最新六年级数学数轴题(五篇)
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
六年级数学数轴题篇一
教学目标: 1. 知道什么是数轴,如何画数轴。
2. 知道如何将有理数在数轴上表示出来,能说出数轴上表示有理数的点所表示的数。知道任一个有理数在数轴上都有唯一的点与之对应。
教学重点: 学习数轴,用数轴上的点表示有理数。教学难点:
利用数轴学习有理数的大小性质。教学过程:
一、引入:
请读出下面温度计所表示的温度:
二、讲授新课:
1.考察温度计,直接给出数轴的定义。2.讲解例1。
提问:在数轴上,已知一点p表示数(-5),如果数轴上的原点不选在原来位置。改选在另一位置,那么p对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生提出:数轴的三要素缺一不可。3.小结:
如何根据数轴的定义画一条数轴?如何在数轴上画出表示有理数的点? 4.随堂练习:
1.教科书第54页练习第1,2,3题。
2.补充练习:在数轴上能否实际画出表示一亿万分之一的点?这个点存在吗?(答:很难画出;存在。)
四、课外作业 1.
2.补充题:
(1)画一条数轴并画出分别表示±0.5,±0.1,±0.75的各点。(2)画一条数轴并画出分别表示1000,2000,5000的各点。
注:以上两个补充题的目的是,用数轴表示已知数时,要根据已知数适当地选择单位长度和坐标原点的位置。
(3)在数轴上标出到原点距离小于3的整数所表示的点。(4)在数轴上标出-5和+5之间的所有整数的点。
六年级数学数轴题篇二
课件简单是或就是辅助教师顺利完成教学工作的工具,那么,下面是小编给大家整理收集的六年级数学数轴课件,内容仅供参考。
六年级数学数轴课件
1教学内容:
六年级下册第5~7 例
3、例
4教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:负数与负数的大小比较。
教学过程:
一、复习导入,提出目标
1、读数,指出哪些是正数,哪些是负数?
-128
25.06
+0.019
-2/
3+16/57
0-822、如果+10%表示增加10%,那么-26%表示()
3、某日傍晚,九仙山的气温由上午的零上2摄氏度下降了5摄氏度,这天傍晚九仙山的气温是()摄氏度。
4、提出学习目标
二、交流探索,学生展示
(一)教学例
31、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)问:你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上画好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来)。
(4)学生展示,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)
总结
:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。(6)引导学生观察:
a、从0起往右依次是?从0起往左依次是?你发现什么规律?
b、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?
(7)练习:p7做一做
第1、2题。
(二)教学例
41、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、小结:负数比0小,正数比0大,负数比正数小。
7、练习:p7做一做
第3题。
三、应用练习,拓展延伸
1、练习一
第4、5、6题。
2、按顺序排列
-23 2
5-1-3.63、-6和0相差多少?-6和+6相差多少?
四、归纳总结
学生交流学习心得
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
六年级数学数轴课件
2教学目标
1、使学生正确理解数轴的意义,掌握数轴的三要素;
2、使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;
3、使学生初步理解数形结合的思想方法、教学重点和难点
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数、难点:正确理解有理数与数轴上点的对应关系、课堂教学过程
一、从学生原有认知结构提出问题
1、小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2、用“射线”能不能表示有理数?为什么?
3、你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴。
二、讲授新课
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度、在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃、与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零、具体方法如下(边说边画):
1、画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2、规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3、选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴。
进而提问学生:在数轴上,已知一点p表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么p对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。
三、小结
指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法、本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。
五、作业
1、在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点。
(2)a,h,d,e,o各点分别表示什么数?
2、在下面数轴上,a,b,c,d各点分别表示什么数?
3、下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};
六年级数学数轴题篇三
为了让学生通过实例了解数轴的概念和数轴的画法,知道如何在数轴上表示有理数。为大家分享了七年级数学数轴的课件教学,欢迎借鉴!
教学目标
1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;
2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;
3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学难点
数轴的概念和用数轴上的点表示有理数
知识重点
教学过程(师生活动)设计理念
设置情境引入课题
教师通过实例、课件演示得到温度计读数.
问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?
