无盖长方体和正方体的表面积教学反思 长方体正方体的表面积教学反思(实用9篇)
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
无盖长方体和正方体的表面积教学反思篇一
出示例5:一个长方体玻璃鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少平方分米?(鱼缸的上面没有玻璃)
一起分析题意后,学生列式计算。
三种方法都交流完后,我本以为就到此为止了,但我班的数学课代表举手了,他说:“我还有方法”。
我一楞,心想,方法不是都讲完了吗?怎么还有?但我还是叫起了他,想让他说说。
他说:我从生3的方法上想到了一个更为简便的式子:(5+3)×3.5×2+5×3
咦?这不是把生3的式子运用乘法分配律而得到的吗?这个式子每一步会有具体的含义吗?
我一抛出这个问题,该生起初一楞,当时只顾着寻求不同的列式却没考虑意思,现在一时间回答不上来了。
但其余同学被他的思路启发后,思维一下子打开了。
一位学生解释道:底面先不看,如果沿着高将玻璃缸展开,会变成一个长方形,这个长方形的长就是原长方体长加宽的和的2倍,这个长方形的宽就是原长方体的高,所以这个长方形的面积就是(5+3)×3.5×2,再加上一个底面积,就可以列成(5+3)×3.5×2+5×3的式子了。
该学生解释,我配合着画图,在图形的帮助下,众学生豁然开朗。
[反思]多好的思路,多好的解释!我庆幸没为自己的卤莽而抹杀了一个创新的方法,我也为自己课前预设的不够周全而后悔。在之后的教学中,我发现用这种方法的地方有很多,如在教学完例5后的练一练的第1题:一个长方体饼干盒,长17厘米,宽11厘米,高22厘米。如果在它的侧面贴一圈商标纸,这张商标纸的面积至少有多少平方厘米?这道题也可以用(17+11)×2×22的方法来做,且比较简单。在今后的教学中,教师还得用心去细细研读教材,逐一分析每一道题,力求做到预设全方位。
无盖长方体和正方体的表面积教学反思篇二
在教学中要确立学生的主体地位,那么在教学中必定要注重学生经历学生研究的过程。在活动中,一方面要巩固学生所学的知识,另一方面要使得学生通过活动,根据所学的知识发现问题,让学生自己提出问题,猜测结果,同时教师进行适当引导。在整个活动过程中,要让每一个同学都参与这种研究学习的过程,通过本身的实践活动去寻求问题的答案,形成科学的世界观和价值观,利用本身所掌握的知识提高科学探究的能力。在《长方体和正方体的表面积》一课的教学中,我首先帮助学生回忆上节课的内容,提出相应的问题进行复习巩固,同时提出新问题——正方体的表面积是如何求解的?然后让学生根据所学的内容进行合理的猜测,并且举例证明观点是否正确,最后由我来归纳总结。设计探究问题:
1.你能根据表面积的概念说一下什么叫做正方体的表面积吗?
2.如何计算正方体的表面积?还进行全班讨论,正方体表面积计算方法和长方体表面积计算方法的区别与联系。通过这种研究性的探讨以及对比的方式,教好地完成了教学任务。学生从本质上理解了表面积的概念而且学会了如何根据实际情况求解长方体某几个面的面积之和,使得学生真正融入到课堂的教学中,体现本身的学习自主地位和主人翁感。
在制作鱼缸的问题中,首先帮助学生回忆生活中的实物,然后出示简易模型进行教学。先问学生鱼缸有没有盖子,接着启发学生猜想如何计算制作鱼缸所需材料的面积数量,从而引出问题,将学生的注意力集中在如何求解长方体某几个面的面积之和的问题上来,这就激发了学生的求知、探索欲望。通过教学引导发现问题后,利用事实为依据,和学生一起解决问题。让学生经历一系列的探讨研究过程,从不同角度发现问题。同时提出新的问题,让学生带着问题离开教室,对数学的学习保持一种新鲜感和神秘感。
改变题目的要求,发现新问题,全班讨论。经过多位同学叙述,他们便发现某些同学的认识是片面的,所叙述的内容是不完整的,所以结论不完全正确。要想得到全面正确的结论,就要用充分的事实来说话,资料这样才能得到正确的结论。针对某些典型的错误观点可以进行讨论,推翻,说出问题的结果和原来预测的不同点(区别),然后和学生一起总结,加深印象。同时正确评估学生的观点,通过练习,巩固新旧知识,思考与讨论问题的答案,大胆的进行猜测,做好记录,最后归纳要点或者规律。新课程强调:教师是科学学习活动的组织者、引领者和亲密的伙伴。我遵循这些理念开展以引导、合作、探究的学习方式进行教学,探究气氛也更活跃,学生的科学探究能力有了一定提高。
