2023年长方体的体积教学设计北师大版(实用16篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
长方体的体积教学设计北师大版篇一
教学目标:
1.理解并掌握长方体和正方体体积的计算方法.。
2.能运用长、正方体的体积计算解决一些简单的实际问题.。
3.培养学生归纳推理,抽象概括的能力.。
一、激趣导入。
师:今天老师带了两个精美的礼品盒,喜欢吗?猜猜看,哪个礼品盒的体积大?
生1:我猜蓝色礼品盒的体积大,因为它比较宽;
生2:我猜黑色的礼品盒体积大,因为它比较长…。
师:看来仅靠观察我们能准确比较出礼品盒体积的大小吗?(不能)。该怎么办呢?(计算)。
师:这个主意不错!今天这节课我们就来研究长方体体积的计算。(板书课题)。
二、先学后教。
1、示自学指导(课件)。
小组合作摆出不同的长方体并在记录单上做好记录,摆好后仔细观察,思考:长方体的体积与什么有关?想好后在组内交流。(时间4分钟)。
2、学生按小组分工合作,二人拼摆长方体,一人记录,一人监督,探索长方体体积与什么有关?教师巡视指导。指两个小组到前面板演。
3、组织学生汇报。
生1:我们组摆了3个长方体,第一个长方体长4厘米,宽3厘米,高2厘米……我们组发现小木块的数量和长方体的体积相等。
师:能举例说明吗?
师:还有哪个小组愿意来回报你们的发现?
生2:我们组摆了3个长方体,第一个长方体长2厘米,宽3厘米,高3厘米,第2个长方体……我们组发现长乘宽乘高等于长方体的体积。例如第一个长方体的长2厘米,宽3厘米,高3厘米,用2×3×3=18,长方体的体积也是18立方厘米…..)。
师:真会思考,将你们组的发现写在黑板上。还有哪个小组愿意汇报?
其他组学生汇报。
4、验证发现。
师:同学们都很善于观察思考,现在我们就重点看看第2小组的发现。他们组摆了3个长方体,发现长方体的体积=长×宽×高,那所有长方体的体积都等于长乘宽乘高吗?(师在黑板上写个“?”)现在我们就来验证一下。这次验证有两个要求:一、尽量用多的学具拼摆,二、把你们的发现用算式表示并填在记录表2中。
学生小组合作拼摆并进行记录,自由汇报拼摆结果。
生1:我们组摆了两个长方体,第一个长方体长6厘米,宽3厘米,高4厘米,体积是72立方厘米,用算式表示是6×3×4=72……我们组的结论是长方体的体积等于长×宽×高。
生2:我们组也摆了两个长方体,第一个长方体长……我们组的结论是长方体的体积=长×宽×高。
师:其他组你们的`结论和他们一样吗?(一样)有了这么多例子,现在这个问号可以擦下去了吗?(可以)。
同桌互说,男女说,齐说。
师:如果用字母v表示体积,用a、b、h分别表示长方体的长、宽、高,那么长方体的体积公式还可以写成…(指说)。
生:v=abh(开火车说)。
5、小结。
三、当堂训练。
1、填空。
3、计算并比较两个礼品盒的体积。
4、计算下面立体图形的体积。(单位:分米)。
(指生板演,汇报算法,在汇报过程中直接推导出正方体体积的计算公式及字母表示法)。
5、一块正方体石料,棱长是6dm,这块石料的体积是多少立方分米?
6、挖一个长和宽都是5米的长方体菜窖,要使菜窖的窖是50立方米,应挖多少米深?
7、一个正方体魔方的棱长总和是36厘米,它的体积是多少立方厘米?
8、计算组合图像的面积。
四、课堂总结。
这节课你有什么收获?学生自由发言。
五、课外延伸。
生自由发言。
六、随堂检测。
1、建筑工地要挖一个长50米,宽30米,深5米的长方体土坑,挖出多少立方米的土?
2、一个棱长3厘米的正方体橡皮,它的体积是多少立方厘米?
长方体的体积教学设计北师大版篇二
2、探索长方体、正方体体积与底面积和高之间的关系。
底面积和高之间的关系。
教师指导与教学过程。
设计意图。
思考:如何计算它的体积?
长:2cm宽:3cm高:4cm。
1、出示正方体。
提问:如何计算正方体体积?
2、根据学生反馈,教师极书公式:
正方体体积=棱长×棱长×棱长。
v=a×a×a=a3。
3、试一试。
1出示三幅图。
学生进行思考。
反馈:长×宽×高。
学生进行计算。
2×3×4=24cm3。
学生回顾长方体体的公式,联系长方体、正方体的关系,进行推理。
正方体体积=棱长×棱长×棱长。
v=a×a×a=a3。
通过对长方体体积公式的回顾,引导学生联系长方体和正方体之间方之间的关系,引导学生自己进行推测,从而得出正方体体积的计算公式。
培养学生推理能力和理解,分析问题的能力。
教师指导与教学过程。
学生学习活动过程。
设计意图。
2引导学生观察:
图中阴影部分叫什么?
它们与高之间有什么关系?
3你还能提示三个图形的体积吗?
