小学数学知识归纳与总结(优秀24篇)
总结可以帮助我们发现问题、提出解决方案,实现个人和团队的进步。不仅要关注问题和不足,还要充分发挥积极因素和亮点,给自己和他人树立榜样和目标。阅读总结范文可以了解到不同行业和领域的总结要点和特点。
小学数学知识归纳与总结篇一
平分弦的直径垂直弦,并且平分弦所对的两条弧。
3 弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4 圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。
5 点和圆的位置关系
点在圆外
点在圆上 d=r
点在圆内 d
定理:不在同一条直线上的三个点确定一个圆。
三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的`三条边的垂直平分线的交点,叫做三角形的外心。
6直线和圆的位置关系
相交 d
相切 d=r
相离 dr
切线的性质定理:圆的切线垂直于过切点的半径;
切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。
7 圆和圆的位置关系
外离 dr+r
外切 d=r+r
相交 r-r
内切 d=r-r
内含 d
8 正多边形和圆
正多边形的中心:外接圆的圆心
正多边形的半径:外接圆的半径
正多边形的中心角:没边所对的圆心角
正多边形的边心距:中心到一边的距离
9 弧长和扇形面积
弧长
扇形面积:
10 圆锥的侧面积和全面积
侧面积:
全面积
11 (附加)相交弦定理、切割线定理
第五章 概率初步
1 概率意义:在大量重复试验中,事件a发生的频率 稳定在某个常数p附近,则常数p叫做事件a的概率。
2 用列举法求概率
3 用频率去估计概率
小学数学知识归纳与总结篇二
(1)一位数的乘、除法。一个乘数是一位数的乘法(另一个乘数一般不超过三位数)。0的乘法。连乘。除数是一位数的除法。0除以一个数。用乘法验算除法。连除。
(2)两位数的乘、除法。一个乘数是两位数的乘法(另一个乘数一般不超过三位数)。乘数末尾有0的简便算法。乘法验算。除数是两位数的除法。连乘、连除的简便算法。
(3)四则混合运算。两步计算的式题。小括号的使用。
(4)分数的初步认识。分数的初步认识,读法和写法。看图比较分数的大小。简单的同分母分数加、减法。
(二)量与计量千米(公里)、毫米的认识和简单计算。吨、克的认识和简单计算。
(三)几何初步知识长方形和正方形的特征。长方形和正方形的周长。平行四边形的直观认识。周长的含义。长方形、正方形的周长。
(四)应用题常见的数量关系。解答两步计算的应用题。
(五)实践活动联系周围接触到的事物组织活动。例如记录10天内的天气情况,分类整理,并作简单分析。
小学数学知识归纳与总结篇三
(1)分数的乘法和除法。分数乘法的意义。分数乘法。乘法的运算定律推广到分数。倒数。分数除法的意义。分数除法。
(2)分数四则混合运算。分数四则混合运算。
(3)百分数。百分数的意义和写法。百分数和分数、小数的互化。
(二)比和比例。
比的意义和性质。比例的意义和基本性质。解比例。成正比例的量和成反比例的量。
(三)几何初步知识。
圆的认识。圆周率。画圆。圆的周长和面积。_扇形的认识。轴对称图形的初步认识。圆柱的认识。圆柱的表面积和体积。圆锥的认识。圆锥的体积。球和球的半径、直径的初步认识。
(四)统计初步知识。
统计表。条形统计图,折线统计图,_扇形统计图。
(五)应用题。
分数四则应用题(包括工程问题)。百分数的实际应用(包括发芽率、合格率、利率、税率等的计算)。比例尺。按比例分配。
(六)实践活动。
联系学生所接触到的社会情况组织活动。例如就家中的卧室,画一个平面图。
(七)整理和复习。
小学数学知识归纳与总结篇四
0.2表示十分之二,0.02表示百分之二。
【小数的计数单位】小数的计数单位是十分之一,百分之一,千分之一......分别写作0.1,0.01,0.001......
【小数加法】小数加法的意义与整数加法的意义相同,是把两个数合并成一个数的运算。
【小数减法】小数减法的意义与整数减法的意义相同,是已知2个加数的和与其中一个加数,求另一个加数的运算。
【小数乘整数】小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
【一个数乘小数】一个数乘小数的意义是求这个数的十分之几,百分之几,千分之几......