(多媒体出示3幅图,三个温度分别为零上、零度和零下)
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学点表示数的感性认识。
合作交流
探究新知 教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?
从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解
寻找规律
归纳结论 问题3:
1,你能举出一些在现实生活中用直线表示数的实际例子吗?
2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?
3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?
4,每个数到原点的距离是多少?由此你会发现了什么规律?
(小组讨论,交流归纳)
归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。
巩固练习
教科书第12页练习
小结与作业
课堂小结 请学生
总结
:1,数轴的三个要素;
2,数轴的作以及数与点的转化方法。
本课作业
1,必做题:教科书第18页习题1.2第2题
2,选做题:教师自行安排
教学反思:
1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法
六年级数学数轴题篇四
如何让小学生学会用数学的思维方式去观察和分析生活,如何帮助他们更好地学好数学这门学科呢?下面是关于六年级数学圆柱课件的内容,欢迎阅读!
教学目标:
1、观察日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2、培养学生细致的观察能力以及一定的空间想像能力。
3、激发学生学习数学圆柱的兴趣。
教学重点:
认识圆柱的特征。
教学难点:
看懂圆柱的平面图。
教学过程:
一、复习
1.在已知圆的半径或直径,怎样计算出圆的周长?(指名学生回答,使学生熟悉圆的周长公式:c=2r或c=d)
2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确)
(1)半径是1米(2)直径是3厘米
(3)半径是2分米(4)直径是5分米
二、认识圆柱特征
1.整体感知圆柱
(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、安全、可滚动。)
(2)找找圆柱,请同学找出生活中圆柱形的物体。
2.圆柱的表面
(1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说发现了什么?
(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)
3.圆柱的高
(1)课件显示:一根竖放的大针管中的药水由高到低的变化过程,引导学生思考:药水水柱的高低和水柱的什么有关?
(2)引导小结:水柱的高低和水柱的高有关.
(3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)
(4)讨论交流:圆柱的高的特点。
①课件显示:装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根?
②初步感知:面对圆柱的高,你想说些什么?
归纳小结并板书:圆柱的高有无数条,高的长度都相等。
③深化感知:面对这数不清的高,测量哪一条最为简便?
老师引导学生操作分析,得出测量圆柱边上的这条高最为简便,同时课件上的圆柱体闪烁边上的一条高.
4.圆柱的侧面展开(例2)
(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.
反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?
┌长方形
板书:沿高剪┤斜着剪:平行四边形
└正方形
强调:我们先研究具有代表性的长方形与圆柱的关系.
(2)寻求发现.展开的长方形的长和宽与圆柱的关系.
①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。
②学生再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。)
③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
(3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。
①讨论:平行四边形能否通过什么方法转化成长方形?
课件显示:平行四边形通过割补转变成长方形,再还原成圆柱侧面的动画过程。
②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?
③引导小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形.
三、巩固练习
1、做第11页做一做的第2题。
2、做第15页练习二的第3题。
教师行间巡视,对有困难的学生及时辅导。
3、做第15页练习二的第4题。
四、布置作业
完成一课三练p15的1、2题。
板书:
┌长方形
沿高剪┤斜着剪:平行四边形
└正方形
圆柱的底面周长长方形的长
圆柱的高长方形的宽
六年级数学数轴题篇五
教学内容
“已知一个数与它几(百)分之几的差是多少,求这个数”的应用题
教材分析
本节内容是在以前学的简单的分数(百分数)除法应用题和“求一个数与它几(百)分之几的差是多少”的应用题的基础上教学的,这是本单元的重点,也是教学的难点。它不像简单的分数除法应用题那样易于理解和掌握。特别是将比单位“1”少几(百)分之几,转化为是单位“1”的几(百)分之几,往往容易出错。教材在这里,与简单的除法应用题有不同安排,根据分数除法的意义,先用算术方法解答,再根据分数乘法的意义,找出等量关系后用方程方法解答。两种解题方法,学生喜欢哪一种,由其选择。
本节应用题的数量关系虽稍复杂一些,但基本解题思路与前面学过的应用题是一样的。解答这类应用题的关键是找到与已知量对应的几(百)分之几。为使学生很好地掌握解题方法,教材安排了两道准备题作铺垫,并运用线段图作直观分析,教材编排的习题较多,应让学生独立完成,以提高学生分析和解决问题的能力。
学情分析 通过学习“已知一个数与它几分之几的差是多少,求这个数”的应用题,让学生能进一步、有兴趣地探索复杂的分数除法应用题,学以致用,体会数学就在身旁,从而也进一步加强数学的实际应用能力。
教学目标
1、理解掌握“已知一个数与它几分之几的差是多少,求这个数”的应用题的结构特征和数量关系。
2、能用算术方法和方程方法正确解答“已知一个数与它几分之几的差是多少,求这个数”的应用题。
3、体会数学在实际生活中的运用,培养学生有足够的信心学好数学,用好数学。
教学重点 正确解答“已知一个数与它几分之几的差是多少,求这个数”的应用题
教学难点 求单位“1”的量用除法计算
教学准备 课件
教学过程
一、复习准备
1、先说出下面各题表示单位“1”的量,再回答问题。(投影出示)
(1)二月份用煤比一月份节约,二月份用煤是一月份的几分之几?