4引导学生计逄三幅图的体积。
1、练一练1。
引导学生通过观察得出长方体的长、宽、高成正方体的棱长,再利用公式计算。
2、练一练2。
让学生应用公式进行计算独立完成。
反馈计论结果。
引导学生观察,找出阴影部分,并认识体面积。
独立思考:它们与高之间的关系。
得出:底面积×高=体积。
学生利用所推导出的公式,计算三幅图的体积。
反馈。
学生观察图。
计算。
教师指导详细教研组4.7。
学生在观察中体会底面积与高之间的关系,进一步理解记忆长方体、正方体体积的计算。
长方体的体积教学设计北师大版篇三
教学内容:
人教版小学数学五年级下册第三单元长方体和正方体的体积。
教学目标:
探索并掌握长方体和正方体体积的计算方法,能正确计算长方体、正方体的体积。
2.在观察、操作、探索的过程中,提高动手操作的能力,进一步发展空间观念。
3.大家想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。
教学重点:
经历探索长方体体积计算方法的推导过程,能正确计算长方体的体积。
教学难点:
促使学生从一维到三维的发展,让学生深切感悟体积度量单位的实际意义。
教具、学具准备:
课件,长方体、正方体模型,每组若干个棱长为1厘米的小正方体,直尺等。教学过程:
一、复习引入、揭示课题。
1.这节课我们继续研究与“体积”有关的知识。(板书:体积)。
2.说说对体积有哪些了解,并说说什么叫做音箱的体积,什么叫做空调的体积。3.比较空调和音箱哪个体积大,再比较两个体积近似的长方体。
过渡:我们不能直接观察出来,就需要计算出长方体的体积,这节课我们就来重点研究“长方体的体积”。(板书课题)。
二、探究明理。
(1)长、宽相等的时候,越高,体积越大。
(2)长、高相等的时候,越宽,体积越大。
(3)高、宽相等的时候,越长,体积越大。
2.探究体积计算方法。
(1)动手操作,填表。
(4)教师结合课件演示小结:长是一排有几个体积单位,宽是有几排,高表示几层,“长×宽”表示一层有多少个体积单位,再乘高求出几层共有多少个体积单位,所以长方体的体积=长×宽×高,用字母表示为:v=a×b×h(板书公式)。
(5)巩固练习:
v=abh。
=7×4×3。
=84(cm3)。
答:它的体积是84cm3。
(1)(课件演示)引导学生推导出:正方体的体积=棱长×棱长×棱长。
v=a×a×a=a3(板书)。
(2)巩固练习:。
一块正方体石料,棱长是6dm,这块石料的体积是多少立方分米?
v=a3。
=63。
=6×6×6=216(dm3)。
答:这块石料的体积是216dm3。
(1)课件演示长方体和正方体的底面积,给出底面积的概念。
(2)课件演示教材第43页长方体和正方体的底面积、高和体积的关系。(3)概括一般公式:
长方体(或正方体)的体积=底面积×高字母公式:v=sh(4)巩固练习:
利用公式v=sh计算:
1.完成教材第43页做一做第一题。
谁来说一说:今天这节课你有哪些收获?板书设计:
长方体的体积教学设计北师大版篇四
内容六年制小学数学第十一册p25—26。
1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。
2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。
3、培养学生初步的归纳推理、抽象概括的能力。
及难点探索并掌握长方体和正方体体积的计算方法。
长方体和正方体体积公式的推导。
及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。
讨论交流,并认真听讲思考。
集体备课个性化修改
预习阅读书本25、26页,并初步理解解
一、以旧引新
师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?
要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)
二、探究新知
1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。
师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。
师:将摆出的长方体放在桌上,并编号。
请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。
引导学生依次去数每个长方体中包含的小长方体的个数,并记录在表格中。
师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢?
2、验证、交流后归纳出长方体的体积计算公式及字母公式。
通过交流得出公式:长方体的体积=长×宽×高。
交流得出:v=abh.
3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。
师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?
交流得出:正方体的体积=棱长×棱长×棱长。
重点理解的含义,进一步明确的读法、写法。
做“试一试”。
作业做“练一练”。
做练习六第2题
课堂作业:做练习六第1、2题
板书设计
执行情况与课后小结
长方体的体积教学设计北师大版篇五
学习内容:
长方体、正方体的体积计算(课本第29~31页的内容,课本第30页的例1及第32页练习七的第5~6题)。
学习目标:
1.通过讲授,引导学生找出规律,总结出体积的公式。
2.指导学生运用公式正确计算长方体、正方体的体积。
3.培养学生积极思考、探索新知的思维品质。
教学重点:
教学难点:
教具运用:
正方体木块若干。
教学过程:
一、复习导入。
1.什么叫体积?计量物体的体积常用的单位有哪些?
二、新课讲授。
教师课件出示一块长方体积木,一块盖房用的大型砖板。
(1)提问:它们的体积是多少?你是怎样想的?
引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。
教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。
小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。
学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。
说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?
学生独立思考,然后小组内讨论交流,得出结论。
小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。
讲述:如果用字母v表示长方体的体积公式可以写成:v=abh。
(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。
(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:v=a?a?a=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)。
(1)出示教材第30页的例1。
(2)学生看图,理解题意。
(3)说出题中所给信息,和所求问题。
(5)指名学生上台板演过程,其他同学判断。
(6)老师订正书写。v=abh=7×4×3=84(cm3)。
(7)看图,学生独立在练习本上完成。
(8)指名板演,集体订正。
三、课堂作业。
完成课本第31页“做一做”第1、2题。
四、课堂小结。
1.这节课,你有什么收获?
五、课后作业。
完成练习册中本课时练习。
板书设计:
v=abh。
v=a?a?a=a3。
长方体的体积教学设计北师大版篇六
教学目标:
1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。
2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。
3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。
教学重点和难点:
长方体和正方体体积的计算方法,以及其体积公式的推导。
教学过程:
一、复习引入。
(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?
(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?
二、学习新课。
引导学生明确:
(1)这个长方体长、宽、高都相等,实际上它是一个正方体。
(2)正方体体积=棱长×棱长×棱长(板书)。
(3)如果用v表示正方体体积,用a表示它的棱长字母公式为:v=a。
教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:v=a3(板书)。
三、议一议。
长方体和正方体底面的面积叫做底面积。
如果用s表示底面积,上面的公式可以写成:
v=sh。
四、巩固练习。
计算下面图形的体积。
正方体体积=棱长×棱长×棱长长方体(或正方体)的体积=底面积×高。
v=a3v=sh。
长方体的体积教学设计北师大版篇七
3.在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
理解长方体和正方体体积公式的推导过程.
课件,若干个1立方厘米小正方块。
1立方厘米的正方体16块。
一、激情导入。
1、复习引入。
师:上节课,我们认识了体积和体积单位,谁来说说什么是物体的体积?请同学们用合适的体积单位填空。
2、昨天的知识大家掌握的很好,今天我们一起利用这些知识探究长方体和正方体的体积(板书课题)。请同学们齐读本节课的学习目标。
3、相信同学们能运用手中的学具,勤于动手,善于思考,快乐合作,获得新知识。
二、民主导学。
(学情欲设)。
生1、可以分割成以立方厘米的小块,看看一共有多少块,就有多少立方厘米。
生2、可以量一量。
生3、这些方法都有局限性,我们可以像以前推导平行四边形的面积一样想办法找出长方体体积的计算公式。
老师认为这个提议不错,你们认为呢?