无盖长方体和正方体的表面积教学反思篇三
本课是在学生认识掌握了长方体和正方体特征的基础上教学的。教学的难点在于,学生往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过看一看,摸一摸等来认识概念,理解概念。
首先让每个学生准备一个长方体纸盒,把纸盒沿着棱剪开(纸盒粘接处多余的部分要剪掉),再展开,让学生注意展开前长方体的每个面,在展开后是哪个面。为了便于对照,让学生在展开后的每个面上,分别用“上”、“下”、“前”、“后”、“左”“右”标明他们分别是原来长方体的哪个面。然后,提问:长方体有几个面?哪些面的面积是相等的?引导学生联系长方体的特征回答。这里关键是根据长方体的长、宽、高,正确的判断每个面的长和宽应该是多少。让学生按照上、下、前、后、左、右的顺序,依次说出每个面的面积怎样算的。
我在设计《长方体和正方体的表面积》这节课时,主要是沿着什么是长方体的表面积——怎样求长方体的表面积——为什么求长方体的表面积这样一条线来安排教学的。在教学实践中,我发现对教材的深度钻研和对学生的预设显得尤为重要。课前在预设学生求长方体的表面积时,我只考虑到学生可能会出现三种情况:一个面一个面的面积依次相加;二个面二个面的一对对相加;先求出三个面的面积再乘以2;还可以把侧面的四个面展开看成一个长方形求面积,再加上上下两个面的面积的巧妙方法却没有考虑到。实际生成时,学生只说出了其中的一种简便情况,通过引导学生能找出其他的方法。对于长方体、正方体表面积公式的归纳,学生和我也只总结出了文字公式,还应简化成字母公式,便于记忆和书写。
实践表明,只有深入研究、充分预设的课堂教学才能使不同学生得到不同的发展,才可能出现意外的惊喜和美丽的风景。以后教学中我将在课前加大研讨、分析力度,提高课堂教学实效性。
无盖长方体和正方体的表面积教学反思篇四
上完本课以后总结出本课的下列特点:
1、教学层次清晰。不论是复习,还是练习,都由易到难,逐步递进。而练习的设计也是注意坡度,层层深入。
2、在复习长方体和正方体的表面积的同时,能提前渗透表面积的变化的相关知识,为后续学习做好孕伏。
3、练习设计特色鲜明。例如,在计算横截面是正方形的长方体通风管的侧面积时,不满足于先计算一个长方形的面积,再计算四个长方形的面积,以求出长方体通风管侧面积的方法,而是继续引导学生把长方体展开成长方形,通过计算长方形的面积,求出通风管的侧面积。加强立体图形与平面图形的联系,进一步发展学生的空间想象能力。
本课存在的`问题是练习设计的综合性不够。长方体和正方体的表面积的练习课,可以综合考虑底面积、侧面积与表面积的联系,设计练习题应融汇旧知与新知,形成知识体系。也需要通过改变题目中长、宽、高的单位名称,以提醒学生认真审题,先统一单位名称,再列式计算。总之,一道题目的设计要同时兼顾多个知识点,使每道题目的效益发挥到最大程度。
文档为doc格式
无盖长方体和正方体的表面积教学反思篇五
在教学《长方体和正方体的表面积》时,我首先让学生仔细观察手中的`长方体,然后让学生认真思考长方体各个面的面积与长方体的长、宽、高之间的关系,从而让学生知道:
前、后面=长×高×2;
左、右面=宽×高×2;
上、下面=长×宽×2。
长方体表面积的计算公式:
方法(一):s=长×高×2+宽×高×2+长×宽×2
方法(二):s=(长×高+宽×高+长×宽)×2
s=棱长×棱长×6
在计算长方体和正方体表面积时,要考虑到以下几种情况:
1、 完整的(六个面都有)长方体或正方体
这种类型的题目,直接套用表面积计算公式即可。
2、 无底或无盖的长方体或正方体(如粉刷教室、鱼缸、游泳池等的表面积)
这种类型的题目,首先要看清楚要计算的是哪几个面,然后再进行解答。
公式:s=长×高×2+宽×高×2+长×宽
3、 求长方体或正方体四周的表面积
它指的是长方体或正方体周围四个面(即前面、后面、左面、右面)的表面积。
公式:s=长×高×2+宽×高×2
总体说来,这部分知识只要掌握了长方体和正方体的表面积及计算方法,对于学生们来说是很容易的。学习困难的学生在教师的指导下,也能学得很不错。表面积的计算公式,同学们也能做到运用自如。但中间还是出现了一些问题,比较严重的就是学生的计算能力不强,导致解题过程中出现了不少错误。今后,我需要在这一方面采取一些措施,如通过小组竞争等方式来提高同学们计算的准确性。