【小数除法】小数除法的意义和整数除法的意义相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。
【循环小数】一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。
【循环节】一个循环小数的小数部分,依次不断地重复出现的数字,叫做这个循环小数的循环节。
【纯循环小数】循环节从小数部分第一位开始的,叫做纯循环小数。
【混循环小数】循环节不从小数部分第一位开始的,叫做混循环小数。
【有限小数】小数部分的位数是有限的小数,叫做有限小数。
【无限小数】小数部分的位数是无限的小数,叫做无限小数。循环小数是无限小数。
【小数的性质】小数的末尾添上0或者去掉0,小数的大小不变,这叫做小数的性质。
【小数加减法的计算法则】计算小数加减法,先把各数的小数点对起,再按照整数加减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。得数的小数部分末尾有0,一般要把0去掉。
【小数乘法的计算法则】计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边数出几位,点上小数点。
【除数是整数的小数除法法则】除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
【除数是小数的小数除法法则】除数是小数的除法,先移动除数的小数点,使它变整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用“0”补足);然后按照除数是整数的小数除法进行计算。
【小数的读法】读小数的时候,整数部分按照整数的读法来读,(整数部分是“0”的读作“零”),小数点读作“点”,小数部分通常顺次读出每一个数位上的数字。
【小数的写法】写小数的时候,整数部分按照整数的写法来写(整数部分是零的写做数字“0”),小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
【小数性质的应用】(1)根据小数的性质,遇到小数末尾有“0”的时候,一般地可以去掉末尾“0”,把小数化简。(2)有时根据需要,可以在小数的末尾添上“0”,还可以在整数的个位和右下角点上小数点,再添上0,把整数写成小数形式。
小学数学知识归纳与总结篇五
(1)两位数加、减两位数。?两位数加、减两位数。加、减法竖式。两步计算的加减式题。
(2)表内乘法和表内除法。?乘法的初步认识。乘法口诀。乘法竖式。除法的初步认识。用乘法口诀求商。除法竖式。有余数除法。两步计算的式题。
(3)万以内数的读法和写法。?数数。百位、千位、万位。数的读法、写法和大小比较。
(4)加法和减法。?加法,减法。连加法。加法验算,用加法验算减法。
(5)混合运算。?先乘除后加减。两步计算式题。小括号。
(二)量与计量。
时、分、秒的认识。
米、分米、厘米的认识和简单计算。
千克(公斤)的认识。
(三)几何初步知识。
直线和线段的初步认识。?角的初步认识。直角。
(四)应用题。
加法和减法一步计算的应用题。?乘法和除法一步计算的应用题。?比较容易的两步计算的应用题。
(五)实践活动。
与生活密切联系的内容。例如调查家中本周各项消费的开支情况,想到哪些数学问题。
小学数学知识归纳与总结篇六
(1)20以内数的认识。加法和减法。
数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合运算。
(2)100以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。
两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。
(二)量与计量钟面的认识(整时)。人民币的认识和简单计算。
(三)几何初步知识。
长方体、正方体、圆柱和球的直观认识。
长方形、正方形、三角形和圆的直观认识。
(四)应用题。
比较容易的加法、减法一步计算的应用题。多和少的应用题(抓有效信息的能力)。
(五)实践活动。
选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。
小学数学知识归纳与总结篇七
考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理。
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.
考点3:相似三角形的概念。
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.
考点4:相似三角形的判定和性质及其应用。
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.
考点5:三角形的重心。
考核要求:知道重心的定义并初步应用.
考点6:向量的有关概念。
考点7:向量的加法、减法、实数与向量相乘、向量的线性运算。
考核要求:掌握实数与向量相乘、向量的线性运算。
考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.
考点9:解直角三角形及其应用。
考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形.
考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数。
考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义.
考点11:用待定系数法求二次函数的解析式。
考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法.
注意求函数解析式的步骤:一设、二代、三列、四还原.
考点12:画二次函数的图像。
考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像.
考点13:二次函数的图像及其基本性质。
考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质.
注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式.
考点14:圆心角、弦、弦心距的概念。
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断.
考点15:圆心角、弧、弦、弦心距之间的关系。
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明.
考点16:垂径定理及其推论。
垂径定理及其推论是圆这一板块中最重要的知识点之一.
考点17:直线与圆、圆与圆的位置关系及其相应的数量关系。
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常需要分类讨论求解.
考点18:正多边形的有关概念和基本性质。
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.
考点19:画正三、四、六边形.
考核要求:能用基本作图工具,正确作出正三、四、六边形.
考点20:确定事件和随机事件。
考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件.
考点21:事件发生的可能性大小,事件的概率。
考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率.注意:(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确.
考点22:等可能试验中事件的概率问题及概率计算。
本考点的考核要求是(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题.
在求解概率问题中要注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整.