师:谁来猜一猜长方体的体积怎样计算?这个猜想对吗?我们来一起验证。好,请同学们看今天的第一个学习任务。
任务呈现:
用一些体积是1立方厘米的小正方体摆成不同长方体,并完成下表:
出示表格。学生四人一小组,每组一张表格。
长
(厘米)。
宽
(厘米)。
高
(厘米)。
师:请同学们以小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。并在小组中讨论你发现了什么。
自主学习。
学生活动,师巡视。
展示交流。
师:同学们摆出了许多不同的长方体,并且填好了表格。哪一组来汇报?
学生黑板前展示表格,并做详细汇报。
引导学生观察表格,
师:观察表格中的数据,从中你能发现什么呢?
师:通过观察比较,同学们有了很大的发现:长方体的体积等于它的长、宽、高的乘积。(板书:)长方体的体积=长×宽×高。
任务2、继续验证。
课件出示:用1立方厘米的正方体摆出下面的长方体,各需要多少个?先想一想,再摆一摆。请一个同学上台操作。
1、长4厘米,宽1厘米,高1厘米。
2、长4厘米、宽3厘米、高1厘米。
3、长4厘米、宽3厘米、高2厘米。
师:那究竟对不对呢?让我们再来摆一摆。
学生小组讨论,动手操作,指名一生上台操作。师巡视。
师:和我们之前的猜想一样吗?
v=abh。
课件出示:
师:7×4×3=84立方厘米,所以它的体积就是84立方厘米。
师:长、宽、高都相等的长方体就是什么图形?你能直接写出正方体的体积公式吗?把你的想法在小组里说一说。
学生汇报:
因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中长、宽、高都叫棱长,正方体的体积=棱长×棱长×棱长。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。
课件出示正方体,出示公式。
师:写的时候,3要写在a的右上角,并且要写的小一些。
小训练:完成例2,在练习本上完成,集体订正。
1、口答题。
2、判断题。
3、解答题。
师:长方体和正方体的体积在生活中运用的很多,让我们一起来看一看。
师:这个算式表示什么意思呢?
出示:
品名:正方体收纳凳。
尺寸:30×30×30。
材质:涤纶+pp不织布+纤维板。
颜色:黑白。
师:你能看懂这个说明书吗?
师:看来不能光比较体积的大小,还要联系实际情况,看看长宽高是否都符合要求。
师:这节课我们一起学习了长方体和正方体的体积计算,你都有哪些收获?
长方体的体积教学设计北师大版篇八
教学内容:
人教版数学第十册第29页——30页的内容及相应的练习题教学目的:
1、通过实验探究长方体的体积计算公式,并能应用公式解决相应的实际问题。
2、让学生经历长方体体积公式的推导过程,理解体积计算公式。
3、培养学生动手拼摆能力,观察、归纳推理能力。教学重点:
体积公式的推导过程、体积公式的应用。教学难点:
体积公式的推导过程(每排个数、排数、层数和长方体长、宽、高之间的关系)教学准备:
学生分成2人小组,每组准备一些数量的小正方体、练习题单。教学过程:
一、直接导入。
师:前面我们学习了常用的体积单位,今天我们来探究长方体的体积求法。
二、猜测、为学生指名探究方向。
1、课件出示:一个长方体。师:你有什么方法能知道这个长方体的体积?
2、课件演示:把长方体切割成一个个的小正方体,数出每排个数、排数和层数;并用每排个数×排数×层数=总个数(即体积数)。
3、师:(1)数小正方体个数的方法能解决所有的长方体体积问题吗?看来有必要得出一个求长方体体积的计算公式。
4、课件演示,让学生理解长方体的体积与长方体的长宽高都有关系。
三、探究体积公式推导过程。
1、师:接下来我们就一起用小正方体通过拼摆,来探究一下长方体的体积和长宽高之间到底有什么关系。
2、同桌合作:课件出示:合作要求:(1)齐读要求。
(2)先摆,再观察,最后再填表。
3、学生动手操作,教师巡视指导。
4、全班交流(1)小组汇报结果。
(2)观察表格思考:你有什么发现?同桌先互说(3)全班交流发现。
结合学生的回答,观察一个摆好的长方体,理解每排个数、排数、层数和长宽高之间的对应关系。并多抽几个学生说说它们之间的关系。
v=abh。
6、回顾刚才的推导过程,同桌互说。
7、及时练习:出示一个长方体的文具盒。
师:要求这个长方体文具盒的体积要知道什么条件?教师给出长宽高,学生计算,强调书写格式。
四、课堂练习。
1、口算填表(见题单)。
2、小法官。
(1)两个体积相等的长方体,它们的长宽高一定相等。()(2)一个长方体的长宽高都扩大到原来的2倍,它的体积就扩大到原来的2倍。()。
3、建筑工地要挖一个长50米,宽30米,深50厘米的长方体土坑,一共要挖出多少方的土?(在工程中,1m3的土、沙、石等均简称“1方”)。
4、考考你:下列长方体的体积各是多少立方厘米?(小正方体的棱长1厘米)(见题单)。
五、小结下课。
课后反思:
1、对推导过程的关键地方突出不够,即,每排个数、排数、层数与长方体的长宽高的关系理解说理不够,应该让学生多说,还可以通过课件演示一下。
2、教师语言还不够准确、精炼,提出的数学问题还可以更加准确具有指向性,对于关键地方的引导还不够合理。
3、应该板书出:1立方米=1方。加强学生对两个单位关系的理解。
4、本节课对于时间的安排差不多,比以前的课堂要合理得多,基本上是按照预定的时间完成的,这是我本节课最满意的地方。
长方体的体积教学设计北师大版篇九
教学目标:
2、能运用长、正方体的体积计算解决一些简单的实际问题。
3、培养学生归纳推理,抽象概括的能力。
教学重点和难点。
教学用具。
(一)复习准备。
1.提问:什么是体积?常用的体积单位有哪些?
2.请每位同学拿出4个1厘米3的正方体,摆成一个长方体。
教师:这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成,所以它的体积是4厘米3。)。
教师:如果再拼上一个1厘米3的正方体呢?
教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。如果想知道我们这间教室的体积应该怎么办呢?(引导学生理解有的物体是不能切开的,能不能运用学过的知识来解决。)能不能通过测量、计算来求出教室的体积呢?今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。
(二)引导探索。
师:“要想求长方体的体积,你们猜想可能与什么有关呢?”
(1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?
