冠上的明珠(1+1)只是一步之遥,于1978年和1982年两次收到国际数学家大会的邀请,在其他数论问题的成就在世界领域也是遥遥领先的。
2.2华罗庚及其贡献。华罗庚是近代世界着名的中国数学家,对数学的贡献是多方面的。在数论、矩阵几何学、典型群、自守函数论、多个复变函数论、偏微分方程及高维数值积分等领域都做出了卓越的贡献。他解决了高斯完整三角和的估计,推进华林问题、塔里问题的结果,在圆法与三角和估计法方面的结果长期居世界领先地位,着作有《堆垒素数论》、《数论导引》、《典型域上的多元复变量函数论》及合着《数论在近似分析中的应用》。他在普及应用数学方法、培养青年数学家等上都有特殊贡献。
2.3苏步青及其成就。苏步青是中国科学院院士,国内外享有成名的数学家。主要从事微分几何学和计算几何学等方面的研究。他在仿射微分几何学和射影微分几何学研究方面取得出色成果,在一般空间微分几何学、高维空间共轭理论、几何外型设计、计算机辅助几何设计等方面取得突出成就,对培养中国早期的数学人才曾起了巨大的推进作用。
2.4吴文俊及其贡献。吴文俊是数学界的战略科学家,现任中国科学院院士,第三世界科学院院士。曾获得首届国家自然科学一等奖(1956)、中国科学院自然科学一等奖(1979)、第三世界科学院数学奖(1990)、陈嘉庚数理科学奖(1993)、首届香港求是科技基金会杰出科学家奖(1994)、首届国家最高科技奖(2000)、第三届邵逸夫数学奖(2006)。他在拓扑学、自动推理、机器证明、代数几何、中国数学史、对策论等研究领域均有杰出的贡献,他的“吴方法”在国际机器证明领域产生巨大的影响,有广泛重要的应用价值。
3研究中国数学发展史的重要意义。
与自然科学相比,数学是一门积累性科学,国内外许多着名的数学大师都对数学史都有着深远的研究。研究数学发展史可以为我们提供经验教训和历史借鉴,使我们的科学研究方向少走弯路或错路。从数学发展史中,我们要明白数学是一种文化,是形成现代文化的主要力量,是文化极其重要的因素。数学的概念来源于经验,与自然科学的生活世纪密不可分,在经过数学家严格的加工与推理后形成数学这门科学。研究数学的发展历史,弄清一个概念的来龙去脉,一个理论的兴旺和衰落,影响一种重要思想的产生的历史因素,有利于了解数学的现状,指导数学的未来,更好地接受以及学习数学,从历史的发展中获得借鉴和汲取教益,促进现实的科学研究,从而使数学与我们的生活更加贴切。
参考文献:
[1]王青建。数学史:从书斋到课堂[j]。自然科学史研究,2004,2:152.
[3]李文林。数学史概论(第二版)[m]。北京:高等教育出版社,2002.