出自 cOOCO.Net.cn
考点23:数据整理与统计图表。
本考点考核要求是:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息.
考点24:统计的含义。
本考点的考核要求是:(1)知道统计的意义和一般研究过程;(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法.
考点25:平均数、加权平均数的概念和计算。
本考点的考核要是:(1)理解平均数、加权平均数的概念;(2)掌握平均数、加权平均数的计算公式.注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率.
考点26:中位数、众数、方差、标准差的概念和计算。
考核要求:(1)知道中位数、众数、方差、标准差的概念;(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题.
注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;(2)求中位数之前必须先将数据排序.
考点27:频数、频率的意义,画频数分布直方图和频率分布直方图。
考核要求:(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题.解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.
考点28:中位数、众数、方差、标准差、频数、频率的应用。
本考点的考核要是:(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决.
小学数学知识归纳与总结篇八
考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理。
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3:相似三角形的概念。
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用。
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5:三角形的重心。
考核要求:知道重心的定义并初步应用。
考点6:向量的有关概念。
考点7:向量的加法、减法、实数与向量相乘、向量的线性运算。
考核要求:掌握实数与向量相乘、向量的线性运算。
考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点9:解直角三角形及其应用。
考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数。
考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义。
考点11:用待定系数法求二次函数的解析式。
考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点12:画二次函数的图像。
考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像。
考点13:二次函数的图像及其基本性质。
考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式。
考点14:圆心角、弦、弦心距的概念。
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点15:圆心角、弧、弦、弦心距之间的关系。
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点16:垂径定理及其推论。
垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点17:直线与圆、圆与圆的位置关系及其相应的数量关系。
直线与圆的位置关系可从与之间的关系和交点的.个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点18:正多边形的有关概念和基本性质。
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
考点19:画正三、四、六边形。
考核要求:能用基本作图工具,正确作出正三、四、六边形。
考点20:确定事件和随机事件。
考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点21:事件发生的可能性大小,事件的概率。
考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。注意:(1)在给可能性的大小排序前可先用"一定发生"、"很有可能发生"、"可能发生"、"不太可能发生"、"一定不会发生"等词语来表述事件发生的可能性的大小;(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点22:等可能试验中事件的概率问题及概率计算。
本考点的考核要求是(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画"树形图"方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
在求解概率问题中要注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画"树形图"方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点23:数据整理与统计图表。
本考点考核要求是:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点24:统计的含义。
本考点的考核要求是:(1)知道统计的意义和一般研究过程;(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点25:平均数、加权平均数的概念和计算。
本考点的考核要是:(1)理解平均数、加权平均数的概念;(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点26:中位数、众数、方差、标准差的概念和计算。
考核要求:(1)知道中位数、众数、方差、标准差的概念;(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;(2)求中位数之前必须先将数据排序。
考点27:频数、频率的意义,画频数分布直方图和频率分布直方图。
考核要求:(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。
考点28:中位数、众数、方差、标准差、频数、频率的应用。
本考点的考核要是:(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。
小学数学知识归纳与总结篇九
(1)亿以内数的读法和写法。
计数单位“十万”、“百万”、“千万”。相邻计数单位间的十进关系。读法和写法。数的大小比较。以万作单位的近似数。
(2)加法和减法。
加法,减法。
接近整十、整百数的加、减法的简便算法。
加、减法算式中各部分之间的关系。求未知数x。
(3)乘、除数是三位数的乘、除法。
乘数是三位数的乘法。积的变化。除数是三位数的除法。商不变的性质。被除数和除数末尾有0的简便算法。
_乘、除计算的简单估算。
乘数接近整十、整百的简便算法。
乘、除法算式中各部分之间的关系。求未知数x。
(4)四则混合运算。
中括号。三步计算的式题。
(5)整数及其四则运算的关系和运算定律。
自然数与整数。十进制计数法。读法和写法。
四则运算的意义。加法与减法、乘法与除法之间的关系。整除和有余数的除法。
运算定律。简便运算。
(6)小数的意义、性质,加法和减法。
小数的意义、性质。小数大小的比较。小数点移位引起小数大小的变化。小数的近似值。
加法和减法。加法运算定律推广到小数。