教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。
学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。
进一步验证:同桌合作,用小正方体摆出自己喜欢的长方体,看看长方体的体积是否等于长、宽、高的乘积。
教师:用v表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书:v=abh。
(2)练习:(学生口答。)出示老师的长方体教具,给出长、宽、高,求体积。
师:现在老师测量了教室的长是7、5米,宽是6米,高是3米,教室的体积是多少,你们知道吗?学生快速计算。
学生口答,老师板书:正方体体积=棱长×棱长×棱长。
用字母表示公式:用v表体积,a表示棱长,公式可写成:v=a·a·a或者v=a3。
(2)教学例2。
学生试做,指名板演。
做一做:出示老师的正方体的教具,求体积。(学生口答)。
(三)巩固反馈。
练习七5、6题。
(四)课堂总结。
文档为doc格式。
长方体的体积教学设计北师大版篇十
长方体的体积计算这一内容是在学生认识了长方体(正方体)的体积的概念,长方体(正方体)的体积:立方米、立方厘米、立方分米的基础上学习的。通过这一节课的学习,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题,进一步体会到知识来源于实践、用于实践的道理,学习一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。听了叶老师执教的《长方体的体积》一课,深受启发。我认为主要有以下几方面的亮点:
究竟长方体的体积与长、宽、高有什么定量关系呢?叶老师安排了操作活动,引导学生用小正方体摆4个不同的长方体,通过观察、分析,发现长方体体积与长、宽、高的关系,逐步归纳得出计算方法。这一过程都是学生在教师的引导下,自主探究的过程,而不是教师的简单说教。
叶老师展示出6个大小不同的长方体,引导学生观察、发现长、宽、高与体积的关系的过程,是培养学生观察能力的过程。叶老师引导学生通过观察长、宽、高与体积的关系,让学生发现规律:长方体的体积正好是它们长、宽、高的乘积的过程,也是培养学生观察能力的过程。叶老师引导学生用棱长为1厘米的小正方体摆不同的长方体的过程,是培养学生动手实践的过程。老师引导学生练习的过程,是培养学生应用所学知识解决问题的能力的过程。在这一系列的探索活动中,学生通过动眼观察、动脑思考、动手操作,发散思维能力、解决问题的能力和策略都得到了不同程度的提高。
脱离生活的数学,把数学知识的学习与学生身边的事物割裂开来,既不利于学生理解抽象概括的数学知识,又无法让学生体会学习数学的意义。在课后练习中“一个长方体木箱长5分米,宽和高都是0.4米,它的体积是多少立方分米?”在课程接近尾声之时,叶老师始终没有忘记让学生再次感受我们今天学习的内容是解决我们身边的一些实际问题,我们学习了它,就应该把它运用到生活中。通过联系实际,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣。
反馈纠正是改善教学过程,提高教学效率的重要手段。叶老师在教学中反馈形式多种多样,随堂提问、课堂交流、布置练习等反馈及时,纠正有力。反馈面较广,反馈角度多方面,有效地防止了学生知识缺陷的积累,增强了学生学习的自信心。
可以借助多媒体课件逐一展示每个长方体,要求学生记录每个长方体的长、宽、高、体积等有关数据,这样更直观。更便于学生发现体积与长、宽、高之间的关系。
长方体的体积教学设计北师大版篇十一
这一内容是在学生理解了体积的概念和体积单位的基础上进行教学的。由计算平面图形的面积扩展到研究立体图形的体积计算,是学生空间思维发展的一次飞跃。长方体、正方体的体积计算,是学生形成体积的概念、掌握体积的计量单位和以后计算各种形体体积的基础。
通过“猜想——动手操作验证——探究”的教学过程,学生们兴趣盎然的参与到教学活动的每一个环节当中。借助多媒体的教学手段。演示实验的过程,帮助学生建立空间观念,形成清晰的表现。
知识技能目标:
1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积。解决一些简单的实际问题。
2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。
过程与方法策略目标:
通过“猜想——验证”的过程,形成发现、创新的过程。从而获取数学活动经验。
能力目标:
培养学生动手操作、抽象概括、归纳推理的能力。情感目标:
激发学生学习数学、发现数学的兴趣,学会与人合作。教学重点:
使学生理解长方体的体积公式的的推导过程,掌握长方体体积的计算方法。
教学难点:
在本课的教学中,让学生从生活实际需要中体会长方体的体积在生活中的应用,从而产生研究长方体体积的计算的需求,通过观察生活中的实物,发现长方体的体积与长宽高有关系,提出猜想,确定研究的方向。在学生以小组为单位,动手操作探究,来验证猜想的正确。使学生经历知识的建构的过程。通过解决生活中的实际问题,运用长方体体积计算的方法。体会数学运用于生活实际。
教学实施具体过程:
(一)激发兴趣,唤起生活经验和旧知。
课件出示:
1、字典是我们学习的工具书,必须要常备身边的,淘气遇到了这样的问题,他每天都要带一本字典,现在有两本内容同样的字典,他要选择其中的哪一本经常带在书包里比较方便呢?为什么?(小本的字典。体积小)。
(二)、唤起旧知。
提出猜想。
体积是4立方厘米。为什么?因为他它含有4个1立方厘米的体积单位。(1)我们已经知道,长方体的体积就是指长方体所含有的体积单位数。所以求长方体的体积就是求长方体所含有多少个这样的体积单位。下面我们运用1立方厘米的体积单位来研究长方体的体积计算方法。
(2)再加上这样的两排,这个长方体的体积是多少?你是怎么想的?
学生1:12立方厘米。追问怎么得到的?
学生2:一排是4立方厘米,3排就是4×3=12立方厘米。??
(3)再加上这样的一层,这个长方体的体积是多少?你是怎么计算的?
