高一数学知识点总结图 高一数学知识点总结(精选12篇)
总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中可以改进提高,趋利避害,避免失误。大家想知道怎么样才能写一篇比较优质的总结吗?以下是小编收集整理的工作总结书范文,仅供参考,希望能够帮助到大家。
高一数学知识点总结图篇一
复数知识点网络图
2.复数中的难点
(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.
(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.
(3)复数的辐角主值的求法.
(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.
3.复数中的重点
(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.
(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.
(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.
(4)复数集中一元二次方程和二项方程的解法.
高一数学知识点总结图篇二
有些“自我感觉良好”的学生,常轻视课本中基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳”。因此,同学们应从高一开始,增强自己从课本入手进行研究的意识。可以把每条定理、每道例题都当作习题,认真地重证、重解,并适当加些批注,特别是通过对典型例题的讲解分析,最后要抽象出解决这类问题的数学思想和方法,并做好书面的解题后的反思,总结出解题的一般规律和特殊规律,以便推广和灵活运用。另外,学生要尽可能独立解题,因为求解过程,也是培养分析问题和解决问题能力的一个过程,同时更是一个研究过程。
首先,在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。
其次,要提高数学能力,当然是通过课堂来提高,要充分利用好课堂这块阵地,学习数学的过程是活的,老师教学的对象也是活的,都在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,教材是反映不出来的。数学能力是随着知识的发生而同时形成的,无论是形成一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。课堂上通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。
最后,在数学课堂中,老师一般少不了提问与板演,有时还伴随着问题讨论,因此可以听到许多的信息,这些问题是很有价值的。对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结症遗留下来,甚至沉淀下来,有价值的问题要及时抓住,遗留问题要有针对性地补,注重实效。
一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。"不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。"自然界适者生存的生物进化过程便是最好的例证。学习要经常总结规律,目的就是为了更一步的发展。通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。
高一数学知识点总结图篇三
棱锥的的性质:
(1)侧棱交于一点。侧面都是三角形
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形
esp:
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
高一数学知识点总结图篇四
1、静态的观点有两个平行的平面,其他的面是曲面;动态的观点:矩形绕其一边旋转形成的面围成的旋转体,象这样的旋转体称为圆柱。
2、定义:以矩形的一边所在直线为旋转轴,其余各边旋转而形成的的曲面所围成的旋转体叫做圆柱,旋转轴叫圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于圆柱轴的边旋转而成的面叫圆柱的侧面,圆柱的侧面又称圆柱的面。无论转到什么位置,不垂直于轴的边都叫圆柱侧面的母线。
表示:圆柱用表示轴的字母表示。
规定:圆柱和棱柱统称为柱体。
3、静态观点:有一平面,其他的面是曲面;动态的观点:直角三角形绕其一直角旋转形成的面围成的旋转体,像这样的旋转体称为圆锥。
4、定义:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转而形成的面所围成的旋转体叫做圆锥。旋转轴叫圆锥的轴;垂直于旋转轴的边旋转而成的圆面成为圆锥的底面;不垂直于旋转轴的边旋转而成的曲面叫圆锥的侧面,圆锥的侧面又称圆锥的面,无论旋转到什么位置,这条边都叫做圆锥侧面的母线。
表示:圆锥用表示轴的字母表示。
规定:圆锥和棱锥统称为锥体。
5、定义:以半直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆台。还可以看成用平行于圆锥底面的平面截这个圆锥,截面于底面之间的部分。旋转轴叫圆台的轴。垂直于旋转轴的边旋转而形成的圆面称为圆台的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆台的侧面,无论转到什么位置,这条边都叫圆台侧面的母线。
表示:圆台用表示轴的字母表示。
规定:圆台和棱台统称为台体。
