2023年八年级上册数学因式分解怎么做(三篇)
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
八年级上册数学因式分解怎么做篇一
(1)求证:m与其“友谊数”的差能被15整除;
(2)若一个三位正整数n,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0,b≠0),若n的“团结数”与n之差为24,求n的值.
八年级上册数学因式分解怎么做篇二
14.3.1提公因式法
【教学目标】
知识与技能
能确定多项式各项的公因式,会用提公因式法把多项式分解因式.
过程与方法
使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.
情感、态度与价值观
培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.
【教学重难点】
重点:掌握用提公因式法把多项式分解因式.
难点:正确地确定多项式的最大公因式.
关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.
【教学过程】
一、回顾交流,导入新知
【复习交流】
下列从左到右的变形是否是因式分解,为什么?
(1)2x2+4=2(x2+2);
(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;
(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2.
问题:
1.多项式mn+mb中各项含有相同因式吗?
2.多项式4x2-x和xy2-yz-y呢?
请将上述多项式分别写成两个因式的乘积的形式,并说明理由.
【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.
二、小组合作,探究方法
教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?
【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.
三、范例学习,应用所学
例1:把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
例2:分解因式:3a2(x-y)3-4b2(y-x)2
【分析】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2·3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2·3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
例3:用简便的方法计算:
0.84×12+12×0.6-0.44×12.
【教师活动】引导学生观察并分析怎样计算更为简便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
ok3w_ads("s002");
八年级上册数学因式分解怎么做篇三
21. 原式利用平方差公式变形,计算即可得到结果;
原式变形后,利用完全平方公式变形,计算即可得到结果.
此题考查了因式分解的应用,熟练掌握平方差公式及完全平方公式是解本题的关键.
22. 已知等式配方后,利用非负数的性质求出a与b的值,即可确定出三角形周长.
此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键.
23. 原式利用平方差公式分解得到结果,即可做出判断.
此题考查了因式分解的应用,熟练掌握平方差公式是解本题的关键.
24. 本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.先将分式的分母分解因式,再约分,然后将已知 变形为 代入原式即可求解.