一层是12立方厘米,2层就是。
12×2=24立方厘米这个长方体的长宽高分别是多少?学生1:24立方厘米。
学生2:长是4厘米,宽是3厘米,高是2厘米。板书:体积。
长
宽
高
24。
猜想:
学生1:用计算公式。
(三)动手实践。
验证猜想。
1、这个猜想正确吗?下面就请同学们通过实验去验证我们的猜想是否正确。
(1)请同学们小组合作,用这些1立方厘米的小正方体木块拼成形状不同的长方体,每拼成一种就记录下它的长宽高和体积各是多少,然后计算出来验证刚才的猜想是否正确。
全班同学以小组为单位,进行分工,开始操作、计算、记录、思考、讨论。
引导学生全员参与公式的推导。明确小组学习的任务哪个小组愿意先汇报你们的研究过程和成果?(在实物投影上边摆边说)。
第一组:把12个正方体木块摆成3排,每排2个,摆2层。这个长方体的长是2厘米,宽是3厘米,高是2厘米,体积是12立方厘米,我们认为猜想的公式是正确的。
第二组:把18个正方体木块摆成1排,每排6个,摆3层。这个长方体的长是6厘米,宽是1厘米,高是3厘米,体积是18立方厘米,我们认为猜想的公式是正确的。
第三组:把12个正方体木块摆成2排,每排6个,摆1层。这个长方体的长是6厘米,宽是2厘米,高是1厘米,体积是12立方厘米,我们认为猜想的公式是正确的。刚才老师把同学们的实验数据汇总了这张表,我们一起来观察。
(1)师问:每排的个数、每层的排数、层数与长宽高有什么关系?
生一:每排的个数相当于长,每层的排数相当于宽,层数相当于高。
生二:因为每排的个数、每层的排数、层数相乘就是体积,所以长方体的体积=长×宽×高。
师:体积怎么求?为什么?
学生们学会了总结长方体体积的计算方法。
(2)师:同学们真了不起,通过猜想、实验、验证总结出了长方体的体积计算公式,今后在学习上同样可以利用这种方法学习。
[意图:分小组学习,是学生主动理解学习过程、解决问题的重要途径。通过学生交流、师生交流,比较、分析实验过程,从而引导学生主动探索出长方体体积与长、宽、高的关系。
学生们通过自己探索,学会了一定的学习方法。]课件演示公式的推导过程。
(3)字母表示:长方体体积用v表示长用a表示,宽用b表示。
长6厘米,宽6米,
高6米,求体积。
是什么立体图形?正方体。
v=a×a×a=a3说明理由:正方体是特殊的长方体。
阴影部分的面积是上面各个图形底面的面积,称为底面积。
(四)学以致用。
巩固提高1.判断(判断对错,说明理由)。
(1)一个正方体的棱长是2米,它的体积是8立方米。(。
)
(2)一个长方体的长30厘米,宽2分米,高5厘米,它的体积是30×2×5=500(立方厘米)。
(
)
(3)一个棱长为6分米的正方体,它的表面积和体积相等。(。
)2.提高题。
(1)一块砖的长是24厘米,宽是长的一半,厚是6厘米,它的体积是多少立方厘米?(只列式)。
(2)一个正方体的棱长总和是36厘米,它的体积是多少?
3.实际应用。
解:v=abh=2.9×1×14.7。
=42.63(m3)。
答:这块巨大的花岗岩石碑的体积是42.63立方米。
(2)有一种正方体形状的魔方,棱长是6厘米,体积是多少立方厘米?
v=a3=6×6×6。
=216(cm3)。
答:这种魔方的体积是216立方厘米。4.发展题。
一块不规则的石头,要求学生借助于两种工具:一个装有水的长方体容器,一把直尺,把这块不规则的石头的体积求出来,只要求说出自己的方法。
(五)谈谈你今天的收获。
板书设计:
v=a×b×h。
=abh。
v=a×a×a。
=a3。
v=s×h教后记:
本课注重让学生从体验中学习,在体验中自我建构新知,在体验中掌握数学方法。努力为学生创设条件,让学生主动参与到发现数学知识的过程中。在整个活动中,教师很自然地向学生们渗透了科学研究的基本过程,引导学生们要通过猜想——操作——论证去发现一些客观规律。让学生在发现—验证—解释中体会数学,探究知识。学生们在教师的引导下通过猜测、动手操作、交流讨论发现了长方体的长、宽、高和体积之间的关系,总结出了计算长方体体积的公式。在这一过程中,学生不仅掌握了计算长方体体积的数学公式,还知道了应该如何独立思考,学会了与他人合作。在论证的过程中,同学们动手操作,分别派出各组的代表讲解各自验证的全过程,最终使全班同学达成共识,推导出了长方体的体积公式。通过多媒体的应用,使学生建立清晰的表象,增强了学生的空间想象能力。在从事数学活动的过程中获得了较为广泛的数学活动经验。在探索的过程中培养了学生的合作意识和创新精神。我想,把“如果”变为现实,转换一种角度更多地把学生的思维尽情地施放出来,可能得到的是一片蔚蓝的天空。
长方体的体积教学设计北师大版篇十二
1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积x高”的过程。
2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积x高”的实际意义,会利用公式计算长方体、正方体的体积。
3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。
长方体和正方体体积的计算方法,以及其体积公式的推导。
一、复习引入。
(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?
(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?
二、学习新课。
探究正方体体积公式:
问:通过计算2号长方体的体积你们发现了什么?
引导学生明确:
(1)这个长方体长、宽、高都相等,实际上它是一个正方体。
(2)正方体体积=棱长x棱长x棱长(板书)。
(3)如果用v表示正方体体积,用a表示它的棱长字母公式为:v=a。
教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:v=a3(板书)。
三、议一议。
长方体和正方体底面的面积叫做底面积。
如果用s表示底面积,上面的公式可以写成:
v=sh。
四、巩固练习。
计算下面图形的体积。
板书设计:
正方体体积=棱长x棱长x棱长长方体(或正方体)的体积=底面积x高。
v=a3v=sh。
长方体的体积教学设计北师大版篇十三
人教版数学第十册第29页——30页的内容及相应的练习题。
1、通过实验探究长方体的体积计算公式,并能应用公式解决相应的实际问题。
2、让学生经历长方体体积公式的推导过程,理解体积计算公式。
3、培养学生动手拼摆能力,观察、归纳推理能力。
体积公式的推导过程、体积公式的应用。
体积公式的推导过程(每排个数、排数、层数和长方体长、宽、高之间的关系)。
学生分成2人小组,每组准备一些数量的小正方体、练习题单。
一、直接导入
师:前面我们学习了常用的体积单位,今天我们来探究长方体的体积求法。
板书:长方体的体积。
二、猜测、为学生指名探究方向
1、课件出示:一个长方体。师:你有什么方法能知道这个长方体的体积?