(注:小数如果分段教学,可以把小数的初步认识安排在前面的适当年级)。
(二)量与计量。
年、月、日。平年、闰年。世纪。24时计时法。
角的度量。
面积单位。
(三)几何初步知识。
直线的测定。测量距离(工具测、步测、目测)。
射线。直角、锐角、钝角、平角、_周角。垂线。画垂线。平行线。画平行线。
三角形的特征。_三角形的内角和。
(四)统计初步知识。
简单数据整理。简单统计图表的初步认识。平均数的意义。求简单的平均数。
(五)应用题列综合算式解答比较容易的三步计算的应用题。
小学数学知识归纳与总结篇十
1、求教与自学相结合,在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师。必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。
2、学用结合,勤于实践,在学习过程中,要准确地掌握抽象概念的本质含义。了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。
3、学习与思考相结合,在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。
4、博观约取,由博返约,课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。
5、及时复习,增强记忆。课堂上学习的内容,必须当天消化,要先复习,后做练习。复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。
6、学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。
小学数学知识归纳与总结篇十一
数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。
2、比多少。
同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。
比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。
比较两种物体的多或少时,可以用一一对应的方法。
1、认识上、下。
体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。
2、认识前、后。
体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。
同一物体,相对于不同的参照物,前后位置关系也会发生变化。
从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。
3、认识左、右。
以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。
要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。
一、1——5的认识。
1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。
2、1—5各数的数序。
从前往后数:1、2、3、4、5。
从后往前数:5、4、3、2、1。
3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。
二、比大小。
1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“”表示,即32,读作3大于2。前面的数小于后面的数,用“”表示,即34,读作3小于4。
2、填“”或“”时,开口对大数,尖角对小数。
三、第几。
1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。
2、区分“几个”和“第几”
“几个”表示物体的多少,而“第几”只表示其中的.一个物体。
四、分与合。
数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1。
把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。
五、加法。
1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。
2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。
六、减法。
1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。
2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。
七、0。
1、0的意义:0表示一个物体也没有,也表示起点。
2、0的读法:0读作:零。
3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。
4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0。
如:0+8=8、9-0=9、4-4=0。
1、长方体的特征:长长方方的,有6个平平的面,面有大有小。
2、正方体的特征:四四方方的,有6个平平的面,面的大小一样。
3、圆柱的特征:直直的,上下一样粗,上下两个圆面大小一样。放在桌子上能滚动。立在桌子上不能滚动。
4、球的特征:圆圆的,很光滑,它的表面是曲面。放在桌子上能向任意方向滚动。
5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。用小圆柱可以拼成更大的圆柱。
一、6—10的认识:
1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。
2、10以内数的顺序:
(1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。
(2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。
3、比较大小:按照数的顺序,后面的数总是比前面的数大。
4、序数含义:用来表示物体的次序,即第几个。
5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。
记忆数的组成时,可由一组数想到调换位置的另一组。
二、6—10的加减法。
1、10以内加减法的计算方法:根据数的组成来计算。
2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。
3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。
三、连加连减。
1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。
2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。
四、加减混合。
加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。
1、数数:根据物体的个数,可以用11—20各数来表示。
3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。
4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。如:1个十和5个一组成15。
5、数位:从右边起第一位是个位,第二位是十位。
6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。20的读法,20读作:二十。
7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2。有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。
8、十加几、十几加几与相应的减法。
(1)10加几和相应的减法的计算方法:10加几得十几,十几减几得十,十几减十得几。