(2)现在每台洗衣机售价比原来降低,现在每台售价是原来的几分之几?
2、一桶水的 正好是15千克,这桶水重多少千克?
二、教学新课。
1、教学例3。
出示例3:(小黑板出示)
学校六月份用水210吨,比五月份节约了,五月份用水多少吨?
(1)学生读题,引导初步理解题意
分析:“比五月份节约 ”这句话是什么意思?它表示把五月份用水吨数看作单位“1”,其中 是节约的,因此,六月份用水210吨是五月份的(1—)。
(2)学生试作线段图理解题意(二人板演,其余学生画在练习本上,教师巡视指导学生画图)。
画图指导:这条线段应平均分成几份?“210吨”用哪一部分表示,“节约 ”怎么表示?把哪一部分看成单位“1”,已知哪一部分,求哪一部分?
(3)师生共同讨论分析数量关系,教师板书对应关系
分析:这里作为单位“1”的量知道吗?要求单位“1”的数量是多少,根据六月份用水“比五月节约 ”,可以把五月份用水量看作单位“1”,学校六月份用水量是五月份的(1—)。也就是五月份的(1—)是210吨,求五月份用水多少吨,用除法计算。列出算式:210÷(1—),并解答
(4)学生自己解答后(一人板演)核对。
(5)看线段图想,还有别的解题方法吗?
想:根据题意和线段图,数量之间的相等关系是什么?(五月份用水吨数×(1—)=210,根据等量关系独立列出方程x×(1—)=210,并求出方程的解和写出答案。)
(6)想一想:把“节约”改为“节约12。5%”该怎样计算?你是怎么想的?
2、试一试:
一种洗衣机现在每台售价1260元,比原来降低10%,原来每台售价多少元?
(1)学生自算。(一人板演,其余做在练习本上)(2)反馈,纠错。
3、提示课题并小结。
(1)今天学的这类题要求的是什么数量?那么已知的又是什么呢?
(2)小结:这类题的特征是单位“1”的数量未知,已知数量与已给的分率不相对应。因此在找到单位“1”的数量后必须先求出已知数量相当于单位“1”的几(百)分之几,再列出数量关系式,然后根据除法的意义用除法解答或假设单位“1”的数量为x,用方程方法解答。
三、巩固练习:练一练。
四、教学小结:强调解这类应用题的解题思路。
六年级数学应用题精选
1、小华读一本120页的故事书,第1天读了全书的13。
(1)第1天读了多少页?(2)剩下多少页没有读?
2、小华读一本120页的故事书,第1天读了全书的13,第二天读了全书的14,(1)第1天读了多少页?(2)第2天读了多少页?(3)还剩多少页没有读?
3、小华读一本120页的故事书,第1天读了全书的13,第二天读了余下的14。
(1)第2天读了多少页?(2)还剩多少页没有读?(3)第1天读的页数是第2天的多少倍?
4、小华读一本故事书,第1天读了全书的13,第二天读了余下的14,还剩6页没有读。
(1)这本故事书共有多少页?(2)第1天比第2天多读了多少页?