2、课件演示:把长方体切割成一个个的小正方体,数出每排个数、排数和层数;并用每排个数×排数×层数=总个数(即体积数)。
3、师:
(1)数小正方体个数的方法能解决所有的长方体体积问题吗?看来有必要得出一个求长方体体积的计算公式。
(2)猜测一下长方体的体积可能和长方体的什么有关?
4、课件演示,让学生理解长方体的体积与长方体的长宽高都有关系。
三、探究体积公式推导过程
1、师:接下来我们就一起用小正方体通过拼摆,来探究一下长方体的体积和长宽高之间到底有什么关系。
2、同桌合作:课件出示:合作要求:
(1)齐读要求。
(2)先摆,再观察,最后再填表。
3、学生动手操作,教师巡视指导。
4、全班交流:
(1)小组汇报结果。
(2)观察表格思考:你有什么发现?同桌先互说。
(3)全班交流发现。
结合学生的回答,观察一个摆好的长方体,理解每排个数、排数、层数和长宽高之间的对应关系。并多抽几个学生说说它们之间的关系。
5、师:你能推导出长方体的体积计算公式了吗?学生回答,教师适时板书:长方体的体积=长×宽×高;v=abh。
6、回顾刚才的推导过程,同桌互说。
7、及时练习:出示一个长方体的文具盒。
师:要求这个长方体文具盒的体积要知道什么条件?教师给出长宽高,学生计算,强调书写格式。
四、课堂练习
1、口算填表(见题单)。
2、小法官:
(1)两个体积相等的长方体,它们的长宽高一定相等。()
(2)一个长方体的长宽高都扩大到原来的2倍,它的体积就扩大到原来的2倍。()
3、建筑工地要挖一个长50米,宽30米,深50厘米的长方体土坑,一共要挖出多少方的土?(在工程中,1m3的土、沙、石等均简称“1方”)
4、考考你:下列长方体的体积各是多少立方厘米?(小正方体的棱长1厘米)(见题单)
五、小结下课
通过学习,你有什么收获?(方法和知识两个方面来说)板书:长方体的体积长方体所含体积单位的数量=每排个数×排数×层数;长方体的体积=长×宽×高;v=abh。
1、对推导过程的关键地方突出不够,即,每排个数、排数、层数与长方体的长宽高的关系理解说理不够,应该让学生多说,还可以通过课件演示一下。
2、教师语言还不够准确、精炼,提出的数学问题还可以更加准确具有指向性,对于关键地方的引导还不够合理。
3、应该板书出:1立方米=1方。加强学生对两个单位关系的理解。
4、本节课对于时间的安排差不多,比以前的课堂要合理得多,基本上是按照预定的时间完成的,这是我本节课最满意的地方。
长方体的体积教学设计北师大版篇十四
本节教学内容重视引导学生经历知识的探索过程,探索长方体体积的计算方法。首先安排了长方体体积和长方形面积的类比,由此启发学生猜测长方体的体积可能与长、宽、高有关,然后变化长方体的长、宽、高中的一个量,比较体积的变化,使学生体会到“长、宽相等时,越高体积越大”,“长、高相等时,越宽体积越大”,“宽高相等时,越长体积越大”。究竟长方体的体积与长、宽、高有什么关系呢?教材接着安排了操作活动,引导学生用小正方体摆不同的长方体,并记下长、宽、高等有关数据,通过观察,分析这些数据,发现长方体体积与长、宽、高的关系,逐步归纳出长方体体积的计算方法。
1、知识与技能目标:理解长方体体积公式的推导过程,掌握长方体和正方体体积的计算公式,计算长方体和正方体的体积。
2、过程与方法目标:提高学生实际操作能力,发展他们的空间观念。
3.情感态度与价值观目标:在活动中使学生体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
重点是理解长方体体积的推导过程,并能正确计算长方体的体积。难点是借助学生进行动手操作,探索的活动,对学生数学思维加以有效引导,进而发展他们的思维及空间观念。
一、教法:
二、学法:
本节课的教学,教师要从学生的兴趣入手,采用猜测—实验—验证的学习方法,组织学生进行实践操作活动,进而发现长方体体积与长、宽、高的关系,并能正确计算长方体的体积。
1、遵循“事物相互联系,发展变化”及“实践第一”的观点,以学生自学观察、操作、探索、交流为主要活动形式,让学生在教学活动中主动感知,体验,领悟,不仅使学生掌握知识,而且又培养他们的兴趣与能力。集中体现学生参与学习活动的主体性、广泛性、积极性。
2、要在教学中营造一个民主和谐愉悦的教学环境,体现教师作为教学活动的组织者、引导者、合作者的功能,体现教学活动的有序和高效。
3、课件设计要独具匠心,制作要科学合理,真正起到很好的教学辅助作用。
本节教学共分三个层次进行教学:
1、创设问题情境,激活经验。
2、操作实践探索,主动构建。
3、解决实际问题,拓展提升。
具体安排如下:
1、创设问题情境,教师呈现一个鼓鼓的书包和一个文具盒,让学生比较他们体积的大小。学生凭借已有生活经验随口可答。紧接着再出示大小差不多的长方体和正方体各一个,让学生比较它们的大小。此时,就会难以分辨,就会让学生体会到计算的必要性,引发学生对问题的思考,带者对问题的探索欲望进入本课。
2、让学生猜测长方体的体积与什么有关?学生尝试借助已有的知识经验猜一猜,给予学生猜测的机会,体现“大胆猜测,小心求证”的理念。
3、利用多媒体课件,动态演示变化长方体长、宽、高。通过让学生观察、比较,使学生感受到长方体的体积与长、宽、高都有关系。
4、教师追问“长方体体积与长、宽、高有关系,那么如何计算长方体体积呢?”让学生再次猜想,学生在后面的操作中不盲目进行。本环节设计用时分钟。
1、尝试操作,初步感知,师首先布置小组www.合作的任务:要求4人一组,用24个一立方厘米的小正方体来拼摆不同的长方体,并在表格中记录数据,完成表格,从而发现计算长方体体积的计算方法。
2、验证探索,抽象概括。这一次的活动,让学生任意拿一些一立方厘米的小正方体,摆一些长方体验证上面的结论是否正确。
3、迁移应用,拓展延伸。首先计算长方体的体积,然后归纳计算方法,再交流讨论如何计算正方体的体积,并与长方体计算公式加以区别。
本环节的设计,通过组织学生进行亲自动手操作的活动,让学生观察、分析、发现长方体的体积与长、宽、高的关系,归纳出长方体体积的计算方法,突破重难点。另外,在组织活动前,引导学生合理分工,活动中引导学生合作交流,活动后指导学生汇报交流,从而体现了“实践第一”的观点,达到操作活动的预定目的,最后又在探索长方体体积的计算方法的基础上,进一步探索正方体体积的计算公式,并通过交流、讨论,发现长方体与正方体在计算体积上的联系与区别。学生自主的探索,能有效的发展学生操作的能力。学生在体验的基础上交流,碰撞思维,拓展认识,更大程度的发展空间观念。
1、设计基础练习,深化学生对计算方法的掌握情况,又让学生体会长方体、正方体之间的联系,在填表的最后一列填出学生自己心里所想的长方体,给学生提供了想象机会,从而发展了形象思维能力。
2、设计练习“我会摆”,再次训练学生的操作技能,拓展学生的空间观念,为以后进一步学习圆柱、圆锥的体积作了铺垫。
长方体的体积教学设计北师大版篇十五
义务教育课程标准实验教科书数学五年级下册第三单元《长方体和正方体的体积》,教材41页42页。
学生已经探索并掌握长方形、正方形以及其他一些常见多边形的特征,并直观认识长方体和正方体的基础上进行教学的。从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。对常见平面图形特征及其周长、面积计算方法的探索,既为进一步探索长方体、正方体这样的立体图形的特征以及表面积、体积的计算方法奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也能为进一步学习其它立体图形打好基础。
2.培养学生实际操作能力,同时发展他们的空间观念;
3.在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
探索长方体体积的计算方法。
挂图,若干个1立方厘米小正方块
1立方厘米的正方体16块
一、创设情境,揭示课题
1、实物引入
上节课,我们认识了体积和体积单位,谁来说说什么是体积,体积单位有哪些呢?