(2)十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。
(3)加减法的各部分名称:
在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。
在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。
9、解决问题。
求两个数之间有几个数,可以用数数法,也可以用画图法。还可以用计算法(用大数减小数再减1的方法来计算)。
1、认识钟面。
钟面:钟面上有12个数,有时针和分针。
分针:钟面上又细又长的指针叫分针。
时针:钟面上又粗又短的指针叫时针。
2、钟表的种类:日常生活中的钟表一般分两种,一种:挂钟,钟面上有12个数,分针和时针。另一种:电子表,表面上有两个点“:”,“:”的左边和右边都有数。
3、认识整时:分针指向12,时针指向几就是几时;电子表上,“:”的右边是“00”时表示整时,“:”的左边是几就是几时。
4、整时的写法:整时的写法有两种:写成几时或电子表数字的形式。如:8时或8:00。
1、9加几计算方法:计算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算,其中“凑十法”比较简便。
利用“凑十法”计算9加几时,把9凑成10需要1,就把较小数拆成1和几,10加几就得十几。
2、8、7、6加几的计算方法:
(1)点数;。
(2)接着数;。
(3)凑十法。可以“拆大数、凑小数”,也可以“拆小数、凑大数”。
3、5、4、3、2加几的计算方法:
(1)“拆大数、凑小数”。
(2)“拆小数、凑大数”。
4、解决问题。
(1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法。
(2)求总数的实际问题,用加法计算。
小学数学知识归纳与总结篇十二
【分数线】在分数里,中间的横线叫做分数线。
【分母】在分数里,分数线下面的数叫做分母,表示把单位“1”平均分成多少份。
【分子】在分数里,分数线上面的数叫做分子,表示有这样的多少份。
【分数单位】按照分母数字把单位“1”分成相等份数,表示其中一份的数,叫做分数单位。例如六分之五的分数单位是六分之一。
【真分数】分子比分母小的分数叫做真分数。真分数小于1。
【假分数】分子比分母大或者分子和分母相等的分数,叫做假分数。
【繁分数】一个分数,如果它的分子含有分数或者分母里含有分数,或者分子和分母里都含有分数,这个分数就叫做繁分数。
【带分数】由整数和真分数合成的数,通常叫做带分数。例如二又五分之一。
【约分】把一个分数化成同他相等,但分子和分母都比较小的分数,叫做约分。
【最简分数】分子和分母是互质数的分数叫做最简分数。
【通分】把两个异分母分数分别化成和原来分数相等的同分母分数,叫做通分。例如比较两个分数的大小,就需要通分。
【分数加法】分数加法的意义与整数加法的意义相同,是把两个分数合并成一个分数的运算。
【分数减法】分数减法的意义与整数减法的意义相同,是已知两个加数的和与其中一个加数,求另一个加数的运算。
【分数乘整数】分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
【一个数乘分数】一个数乘分数的意义,就是求这个数的几分之几是多少。
【倒数】乘积是1的两个数叫做互为倒数。例如八分之三和三分之八互为倒数,就是八分之三的倒数是三分之八。
【分数除法】分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
【分数的基本性质】分数的分子和分母同时乘以或者除以相同的数(零除外),分数的大小不变,这叫做分数的基本性质。
【同分母分数加减法的法则】同分母分数相加减,分母不变,只把分子相加减。计算结果能约分的要约成最简分数,是假分数的,一般要化成带分数或整数。
小学数学知识归纳与总结篇十三
1.课程内容:
必修课程由5个模块组成:
必修1:集合、函数概念与基本初等函数(指、对、幂函数)。
必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
2.重难点及考点:
重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数。
难点:函数、圆锥曲线。
小学数学知识归纳与总结篇十四
【知识点】:
1、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。
2、学生在动手操作中,可以画出并能计算出图形的周长。
【知识点】:
1、为学生创设游园的情境,引导学生体验用不同的方法去计算小公园的周长。就是把围成小公园的所有线段加在一起。
2、算一算中出现了4种不同的图形,鼓励学生用多种方法计算,为后面学习长方形、正方形周长的计算作好铺垫。
【知识点】:
1、学生要明确已知的条件和问题,然后先独立思考,再在小组中交流自己的想法,鼓励学生用不同的方法来解决问题,从而发现(长+宽)﹡2是求长方形周长最简便的方法。不必用公式化的算式去约束学生,他们可以自己喜欢的方法去计算。
2、在做一做中出现的两个不同的长方形可以让学生用自己喜欢的方法求周长。
【知识点】:
1、学生要明确已知条件和问题,利用学习长方形周长的知识经验,知识迁移到怎样求出正方形的周长,就是把正方形的四条边长加起来,还可以用边长乘4。
2、做一做中出现的两个正方形周长的计算,可以放手让学生用自己喜欢的方法去解决。
3、练一练中的第2小题要让学生明确求篱笆长多少米,就是在求正方形实验园地的周长。
【知识点】:
1、练习六中的1——8小题通过计算各种图形的不同周长,进一步巩固学生已经掌握的计算周长的方法。
而第9小题则是让学生发现图形之间的变化关系,从而发现这四幅图形的周长是相等的。
2、在实践活动中,可以让学生先计算三个周长的大小,并说出估计的过程或理由,然后再让学生自主选择测量工具和测量方式。可以独立测量,也可以是小组合作进行,最后组织学生对其估计和测量的结果进行对比,修正自己的估计和测量的结果。
【知识点】:
在这节实践活动课中,要引导学生认真仔细的观察图片中的数学信息,从而运用周长、乘除法、搭配方法等数学知识和方法来解决实际生活中的简单问题。
小学数学知识归纳与总结篇十五
(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
3、整数指数幂的加减乘除法。
4、分式方程及其解法。
第二章反比例函数。
1、反比例函数的表达式、图像、性质。
图像:双曲线。
表达式:y=k/x(k不为0)。
性质:两支的增减性相同;。
2、反比例函数在实际问题中的应用。
第三章勾股定理。
1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形。
1、平行四边形。
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;。
两组对角分别相等的四边形是平行四边形;。
对角线互相平分的四边形是平行四边形;。
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形。
(1)矩形。
性质:矩形的四个角都是直角;。
矩形的对角线相等;。
矩形具有平行四边形的所有性质。
判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;。
推论:直角三角形斜边的中线等于斜边的一半。
判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3、梯形:直角梯形和等腰梯形。
等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。
第五章数据的分析。
加权平均数、中位数、众数、极差、方差。
小学数学知识归纳与总结篇十六
第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计。这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。