5、小华读一本故事书,第1天读了全书的13,第二天读了余下的14,第1天比第2天多读20页。
(1)这本故事书共有多少页?(2)第1天读的页数是第2天的多少倍?
6、小华读一本故事书,第1天读了全书的13,第2天读20页,第3天读余下的14,还剩全书的38 没有读。
(1)这本故事书共有多少页?(2)还剩多少页没有读?
7、一辆摩托车以平均每小时20千米的速度行完了60千米的旅程。在回家的路上,它的平均速度是每小时30千米。问摩托车在整个来回的旅程中,平均速度是多少?
8、车站运来一批货物,第一天运走全部货物的13 又20吨,第二天运走全部货物的14 又30吨,这时车站还存货物30吨。这批物一共有多少吨?
9、车站有一批货物,第一天运走全部货物的13 少20吨,第二天运走全部货物的14 多10吨,这时车站还存货物70吨。这批货物一共有多少吨?
10、车站有一批货物,第一天运走全部货物的13 少20吨,第二天运走全部货物的14 少10吨,这时车站还存货物110吨。这批货物共有多少吨?
11、车站有一批货物,第一天运走全部货物的13 多20吨,第二天运走全部货物的12 少25吨,这时车站还存货物37吨,这批货物一共有多少吨?
12、车站有一批货物,第一次运走全部货物的13,第二次运走全部货物的34 少16吨,这时正好全部运完,这批货物一共有多少吨?
13、车站有一批货物,第一天运走全部货物的23 少28吨,第二天运走这批货物的34 少52吨,正好运完。这批货物一共有多少吨?
14、化肥厂计划生产一批化肥,第一天生产了全部任务的16,第二天又生产了余下任务的14,第三天又生产了前两天生产后余下的15,结果还剩下50吨没有完成。问化肥厂计划生产化肥多少吨?
15、妈妈买回鸡蛋和鸭蛋共21个,其中鸭蛋占37 ;后来,妈妈又买回几个鸭蛋,这时鸭蛋占总蛋数的713,后来妈妈又买回来几个鸭蛋?
16、有一堆砖,搬走14 后又运来360块,这时这堆砖比原来还多了20%,原来这堆砖有多少块?
17、师徒俩合做零件200个,师傅做的25%比徒弟做的15 多14个,徒弟做了多少个零件?
18、有一条山路,一辆汽车上山时每小时行30千米,从原路返回下山时每小时行50千米,求汽车上山、下山的平均速度是多少?
19、师徒二人加工一批零件,师傅加工的零件比总数的12 还多25个,徒弟加工的零件数是师傅的13,这批零件共有多少个?
20、甲、乙、丙三个运输队共同运送一批货物,甲队运了这批货物的14,乙队运了一部分,丙队运了这批货物的13,正好全部运完。已知甲队比丙队少运了10吨,求乙队运了多少吨?
21、甲、乙两人去书店买书,共带去54元,甲用去自己钱的75%,乙用去自己钱的45,两人剩下的钱数正好相等。甲、乙两人原来各带去多少元钱?
22、甲、乙两队合修一条长2500米的公路,甲队完成所分任务的23,乙队完成所分任务的34 又50米,还剩700米没有修。两队所分任务各是多少米?
23、果园里种着苹果树和梨树。苹果树的面积比总面积的12 多4公顷,梨树的面积是苹果树的12。求两种树各种了多少公顷?
24、中夏化工总厂有两堆煤,共重2268千克,取出甲堆的25 和乙堆的14 共重708千克。问甲、乙两堆原有煤各是多少千克?
25、甲、乙两个工人共同加工140个零件。甲做自己任务的80%,乙做自己任务的75%,这时甲、乙共剩下32个零件未完成。问甲、乙两个工人原来各需做多少个零件?
26、师徒两人共加工540个零件,师傅加工了自己所分任务的34,徒弟加工了所分任务的80%,两人剩下的任务正好相等。求师徒两人各分得多少个零件的加工任务?
27、学校买回两种图书,共220本,取出甲种图书的14 和乙种图书的15 共50本借给五年级(1)班同学阅读,问甲、乙两种图书各买回来多少本?
28、学校买来一批图书,其中文艺书占49,数学书占余下的1825,已知数学书比文艺书少20本。这批图书共有多少本?