最新初中数学因式分解教案人教版 初中因式分解的教案(5篇)
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。
初中数学因式分解教案人教版 初中因式分解的教案篇一
1、知识与技能
了解因式分解的意义,以及它与整式乘法的关系。
2、过程与方法
经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用。
3、情感、态度与价值观
在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值。
重、难点与关键
1、重点:了解因式分解的意义,感受其作用。
2、难点:整式乘法与因式分解之间的关系。
3、关键:通过分解因数引入到分解因式,并进行类比,加深理解。
教学方法
采用“激趣导学”的教学方法。
教学过程
一、创设情境,激趣导入
【问题牵引】
请同学们探究下面的2个问题:
问题1:720能被哪些数整除?谈谈你的想法。
问题2:当a=102,b=98时,求a2—b2的值。
二、丰富联想,展示思维
探索:你会做下面的填空吗?
1、ma+mb+mc=()();
2、x2—4=()();
3、x2—2xy+y2=()2。
【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式。
三、小组活动,共同探究
【问题牵引】
(1)下列各式从左到右的变形是否为因式分解:
①(x+1)(x—1)=x2—1;
②a2—1+b2=(a+1)(a—1)+b2;
③7x—7=7(x—1)。
(2)在下列括号里,填上适当的项,使等式成立。
①9x2(______)+y2=(3x+y)(_______);
②x2—4xy+(_______)=(x—_______)2。
四、随堂练习,巩固深化
课本练习。
【探研时空】计算:993—99能被100整除吗?
五、课堂总结,发展潜能
由学生自己进行小结,教师提出如下纲目:
1、什么叫因式分解?
2、因式分解与整式运算有何区别?
六、布置作业,专题突破
选用补充作业。
板书设计
初中数学因式分解教案人教版 初中因式分解的教案篇二
知识点:
因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
教学目标:
理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查重难点与常见题型:
考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。
教学过程:
因式分解知识点
多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:
(1)提公因式法
如多项式
其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用
写出结果。
(3)十字相乘法
对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则
(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根x1,x2,那么
1、教学实例:学案示例
2、课堂练习:学案作业
3、课堂:
4、板书:
5、课堂作业:学案作业
6、教学反思:
初中数学因式分解教案人教版 初中因式分解的教案篇三
教学目标
1、知识与技能
会应用平方差公式进行因式分解,发展学生推理能力。
2、过程与方法
经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。
3、情感、态度与价值观
培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。
重、难点与关键
1、重点:利用平方差公式分解因式。
2、难点:领会因式分解的解题步骤和分解因式的彻底性。
3、关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来。
教学方法
采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维。
教学过程
一、观察探讨,体验新知
【问题牵引】
请同学们计算下列各式。
(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。
【学生活动】动笔计算出上面的两道题,并踊跃上台板演。
(1)(a+5)(a—5)=a2—52=a2—25;
(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。
【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律。
1、分解因式:a2—25;2、分解因式16m2—9n。
【学生活动】从逆向思维入手,很快得到下面答案:
(1)a2—25=a2—52=(a+5)(a—5)。
(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。
【教师活动】引导学生完成a2—b2=(a+b)(a—b)的同时,导出课题:用平方差公式因式分解。
平方差公式:a2—b2=(a+b)(a—b)。
评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式)。
二、范例学习,应用所学
【例1】把下列各式分解因式:(投影显示或板书)
(1)x2—9y2;(2)16x4—y4;
(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;
(5)m2(16x—y)+n2(y—16x)。
【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解。