6、定义:以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体,简称为球。半圆的圆心称为球心,连接球面上任意一点与球心的线段称为球的半径,连接球面上两点并且过球心的线段称为球的直径。
表示:用表示球心的字母表示。
简单组合体的结构:
1、`由简单几何体组合而成的几何体叫简单组合体。现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。如教材图1.1-11的前两个图形,他们是多面体与多面体的组合体;1.1-11的后两个图形,他们是由一个多面体从中截去一个或多个多面体得到的组合体。
2、常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合。其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体;另一种是由简单简单几何体截去或挖去一部分而成的简单组合体。
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
高一数学知识点总结图篇五
1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为r.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
【函数的应用】
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
1(代数法)求方程的实数根;
2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
高一数学知识点总结图篇六
棱锥的的性质:
(1)侧棱交于一点。侧面都是三角形
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形
esp:
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
高一数学知识点总结图篇七
高一新生的学习主动性太差是一个普遍存在的问题。小学生,常常是完成了作业就可以尽情地欢乐。初中生基本上也是如此,听话的孩子就能学习好。高中则不然,作业虽多,但是只知做作业就绝对不够;老师的话也不少,但是谁该干些什么了,老师并不一一具体指明。因此,高中新生必须提高自己学习的主动性。准备向将来的大学生的学习方法过渡。
合理规划步步为营
高中的学习是非常紧张的。每个学生都要投入自己的几乎全部的精力。要想能迅速进步,就要给自己制定一个较长远的切实可行的学习目标和计划,例如第一学期的期末,自己计划达到班级的平均分数,第一学年,达到年级的前三分之一,如此等等。此外,还要给自己制定学习计划,详细地安排好自己的零星时间,并及时作出合理的微量调整。
高一数学知识点总结图篇八
复数知识点网络图
2、复数中的难点
(1)复数的向量表示法的运算。对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难。对此应认真体会复数向量运算的几何意义,对其灵活地加以证明。
(2)复数三角形式的乘方和开方。有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练。
(3)复数的辐角主值的求法。
(4)利用复数的几何意义灵活地解决问题。复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会。
3、复数中的重点
(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点。
(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角。复数有代数,向量和三角三种表示法。特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容。
(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质。复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容。
(4)复数集中一元二次方程和二项方程的解法。
高一数学知识点总结图篇九
首先,新高一同学要明确的是:高一数学是高中数学的重点基础。刚进入高一,有些学生还不是很适应,如果直接学习高考技巧仿佛是“没学好走就想跑”。任何的技巧都是建立在牢牢的基础知识之上,因此建议高一的学生多抓基础,多看课本。
在应试教育中,只有多记公式,掌握解题技巧,熟悉各种题型,把自己变成一个做题机器,才能在考试中取得的成绩。在高考中只会做题是不行的,一定要在会的基础上加个“熟练”才行,小题一般要控制在每个两分钟左右。
高一数学的知识掌握较多,高一试题约占高考得分的70%,一学年要学五本书,只要把高一的数学掌握牢靠,高二,高三则只是对高一的复习与补充,所以进入高中后,要尽快适应新环境,上课认真听,多做笔记,一定会学好数学。
因此,新高一同学应该在熟记概念的基础上,多做练习,稳扎稳打,只有这样,才能学好数学。
预习是学好数学的必要前提,可谓是“火烧赤壁”所需“东风”.总的来说,预习可以分为以下2步。
1.预习即将学习的章节的课本知识。在预习课本的过程中,要将课本中的定义、定理记熟,做到活学活用。有是要仔细做课本上的例题以及课后练习,这些基础性的东西往往是最重要的。
2.自觉完成自学稿。自学稿是新课改以来欢迎的学习方式!首先应将自学稿上的《预习检测》部分写完,然后想后看题。在刚开始,可能会有一些不会做,记住不要苦心去钻研,那样往往会事倍功半!
听讲是学好数学的重要环节。可以这么说,不听讲,就不会有好成绩。
1.在上课时,认真听老师讲课,积极发言。在遇到不懂的问题时,做上标记,课后及时的向老师请教!