对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。
对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。
在临近高考的数学复习中,考生们更应该从三个层面上整体把握,同步推进。
1.知识层面
也就是对每个章节、每个知识点的再认识、再记忆、再应用。数学高考内容选修加必修,可归纳为12个章节,75个知识点细化为160个小知识点,而这些知识点又是纵横交错,互相关联,是“你中有我,我中有你”的。考生们在清理这些知识点时,首先是点点必记,不可遗漏。再是建立相关联的网络,做到取自一点,连成一线,使之横竖纵横都逐个、逐级并网连遍,从而牢固记忆、灵活运用。
2.能力层面
从知识点的掌握到解题能力的形成,是综合,更是飞跃,将知识点的内容转化为高强的数学能力,这要通过大量练习,通过大脑思维、再思维,从而沉淀而得到数学思想的精华,就是数学解题能力。我们通常说的解题能力、计算能力、转化问题的能力、阅读理解题意的能力等等,都来自于千锤百炼的解题之中。
3.创新层面
数学解题要创新,首先是思想创新,我们称之为“函数的思想”、“讨论的方法”。函数是高中数学的主线,我们可以用函数的思想去分析一切数学问题,从初等数学到高等数学、从图形问题到运算问题、从高散型到连续型、从指数与对数、从微分与积分等等,这一切都要突出函数的思想;另外,现在的高考题常常用增加题目中参数的方法来提高题目的难度,用于区别学生之间解题能力的差异。我们常常应对参数的策略点是消去参数,化未知为已知;或讨论参数,分类找出参数的含义;或分离参数,将参数问题化成函数问题,使问题迎刃而解。这些,我称之为解题创新之举。
4.代换层面
还有一类数学解题中的创新,是代换,构造新函数新图形等等,俗称代换法、构造法,这里有更大的思维跨越,在解题的某一阶段有时出现山穷水尽,无计可施时,用代换与构造,就会使思路豁然开朗、柳暗花明、思路顺畅、解答优美,体现数学之美。常见的代换有变量代换,三角代换,整体代换;常用的构造有构造函数、构造图形、构造数列、构造不等式、构造相关模型等等。
1.“方程”思想
数学是研究事物的空间形式和数量关系。初中阶段最重要的数量关系是平等关系,其次是不平等关系。最常见的等价关系是“方程”。例如,在等速运动中,距离、速度和时间之间存在等价关系,可以建立相关方程:速度时间=距离。在这样的方程中,通常会有已知的量和未知量。含有这种未知量的方程是“方程”,它可以从方程中已知的量导出。未知量的过程是求解方程的过程。我们在小学时接触过简单的方程,而在初中第一年,我们系统地学习解一变量的第一个方程,并总结出解一变量的第一个方程的五个步骤。如果我们学习并掌握这五个步骤,任何一个等式都能顺利地解决。在2年级和3年级,我们还将学习解决二次方程、二次方程和简单三角方程。在高中,我们还学习指数方程、对数方程、线性方程、参数方程、极坐标方程等。求解这些方程的思想几乎是相同的。通过一些方法,将它们转化为一元一阶方程或一元二次方程的形式,然后通过求解一元一阶方程或求一元二次方程根公式的常用五步法求解。物理中的能量守恒、化学中的化学平衡方程以及大量实际应用都需要建立方程和求解方程才能得到结果。因此,学生必须学会如何解一维一阶方程和一维二阶方程,然后才能学好其他形式的方程。
所谓的“方程”思想是数学问题,特别是未知现实见面和已知数量的复杂关系,善于利用“方程”的观点建立相关方程,然后利用求解方程的方法来解决这个问题。
2.“数与形相结合”的思想
数字和形状在世界各地随处可见。任何东西,除去它的定性方面,都是留给数学研究的,只有形状和尺寸的属性。代数和几何是初中数学的两个分支。然而,代数的研究依赖于“形式”,而几何学则依赖于“数”,而“数与形的结合”则是一种趋势。我们学得越多,“数字”和“形状”就越不可分割,在高中时,“数字”和“形状”是密不可分的。有一门关于用代数方法研究几何问题的课程,叫做“分析几何”。第三年,平面笛卡尔坐标系建立后,函数的研究就离不开图像。通过图像的帮助,很容易找到问题的关键点,解决问题。在今后的数学学习中,应重视“数与形相结合”的思维训练。只要任何问题都与“形状”有关,就应该根据主题的含义起草一个草图来分析它。这样做不仅是直观的,而且是全面的。诚信强,容易找到切入点,对解决问题有很大的益处。品尝甜味的人会逐渐养成“数形结合”的好习惯。
1.按部就班
数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2.强调理解
概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3.基本训练
学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。
4.重视错误
订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。
数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。
小学数学知识归纳与总结篇十七
离散数学是计算机科学基础理论的核心课程之一,是计算机及应用、通信等专业的一门重要的基础课。它以研究量的结构和相互关系为主要目标,其研究对象一般是有限个或可数个元素,充分体现了计算机科学离散性的特点。学习离散数学的目的是为学习计算机、通信等专业各后续课程做好必要的知识准备,进一步提高抽象思维和逻辑推理的能力,为计算机的应用提供必要的描述工具和理论基础。
1.定义和定理多。
离散数学是建立在大量定义、定理之上的逻辑推理学科,因此对概念的理解是学习这门课程的核心。在学习这些概念的基础上,要特别注意概念之间的联系,而描述这些联系的实体则是大量的定理和性质。在考试中有一部分内容是考查学生对定义和定理的识记、理解和运用,因此要真正理解离散数学中所给出的每个基本概念的真正的含义。比如,命题的定义、五个基本联结词、公式的主析取范式和主合取范式、三个推理规则以及反证法;集合的五种运算的定义;关系的定义和关系的四个性质;函数(映射)和几种特殊函数(映射)的定义;图、完全图、简单图、子图、补图的定义;图中简单路、基本路的定义以及两个图同构的定义;树与最小生成树的定义。掌握和理解这些概念对于学好离散数学是至关重要的。
2.方法性强。
在离散数学的学习过程中,一定要注重和掌握离散数学处理问题的方法,在做题时,找到一个合适的解题思路和方法是极为重要的。如果知道了一道题用怎样的方法去做或证明,就能很容易地做或证出来。反之,则事倍功半。在离散数学中,虽然各种各样的题种类繁多,但每类题的解法均有规律可循。所以在听课和平时的复习中,要善于总结和归纳具有规律性的内容。在平时的讲课和复习中,老师会总结各类解题思路和方法。作为学生,首先应该熟悉并且会用这些方法,同时,还要勤于思考,对于一道题,进可能地多探讨几种解法。
3.抽象性强。
离散数学的特点是知识点集中,对抽象思维能力的要求较高。由于这些定义的抽象性,使初学者往往不能在脑海中直接建立起它们与现实世界中客观事物的联系。不管是哪本离散数学教材,都会在每一章中首先列出若干个定义和定理,接着就是这些定义和定理的直接应用,如果没有较好的抽象思维能力,学习离散数学确实具有一定的困难。因此,在离散数学的学习中,要注重抽象思维能力、逻辑推理能力的培养和训练,这种能力的培养对今后从事各种工作都是极其重要的。
在学习离散数学中所遇到的这些困难,可以通过多学、多看、认真分析讲课中所给出的典型例题的解题过程,再加上多练,从而逐步得到解决。在此特别强调一点:深入地理解和掌握离散数学的基本概念、基本定理和结论,是学好离散数学的重要前提之一。所以,同学们要准确、全面、完整地记忆和理解所有这些基本定义和定理。
4.内在联系性。
离散数学的三大体系虽然来自于不同的学科,但是这三大体系前后贯通,形成一个有机的整体。通过认真的分析可寻找出三大部分之间知识的内在联系性和规律性。如:集合论、函数、关系和图论,其解题思路和证明方法均有相同或相似之处。
如何应对考试:一般来说,离散数学的考试要求分为了解、理解和掌握。了解是能正确判别有关概念和方法;理解是能正确表达有关概念和方法的含义;掌握是在理解的基础上加以灵活应用。为了考核学生对这三部分的理解和掌握的程度,试题类型一般可分为:判断题、填空题、选择题、计算题和证明题。判断题、填空题、选择题主要涉及基本概念、基本理论、重要性质和结论、公式及其简单计算;计算题主要考核学生的基本运用技能和速度,要求写出完整的计算过程和步骤;证明题主要考查应用概念、性质、定理及重要结论进行逻辑推理的能力,要求写出严格的推理和论证过程。