根据学生回答,其他学生也动手摆。
如果再拼上一个1立方厘米的正方体,它的体积又是多少呢?(学生操作)。
再拼上一个1立方厘米的正方体,这个长方体就含有5个1立方厘米的正方体,它的体积就是5立方厘米。
2、揭示课题,可见要计量一个物体的体积,就要看这个物体含有多少个体积单位。今天我们就来学习怎样计算长方体和正方体的体积。(板书:长方体和正方体的体积)
二、猜想验证,探究新知
1、提出猜想
你能不能摆出一个长方体,并计算它的体积?出示表格。学生四人一小组,每组一张表格。
长宽 高正方体个数体积
长方体1
长方体2
长方体3
长方体4
请同学们一小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。
学生活动,师巡视。小组汇报?学生黑板前展示表格,并做详细汇报。 引导学生观察表格:观察表格中的数据,从中你能发现什么呢?通过观察比较,同学们有了一个大胆的猜想:长方体的体积等于它的长、宽、高的乘积。这个猜想是否正确呢?我们还要进一步研究。
(板书:)长方体的体积=长×宽×高。
2、验证猜想
用1立方厘米的正方体摆出下面的长方体,各需要多少个?先想一想,再摆一摆。
1、长4厘米,宽1厘米,高1厘米。
2、长4厘米、宽3厘米、高1厘米。
3、长4厘米、宽3厘米、高2厘米
那究竟对不对呢?让我们再来摆一摆。学生小组讨论,动手操作,师巡视。组织交流,课件出示拼摆后的图形。
你是怎么摆的?体积是多少?和我们之前的猜想一样吗?
7×4×3=84立方厘米,所以它的体积就是84立方厘米。
3、概括公式
v=abh
长、宽、高都相等的长方体就是什么图形?你能直接写出正方体的体积公式吗?把你的想法在小组里说一说。
学生汇报:
因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中长、宽、高都叫棱长,正方体的体积=棱长×棱长×棱长。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。
出示正方体,出示公式。
强调写的时候,3要写在a的右上角,并且要写的小一些。
小训练:完成例2,在练习本上完成,集体订正。
三、巩固应用
计算下面长方体和正方体的体积。
1、长9厘米、宽6厘米、高5厘米
2、长0.5米、宽2.5米、高0.8米
3、棱长6分米
四、课堂小结
这节课我们一起学习了长方体和正方体的体积计算,你都有哪些收获?
长方体的体积教学设计北师大版篇十六
北师大出版社小学数学教科书数学五年级下册第46—47页。
这一内容是在学生理解了体积的概念和体积单位的基础上进行教学的。由计算平面图形的面积扩展到研究立体图形的体积计算,是学生空间思维发展的一次飞跃。长方体、正方体的体积计算,是学生形成体积的概念、掌握体积的计量单位和以后计算各种形体体积的基础。
通过“猜想——动手操作验证——探究”的教学过程,学生们兴趣盎然的参与到教学活动的每一个环节当中。借助多媒体的教学手段。演示实验的过程,帮助学生建立空间观念,形成清晰的表现。
知识技能目标:
1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积。解决一些简单的实际问题。
2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。
过程与方法策略目标:通过“猜想——验证”的过程,形成发现、创新的过程。从而获取数学活动经验。
能力目标:培养学生动手操作、抽象概括、归纳推理的能力。
情感目标:激发学生学习数学、发现数学的兴趣,学会与人合作。
教学重点:使学生理解长方体的体积公式的的推导过程,掌握长方体体积的计算方法。
教学难点:理解长方体的体积公式的推导过程。
在本课的'教学中,让学生从生活实际需要中体会长方体的体积在生活中的应用,从而产生研究长方体体积的计算的需求,通过观察生活中的实物,发现长方体的体积与长宽高有关系,提出猜想,确定研究的方向。在学生以小组为单位,动手操作探究,来验证猜想的正确。使学生经历知识的建构的过程。通过解决生活中的实际问题,运用长方体体积计算的方法。体会数学运用于生活实际。
这节课的学习重点是:使学生理解并掌握长方体的体积公式,能正确计算。这节课的学习难点是:动手实验、发现长方体的体积公式。
(一)激发兴趣,唤起生活经验和旧知
课件出示:
1、字典是我们学习的工具书,必须要常备身边的,淘气遇到了这样的问题,他每天都要带一本字典,现在有两本内容同样的字典,他要选择其中的哪一本经常带在书包里比较方便呢?为什么?(小本的字典。体积小)
(二)唤起旧知
提出猜想
1、看一看下面的长方体的体积是多少?为什么?
