高中数学数列知识点总结(三篇)
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,让我们一起认真地写一份总结吧。总结书写有哪些要求呢?我们怎样才能写好一篇总结呢?以下是小编精心整理的总结范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
高中数学数列知识点总结篇一
q≠1时,sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)
q=1时,sn=na1
(a1为首项,an为第n项,d为公差,q为等比)
这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。注:q=1时,{an}为常数列。利用等比数列求和公式可以快速的计算出该数列的和。
sn=a1+a2+a3+...+an(公比为q)
qsn=a1q + a2q + a3q +...+ anq = a2+ a3+ a4+...+ an+ a(n+1)
sn-qsn=(1-q)sn=a1-a(n+1)
a(n+1)=a1qn
sn=a1(1-qn)/(1-q)(q≠1)
高中数学数列知识点总结篇二
如果在a与b中间插入一个数g,使a,g,b成等比数列,那么g叫做a与b的等比中项。
有关系:
注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以g2=ab是a,g,b三数成等比数列的必要不充分条件。
an=a1_q’(n-1)(其中首项是a1,公比是q)
an=sn-s(n-1)(n≥2)
前n项和
当q≠1时,等比数列的前n项和的公式为
sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)
当q=1时,等比数列的前n项和的公式为
sn=na1
an=a1=s1(n=1)
an=sn-s(n-1)(n≥2)
(1)若m、n、p、q∈n_,且m+n=p+q,则am·an=ap·aq;
(2)在等比数列中,依次每k项之和仍成等比数列。
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数c为底,用一个等差数列的各项做指数构造幂can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
(5)等比数列前n项之和sn=a1(1-q’n)/(1-q)
(6)任意两项am,an的关系为an=am·q’(n-m)
(7)在等比数列中,首项a1与公比q都不为零。
注意:上述公式中a’n表示a的n次方。
高中数学数列知识点总结篇三
(1)定义:
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈n_,q为非零常数).
(2)等比中项:
如果a、g、b成等比数列,那么g叫做a与b的等比中项.即:g是a与b的等比中项a,g,b成等比数列g2=ab.
(1)通项公式:an=a1qn-1.
(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈n_),则am·an=ap·aq=a.
特别地,a1an=a2an-1=a3an-2=….
(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列sm,s2m-sm,s3m-s2m,…仍是等比数列(此时q≠-1);an=amqn-m.
(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数.
(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.
(1)等比数列的前n项和sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用.
(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.