学习离散数学的最大困难是它的抽象性和逻辑推理的严密性。在离散数学中,假设让你解一道题或证明一个命题,你应首先读懂题意,然后寻找解题或证明的思路和方法,当你相信已找到了解题或证明的思路和方法,你必须把它严格地写出来。一个写得很好的解题过程或证明是一系列的陈述,其中每一条陈述都是前面的陈述经过简单的推理而得到的。仔细地写解题过程或证明是很重要的,既能让读者理解它,又能保证解题过程或证明准确无误。一个好的解题过程或证明应该是条理清楚、论据充分、表述简洁的。针对这一要求,在讲课中老师会提供大量的典型例题供同学们参考和学习。
通过离散数学的学习和训练,能使同学们学会在离散数学中处理问题的一般性的规律和方法,一旦掌握了离散数学中这种处理问题的思想方法,学习和掌握离散数学的知识就不再是一件难事了。
首先要明确的是,由于《离散数学》是一门数学课,且是由几个数学分支综合在一起的,内容繁多,非常抽象,因此即使是数学系的学生学起来都会倍感困难,对计算科学专业的学生来说就更是如此。大家普遍反映这是大学四年最难学的一门课之一。但鉴于《离散数学》在计算科学中的重要性,这是一门必须牢牢掌握的课程。既然如此,在学习《离散数学》时,大家最应该牢记的是唐诗“熟读唐诗三百首,不会做诗也会吟。”学习过程是一个扎扎实实积累的过程,不能打马虎眼。离散数学是理论性较强的学科,学习离散数学的关键是对离散数学(集合论、数理逻辑和图论)有关基本概念的准确掌握,对基本原理及基本运算的运用,并要多做练习。
《离散数学》的特点是:
1、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。
2、方法性强:离散数学的特点是抽象思维能力的要求较高。通过对它的学习,能大大提高我们本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。《离散数学》的证明题多,不同的题型会需要不同的证明方法(如直接证明法、反证法、归纳法、构造性证明法),同一个题也可能有几种方法。但是《离散数学》证明题的方法性是很强的,如果知道一道题用什么方法讲明,则很容易可以证出来,否则就会事倍功半。因此在平时的学习中,要勤于思考,对于同一个问题,尽可能多探讨几种证明方法,从而学会熟练运用这些证明方法。一般来说,由于这些概念(定义)非常抽象(学习《线性代数》时会有这样的经历),初学者往往不能在脑海中建立起它们与现实世界中客观事物的联系。这往往是《离散数学》学习过程中初学者要面临的第一个困难,他们觉得不容易进入学习的状态。因此一开始必须准确、全面、完整地记住并理解所有的定义和定理。具体做法是在进行完一章的学习后,用专门的时间对该章包括的定义与定理实施强记。只有这样才可能本课程的抽象能够适应,并为后续学习打下良好的基础。
将本文的word文档下载到电脑,方便收藏和打印。
小学数学知识归纳与总结篇十八
高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节,主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
数列这个板块,重点考两个方面:一个通项;一个是求和。
空间向量和立体几何。在里面重点考察两个方面:一个是证明;一个是计算。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是20xx年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
小学数学知识归纳与总结篇十九
在平平淡淡的学习中,说起知识点,应该没有人不熟悉吧?知识点在教育实践中,是指对某一个知识的泛称。还在苦恼没有知识点总结吗?下面是小编收集整理的关于高考数学知识点归纳总结,希望能够帮助到大家。
一忌“多而不精,顾此失彼”
许多同学(更多的是家长)为了在高考中领先于其它人,总是绞尽脑汁想方设法要比别人学得多,这无疑是件好事。但他们最后所采用的方法却往往是对他们最为不利的,那就是:购买和选择大量的复习资料和讲义,花去比别人多得多的时间,没日没夜的做,他们的精神非常可贵,他们的毅力非常惊人,其效果却让他们自己都非常伤心失望。有些家长甚至说:“我的小孩已经尽力了,还是没有进步,一定是太笨了”。其实,他们犯了很多科学性的错误,却不自知。
1.高中阶段所学的知识具有一定的范围,再多的复习资料、讲义,也只不过是这一范围内的知识的重复和变形。你所做的很多题目都代表相同的知识点,代表相同的方法,对于那些你已经掌握的知识、方法,做再多的题目还是于事无补,简单无聊的重复除了使你身陷题海,不能自拔,耗尽了你的精力不算,还使你失去了信心,因为你比别人努力,却没有得到相应的回报。
2.每一套复习资料都经过编纂人员的反复推敲,仔细研究,都很系统地将相应的知识点按照一定的规律和方法融会于其中。所以同学只要研究好一两套具有代表性的复习资料,你该学的一定都能学到,该会的都能学会。
3.“丢了西瓜,捡了芝麻”的故事告诉我们,不能太贪心,这本资料也好,那本资料也不错,好的资料太多了,同学们的精力是有限的,而题目是无限的,以有限的精力去做无限的题目,永远没有尽头,必然导致你对每一套资料都没有很好的完成,都没有系统地研究,反而会因为各种资料的风格、体系的不同,而使你的学习失去全面性、系统性,多而不精,顾此失彼,是高三复习的`大敌。
二忌“学而不思,囫囵吞枣”
导致很多同学身陷题海,不能自拔的另一个重要原因,就是“学而不思”,题目是知识的载体,有的同学做了很多题目,却仍然没有明白它们代表同一知识点,不但不能举一反三,甚至举三不能反一,其真正的原因,是他们没有养成思考、总结的习惯。华罗庚先生说过:“譬如我们读一本书,厚厚的一本,再加上我们自己的注解,就愈读愈厚,我们自己知道的东西也就‘由薄到厚’了”。“‘学’并不到此为止,‘懂’并不到此为透,所谓由厚到薄是消化提炼的过程,即把那些学到的东西,经过咀嚼、消化,融会贯通,提炼出关键性的东西来。”这段话充分说明了思考在学习过程中的重要性。以下是“学而不思”的几种具体表现,也许你就有过这样的经历。
2.从来不去想,怎样发展自己的强项,怎样弥补自己的不足,只知道老师叫干什么就干什么,布置了作业就做,发了试卷就考。
5.一个自己所犯的错误,只是轻轻的告诉自己,下次要注意,只简单地归结为粗心,但下次还是犯同样的错误。
学而不思,往往就囫囵吞枣,对于外界的东西,来者不拒,只知接受,不会挑选,只知记忆,不会总结。你没有在学习过程中“加入自己的注解”,怎能做到华罗庚先生说的“由薄到厚”,你不会“提炼出关键性的东西来”,就更不能“由厚到薄”,找到问题地本质,那么,你的学习就很难取得质的飞跃。
三忌“好高骛远,忽视双基”
很多同学都知道好高务远就是眼高手低、不自量力的代名词,但却不知道什么是好高骛远。
有的同学由于自己觉得成绩很好,所以,总认为基础的东西,太简单,研究双基是浪费时间;有的同学对自己的定位较高,认为自己研究的应该是那些高于其它同学的,别人觉得有困难的东西;有的同学总是嫌老师讲得太简单或者太慢,甚至有的同学成绩不怎么样,也瞧不起基础的东西。其实,这些都是好高骛远。
最深刻的道理,往往存在于最简单的事实之中。一切高楼大厦都是平地而起的,一切高深的理论,都是由基础理论总结出来的。同学们可以仔细地分析老师讲的课,无论是多难的题目,最后总是深入浅出,归结到课本上的知识点,无论是多简单的题目,总能指出其中所蕴藏的科学道理,而大多数同学,只听到老师讲的是题目,常常认为此题已懂,不需要再听,而忽略了老师阐述“来自基础,回归基础”的道理的关键地方。所以大家一定要重视双基,千万别好高务远。
四忌“敷衍了事,得过且过”
以下是对某校2004届高三300名同学关于作业问题的两项调查:(数值为人数比例:做到的/总人数)
你做作业是为了什么?
检测自己究竟学会了没有占91/30.33%
因为老师要检查占143/47.67%
怕被家长、老师批评的占38/12.67%
说不清什么原因占28/9.33%
你的作业是怎样完成的?