2.记录往往是一个细小的环节。注意老师重复的语句,以及写在黑板上的大量文字(数学老师一般不多写字),及时地用一个小本记录下来,这样日积月累,会形成一个知识小册。
高一数学知识点总结图篇十
(高中函数定义)设a,b是两个非空的数集,如果按某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a--b为集合a到集合b的一个函数,记作y=f(x),x属于集合a。其中,x叫作自变量,x的取值范围a叫作函数的定义域。
函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合。
(1)化归法;
(2)图象法(数形结合),学习规律;
(3)函数单调性法;
(4)配方法;
(5)换元法;
(6)反函数法(逆求法);
(7)判别式法;
(8)复合函数法;
(9)三角代换法;
(10)基本不等式法等
定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。
“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。
高一数学知识点总结图篇十一
学习数学,掌握基础很重要,那么如何打好基本功呢?对此我有几条几解,同学们可以参考参考。
第一,做数学要运用到很多公式,很多同学都说公式记不熟,因此我经常看到有的同学拿着一本公式册子在那里猛地背,这种方法我不太赞同,虽然能背熟公式,但一到做题和实际运用时,就会发现脑子有点乱,不知道运用哪条公式,而且背熟的公式没过几天可能会忘记,就因为这是硬性记性,不可靠。我认为记公式呢,要知道这条公式的原理,最好能把它推一下,做题时即使记不住了,也可举个例子来推一下,像三角函数公式有很多,但我认为只要记住四条两角和差的正弦余弦特殊值,有同学会记乱,但这根本不用刻意去记,做题时如果记不起来了,只要画几个特殊直角三角形,所有的特殊值就出来了,但最重要的是同学们要记住熟能生巧,做题目做多了,公式自然主熟练习,半夜叫醒都能说出来,要想长久记住公式,就必须这样。
第二,就是计算能力,很多同学题目会做,但却因计错数而失分,想要改变这种状况,就必须培养计算能力和养成良好的习惯,对于计算能力的培养,没有什么秘诀,只能靠多做,还有计算不要把草稿本画得太花,计算过程要有头有尾,才不致于计算时不知西东。
以上的方法,同学们如果觉得有用,可以试一下,方法是人想出来的,如果同学们有更好的建议可以提出来,与大家一起分享一下。
高一数学知识点总结图篇十二
高中学生学数学靠的也是一个字:悟!
先看笔记后做作业
有的高一学生感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
做题之后加强反思
有的学生认为,要想学好数学,只要多做题,功到自然成。其实不然。一般说做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多做题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。打个比喻:有很多人,因为工作的需要,几乎天天都在写字。结果,写了几十年的.字了,他写字的水平能有什么提高吗?一般说,他写字的水平常常还是原来的水平。也就是说多写字不等于是受到了写字的训练!要把提高当成自己的目标,要把自己的活动合理地系统地组织起来,要总结反思,水平才能长进。
主动复习总结提高
打个比方,就象女孩洗头那样。1、把头发弄散乱,加以清洗。2、中间分缝。3、将其一半分股编绕,捆结固定。4、再将另一半分股编绕,捆结固定。5、疏理辫稍。6、照镜子调整。我们进行章节总结的过程也是大体如此。
1、要把课本,笔记,区单元测验试卷,校周末测验试卷,都从头到尾阅读一遍。要一边读,一边做标记,标明哪些是过一会儿要摘录的。要养成一个习惯,在读材料时随时做标记,告诉自己下次再读这份材料时的阅读重点。长期保持这个习惯,学生就能由博反约,把厚书读成薄书。积累起自己的独特的,也就是最适合自己进行复习的材料。这样积累起来的资料才有活力,才能用的上。
2、把本章节的内容一分为二,一部分是基础知识,一部分是典型问题。要把对技能的要求,列进这两部分中的一部分,不要遗漏。
3、在基础知识的疏理中,要罗列出所学的所有定义,定理,法则,公式。要做到三会两用。即:会文字表述,会图象符号表述,会推导证明。同时能从正反两方面对其进行应用。
4、把重要的,典型的各种问题进行编队。要尽量地把他们分类,找出它们之间的位置关系,总结出问题间的来龙去脉。就象我们欣赏一场团体操表演,我们不能只盯住一个人看,看他从哪跑到哪,都做了些什么动作。我们一定要居高临下地看,看全场的结构和变化。不然的话,陷入题海,徒劳无益。这一点,是提高高中数学水平的关键所在。
5、总结那些尚未归类的问题,作为备注进行补充说明。
6、找一份适当的测验试卷,例如北京四中的本章节测试试卷,电脑网校的本节试卷,我校去年此时所用的试卷。一定要计时测验。然后再对照答案,查漏补缺。