【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演。
【学生活动】分四人小组,合作探究。
解:(1)x2—9y2=(x+3y)(x—3y);
(2)16x4—y4=(4x2+y2)(4x2—y2)=(4x2+y2)(2x+y)(2x—y);
(3)12a2x2—27b2y2=3(4a2x2—9b2y2)=3(2ax+3by)(2ax—3by);
(4)(x+2y)2—(x—3y)2=[(x+2y)+(x—3y)][(x+2y)—(x—3y)]=5y(2x—y);
(5)m2(16x—y)+n2(y—16x)
=(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。
初中数学因式分解教案人教版 初中因式分解的教案篇四
学习目标
1、了解因式分解的意义以及它与正式乘法的关系。
2、能确定多项式各项的公因式,会用提公因式法分解因式。
学习重点:
能用提公因式法分解因式。
学习难点:
确定因式的公因式。
学习关键:
在确定多项式各项公因式时,应抓住各项的公因式来提公因式。
学习过程
一.知识回顾
1、计算
(1)、n(n+1)(n-1)(2)、(a+1)(a-2)
(3)、m(a+b)(4)、2ab(x-2y+1)
二、自主学习
1、阅读课文p72-73的内容,并回答问题:
(1)知识点一:把一个多项式化为几个整式的__________的形式叫做____________,也叫做把这个多项式__________。
(2)、知识点二:由m(a+b+c)=ma+mb+mc可得
ma+mb+mc=m(a+b+c)
我们来分析一下多项式ma+mb+mc的特点;它的每一项都含有一个相同的因式m,m叫做各项的_________。如果把这个_________提到括号外面,这样
ma+mb+mc就分解成两个因式的积m(a+b+c),即ma+mb+mc=m(a+b+c)。这种________的方法叫做________。
2、练一练。p73练习第1题。
三、合作探究
1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一种变形,左边是几个整式乘积形式,右边是一个多项式。、
2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一种变形,左边是_____________,右边是_____________。
3、下列是由左到右的变形,哪些属于整式乘法,哪些属于因式分解?
(1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)
(3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1
4、准确地确定公因式时提公因式法分解因式的关键,确定公因式可分两步进行:
(1)确定公因式的数字因数,当各项系数都是整数时,他们的最大公约数就是公因式的数字因数。
例如:8a2b-72abc公因式的数字因数为8。
(2)确定公因式的字母及其指数,公因式的字母应是多项式各项都含有的字母,其指数取最低的。故8a2b-72abc的公因式是8ab
四、展示提升
1、填空(1)a2b-ab2=ab(________)
(2)-4a2b+8ab-4b分解因式为__________________
(3)分解因式4x2+12x3+4x=__________________
(4)__________________=-2a(a-2b+3c)
2、p73练习第2题和第3题
五、达标测试。
1、下列各式从左到右的变形中,哪些是整式乘法?哪些是因式分解?哪些两者都不是?
(1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)
(3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)
(5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4
2.课本p77习题8.5第1题
学习反思
一、知识点
二、易错题
三、你的困惑
初中数学因式分解教案人教版 初中因式分解的教案篇五
(一)学习目标
1、会用因式分解进行简单的多项式除法
2、会用因式分解解简单的方程
(二)学习重难点重点:因式分解在多项式除法和解方程中两方面的应用。
难点:应用因式分解解方程涉及到的较多的推理过程是本节课的难点。
(三)教学过程设计
看一看
1.应用因式分解进行多项式除法.多项式除以多项式的一般步骤:
①________________②__________
2.应用因式分解解简单的一元二次方程.
依据__________,一般步骤:__________
做一做
1.计算:
(1)(-a2b2+16)÷(4-ab);
(2)(18x2-12xy+2y2)÷(3x-y).
2.解下列方程:
(1)3x2+5x=0;
(2)9x2=(x-2)2;
(3)x2-x+=0.
3.完成课后练习题
想一想
你还有哪些地方不是很懂?请写出来。
____________________________________
(四)预习检测
1.计算:
2.先请同学们思考、讨论以下问题:
(1)如果ax5=0,那么a的值
(2)如果ax0=0,那么a的值
(3)如果ab=0,下列结论中哪个正确( )
①a、b同时都为零,即a=0,
且b=0;
②a、b中至少有一个为零,即a=0,或b=0;
(五)应用探究
1.解下列方程
2.化简求值:已知x-y=-3,-x+3y=2,求代数式x2-4xy+3y2的值
(六)拓展提高:
解方程:
1、(x2+4)2-16x2=0
2、已知a、b、c为三角形的三边,试判断a2-2ab+b2-c2大于零?小于零?等于零?
(七)堂堂清练习
1.计算
2.解下列方程
①7x2+2x=0
②x2+2x+1=0
③x2=(2x-5)2
④x2+3x=4x