复习,再联系课上内容独立完成占55/18.33%
小学数学知识归纳与总结篇二十
2、从个位加起;。
3、个位满10向十位进1。
(2)笔算两位数减法,要记三条。
2、从个位减起;。
3、个位不够减从十位退1,在个位加10再减。
(3)混合运算计算法则。
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;。
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;。
3、算式里有括号的要先算括号里面的。
(4)四位数的读法。
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;。
2、中间有一个0或两个0只读一个“零”;。
3、末位不管有几个0都不读。
(5)四位数写法。
1、从高位起,按照顺序写;。
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(6)四位数减法也要注意三条。
2、从个位减起;。
3、哪一位数不够减,从前位退1,在本位加10再减。
(7)一位数乘多位数乘法法则。
1、从个位起,用一位数依次乘多位数中的每一位数;。
2、哪一位上乘得的积满几十就向前进几。
(8)除数是一位数的除法法则。
2、除数除到哪一位,就把商写在那一位上面;。
3、每求出一位商,余下的数必须比除数小。
(9)一个因数是两位数的乘法法则。
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;。
2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;。
3、然后把两次乘得的数加起来。
(10)除数是两位数的除法法则。
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,
2、除到被除数的哪一位就在哪一位上面写商;。
3、每求出一位商,余下的数必须比除数小。
(11)万级数的读法法则。
1、先读万级,再读个级;。
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;。
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(12)多位数的读法法则。
1、从高位起,一级一级往下读;。
2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;。
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
(13)小数大小的比较。
比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(14)小数加减法计算法则。
计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。
(15)小数乘法的计算法则。
计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(16)除数是整数除法的法则。
除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
(17)除数是小数的除法运算法则。
除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
(18)解答应用题步骤。
2、确定每一步该怎样算,列出算式,算出得数;。
3、进行检验,写出答案。
(19)列方程解应用题的一般步骤。
1、弄清题意,找出未知数,并用x表示;。
2、找出应用题中数量之间的相等关系,列方程;。
3、解方程;。
4、检验、写出答案。
(20)同分母分数加减的法则。
同分母分数相加减,分母不变,只把分子相加减。
(21)同分母带分数加减的法则。
带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(22)异分母分数加减的法则。
异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
(23)分数乘以整数的计算法则。
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(24)分数乘以分数的计算法则。
分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。
(25)一个数除以分数的计算法则。
一个数除以分数,等于这个数乘以除数的倒数。
(26)把小数化成百分数和把百分数化成小数的方法。
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;。
把百分数化成小数,把百分号去掉,同时小数点向左移动两位。
(27)把分数化成百分数和把百分数化成分数的方法。
把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
小学数学知识归纳与总结篇二十一
(一)“大数的认识”:
1.知识技能目标:巩固所学的计数单位和相邻两个单位之间的进率,掌握数位顺序表,能正确地读写大数,掌握改写和省略的方法。
(2)多位数的读写法的方法是什么?
(3)改写和省略的方法是什么?
(4)如何比较数的大小?
3.对应练习。
(1)读出下面各数。
62315797005008239804000001000400070。
4003000023674001000061540000030708000000。
(2)写出下面各数。
四千零二万一百零三二千零四十万四千零三十。
一十亿零五百六十八一百二十亿四千零八万五千零四十。
(3)改写成以亿做单位的数:224100000000212000000000。
(4)求近似数。
265805602527641880808(省略万后面的'尾数)。
34564631071233547811220805658(省略亿后面的尾数)。
(5)用1、5、7、9和4个0按要求写出八位数。
最大的数(),最小的数是(),一个0都不读的数,只读出一个0的数(),要读出2个0的数()。
(二)“乘除法”复习。
1.知识技能目标:通过复习,巩固所学的乘除法口算和笔算的计算方法,在计算过程中能灵活应用因数和积的关系、商变化的规律,正确熟练地计算。
2.复习知识点:
(1)复习口算。
230×4=3×380=150×4=108×3=。
350×2=70×5=2700÷30=1800÷60=。
360÷90=2400÷60=8000÷40=4200÷60=。
(2)不计算,直接写出下面的积。
16×392=6272160×392=16×3920=。
792÷24=33396÷12=1584÷48=。
想一想,你是根据什么得出结果的?(积的变化规律和商的变换规律)。
(3)笔算。
145×37=540×18=508×60=509×57=。
948÷19=676÷64=516÷43=338÷13=。
小学数学知识归纳与总结篇二十二
1、直接解题法(直接法)。
直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择。涉及概念、性质的辨析或运算较简单的题目常用直接法。直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解。直接法适用的范围很广,只要运算正确必能得出正确的答案。提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建立在扎实掌握“三基”的基础上,否则一味求快则会快中出错。
2、特殊值解题。
正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略。近几年高考选择题中可用或结合特例法解答的约占30%左右。通过取适合条件的特殊值、特殊图形、特殊位置等进行分析,往往能简缩思维过程、降低难度而迅速地解。
3、数形结合法或者割补法(解析几何常用方法):
巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题长度。对于一些具有几何背景的数学问题,如能构造出与之相应的图形进行分析,往往能在数形结合、以形助数中获得形象直观的解法。
4、极限法。
这是高中选修部分,不过用在解题会很快。极限思想是一种基本而重要的数学思想。当一个变量无限接近一个定量,则变量可看作此定量。对于某些选择题,若能恰当运用极限思想思考,则往往可使过程简单明快。用极限法是解选择题的一种有效方法。它根据题干及选择支的特征,考虑极端情形,有助于缩小选择面,迅速找到答案。
小学数学知识归纳与总结篇二十三
复数是高中代数的重要内容,在高考试题中约占8%-10%,一般的出一道基础题和一道中档题,经常与三角、解析几何、方程、不等式等知识综合。本章主要内容是复数的概念,复数的代数、几何、三角表示方法以及复数的运算.方程、方程组,数形结合,分域讨论,等价转化的数学思想与方法在本章中有突出的体现.而复数是代数,三角,解析几何知识,相互转化的枢纽,这对拓宽学生思路,提高学生解综合习题能力是有益的.数、式的运算和解方程,方程组,不等式是学好本章必须具有的基本技能.简化运算的意识也应进一步加强。
在本章学习结束时,应该明确对二次三项式的因式分解和解一元二次方程与二项方程可以画上圆满的句号了,对向量的运算、曲线的复数形式的方程、复数集中的数列等边缘性的知识还有待于进一步的研究。
(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难。对此应认真体会复数向量运算的几何意义,对其灵活地加以证明。
(2)复数三角形式的乘方和开方。有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练。
(3)复数的辐角主值的求法。
(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会。
小学数学知识归纳与总结篇二十四
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
减正等于加负,减负等于加正。
有理数的乘法运算符号法则。
同号得正异号负,一项为零积是零。
说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
两数相除也叫比,两比相等叫比例。
外项积等内项积,等积可化八比例。
分别交换内外项,统统都要叫更比。
同时交换内外项,便要称其为反比。
前后项和比后项,比值不变叫合比。
前后项差比后项,组成比例是分比。
两项和比两项差,比值相等合分比。
前项和比后项和,比值不变叫等比。