体积是4立方厘米。为什么?因为他它含有4个1立方厘米的体积单位。
(1)我们已经知道,长方体的体积就是指长方体所含有的体积单位数。所以求长方体的体积就是求长方体所含有多少个这样的体积单位。下面我们运用1立方厘米的体积单位来研究长方体的体积计算方法。
(2)再加上这样的两排,这个长方体的体积是多少?你是怎么想的?
学生1:12立方厘米。追问怎么得到的?
学生2:一排是4立方厘米,3排就是4×3=12立方厘米。
(3)再加上这样的一层,这个长方体的体积是多少?你是怎么计算的?
一层是12立方厘米,2层就是12×2=24立方厘米这个长方体的长宽高分别是多少?学生1:24立方厘米。
学生2:长是4厘米,宽是3厘米,高是2厘米。
板书:体积
长
宽
高
24
猜想:
学生1:用计算公式。
学生2:与长宽高有关。因为表面积就与长宽高有关?
学生3:长方体的体积=长×宽×高?
(三)动手实践
验证猜想
1、这个猜想正确吗?下面就请同学们通过实验去验证我们的猜想是否正确。
(1)请同学们小组合作,用这些1立方厘米的小正方体木块拼成形状不同的长方体,每拼成一种就记录下它的长宽高和体积各是多少,然后计算出来验证刚才的猜想是否正确。
全班同学以小组为单位,进行分工,开始操作、计算、记录、思考、讨论。
引导学生全员参与公式的推导。明确小组学习的任务哪个小组愿意先汇报你们的研究过程和成果?(在实物投影上边摆边说)
第一组:把12个正方体木块摆成3排,每排2个,摆2层。这个长方体的长是2厘米,宽是3厘米,高是2厘米,体积是12立方厘米,我们认为猜想的公式是正确的。
第二组:把18个正方体木块摆成1排,每排6个,摆3层。这个长方体的长是6厘米,宽是1厘米,高是3厘米,体积是18立方厘米,我们认为猜想的公式是正确的。
第三组:把12个正方体木块摆成2排,每排6个,摆1层。这个长方体的长是6厘米,宽是2厘米,高是1厘米,体积是12立方厘米,我们认为猜想的公式是正确的。刚才老师把同学们的实验数据汇总了这张表,我们一起来观察。
2、发现总结长方体体积公式
(1)师问:每排的个数、每层的排数、层数与长宽高有什么关系?
生一:每排的个数相当于长,每层的排数相当于宽,层数相当于高。
生二:因为每排的个数、每层的排数、层数相乘就是体积,所以长方体的体积=长×宽×高。
师:体积怎么求?为什么?
学生们学会了总结长方体体积的计算方法。
(2)师:同学们真了不起,通过猜想、实验、验证总结出了长方体的体积计算公式,今后在学习上同样可以利用这种方法学习。
[意图:分小组学习,是学生主动理解学习过程、解决问题的重要途径。通过学生交流、师生交流,比较、分析实验过程,从而引导学生主动探索出长方体体积与长、宽、高的关系。
学生们通过自己探索,学会了一定的学习方法。]课件演示公式的推导过程。
(3)字母表示:长方体体积用v表示长用a表示,宽用b表示,高用h表示,长方体的体积公式用字母表示是v=a×b×h;=;abh。
3、长方体的体积计算公式的应用
学生1:长方体的体积=长×宽×高。全班动笔做一做。
(2)看立体图计算长方体的体积(只列式不计算)写在课堂作业本上。
长6分米,宽4分米,高3分米,求体积。长6厘米,宽6厘米,高5厘米,求体积。
(3)迁移推导,再次尝试
长6厘米,宽6米,高6米,求体积。
是什么立体图形?正方体。
说明理由:正方体是特殊的长方体。
(4)继续观察
阴影部分的面积是上面各个图形底面的面积,称为底面积。
长、正方体的体积=底面积×高v=s×h
(四)学以致用
巩固提高
1、判断(判断对错,说明理由)
(1)一个正方体的棱长是2米,它的体积是8立方米。()
(2)一个长方体的长30厘米,宽2分米,高5厘米,它的体积是30×2×5=500(立方厘米)。()
(3)一个棱长为6分米的正方体,它的表面积和体积相等。()
2、提高题
(1)一块砖的长是24厘米,宽是长的一半,厚是6厘米,它的体积是多少立方厘米?(只列式)
(2)一个正方体的棱长总和是36厘米,它的体积是多少?
3、实际应用
解:v=abh=2.9×1×14.7
=42.63(m3)
答:这块巨大的花岗岩石碑的体积是42.63立方米。
(2)有一种正方体形状的魔方,棱长是6厘米,体积是多少立方厘米?
v=a3=6×6×6
=216(cm3)
答:这种魔方的体积是216立方厘米。
4、发展题
一块不规则的石头,要求学生借助于两种工具:一个装有水的长方体容器,一把直尺,把这块不规则的石头的体积求出来,只要求说出自己的方法。
(五)谈谈你今天的收获
板书设计:
长方体的体积=长×宽×高
v=a×b×h
=abh
正方体的体积=棱长×棱长×棱长
v=a×a×a
=a3
长、正方体的体积=底面积×高
v=s×h教后记:
本课注重让学生从体验中学习,在体验中自我建构新知,在体验中掌握数学方法。努力为学生创设条件,让学生主动参与到发现数学知识的过程中。在整个活动中,教师很自然地向学生们渗透了科学研究的基本过程,引导学生们要通过猜想——操作——论证去发现一些客观规律。让学生在发现—验证—解释中体会数学,探究知识。学生们在教师的引导下通过猜测、动手操作、交流讨论发现了长方体的长、宽、高和体积之间的关系,总结出了计算长方体体积的公式。在这一过程中,学生不仅掌握了计算长方体体积的数学公式,还知道了应该如何独立思考,学会了与他人合作。在论证的过程中,同学们动手操作,分别派出各组的代表讲解各自验证的全过程,最终使全班同学达成共识,推导出了长方体的体积公式。通过多媒体的应用,使学生建立清晰的表象,增强了学生的空间想象能力。在从事数学活动的过程中获得了较为广泛的数学活动经验。在探索的过程中培养了学生的合作意识和创新精神。我想,把“如果”变为现实,转换一种角度更多地把学生的思维尽情地施放出来,可能得到的是一片蔚蓝的天空。