无盖长方体和正方体的表面积教学反思篇六
长方体和正方体的表面积这部分内容,是第十册北师大教材第二单元长方体(一)的一个重点,也是难点。它是在学生认识掌握了长方体和正方体特征的基础上教学的。教学的难点在于,学生往往因不能根据给出的.长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过看一看,摸一摸等来认识概念,理解概念。
首先让每个学生准备一个长方体纸盒,把纸盒沿着棱剪开(纸盒粘接处多余的部分要剪掉),再展开,让学生注意展开前长方体的每个面,在展开后是哪个面。为了便于对照,让学生在展开后的每个面上,分别用“上”、“下”、“前”、“后”、“左”“右”标明他们分别是原来长方体的哪个面。然后,提问:长方体有几个面?哪些面的面积是相等的?引导学生联系长方体的特征回答。这里关键是根据长方体的长、宽、高,正确的判断每个面的长和宽应该是多少。让学生按照上、下、前、后、左、右的顺序,依次说出每个面的面积怎样算的。
我在设计《长方体和正方体的表面积》这节课时,主要是沿着什么是长方体的表面积
无盖长方体和正方体的表面积教学反思篇七
立体图形的研究和学习可以充分发展学生的空间思维能力和想象力,而动手操作更能帮助学生直观的理解知识。
在《长方体和正方体的表面积》这节课的教学上,我首先让学生用自制的长方体和正方体模型,通过交流讨论,明确了长方体的表面积其实就是求六个面的面积和。在第一节的知识经验上,学生已经知道长方体六个面可以分成三对,每对的两个面都相等。在此基础上,学生独立完成例题的解答,学习兴趣很高,很快就得出了长方体表面积的计算方法。最后通过交流,学生们除了得出两种计算方法外,还得出了特殊的.长方体的表面积计算方法,即有一对面是正方形的长方体的表面积计算方法。接下来,独立思考并得出正方体的表面积计算方法就水到渠成了。学生真正融入到课堂的教学中,体现本身的学习自主地位和主人翁感。
最后,让学生同桌交流,发言总结出本节课的知识要点,经过多位同学叙述,归纳出要点和规律。
教师是学习活动的组织者、引领者和亲密的伙伴。以引导、合作、探究的学习方式进行教学,探究气氛也更活跃,学生的探究能力有了一定提高。
文档为doc格式
无盖长方体和正方体的表面积教学反思篇八
考虑到长方体和正方体各个面的认识是探究长方体和正方体表面积计算方法的基础,结合学生家作中集中出现的问题,我把练习二第1、2两题作为预习作业让学生独立完成,重点要求学生搞清楚长方体各个面的长、宽和长方体的长、宽、高之间的对应关系,同时渗透长方体和正方体的表面积的计算方法:长方体的六个面可以根据面积的大小分成三组,每组两个面面积相等;也可以把长方体的六个面分成两组,把面积不相等的前面、左面和上面作为一组,后面、右面和下面作为另一组。
课堂上我把练习二第1题作重点交流,指名学生上来指出计算每个面的面积时到底是看哪两条棱的长度。然后抛出例题解答“做纸盒要用多少硬纸板”,引出表面积计算的需求,再引导学生通过对自己所列的算式深入解读,掌握长方体和正方体的表面积的计算方法。
本节课大部分学生都能熟练掌握计算长方体和正方体表面积的方法,最大的遗憾来自于填表题,有一部分学生脱离了图形就不会思考了,但还有更多的学生在计算上存在很多问题,虽说长方体的表面积计算是有些繁琐,但既然方法懂了,只要细致一点,计算结果的错误完全可以大大减少。
无盖长方体和正方体的表面积教学反思篇九
我设计这节课时,主要是沿着什么是长方体的表面积——怎样求长方体的表面积——为什么求长方体的表面积,这样一条线来安排教学。
我认为,对于长方体的表面积,最关键的不是“什么是长方体的表面积”,也不是“怎样求长方体的表面积”,更不是“为什么求长方体表面积”,而是“每一个面的长和宽分别是长方体的长、宽、高中的哪一个”。因为,如果学生弄不清楚这一点,那么他就没有办法理解求长方体表面积的方法,弄懂了这一点,后面的求表面积的方法也就是水到渠成的事了。所以,我把这一课的重点放在了这里。在学生知道了长方体的表面积就是六个面的总面积之后,让学生自主标出长方体的“上,下,左,右,前,后”六个面,然后小组合作探究“每个面都是什么形,求每个面的面积怎么求?每个面的长和宽分是原来长方体的什么?”并记录在纸上。经过小组的合作,对于这一点学生理解得很充分。在学生汇报之后,再让学生小组共同研究长方体表面积的求法,并要求,看谁能想出不同的方法。学生兴趣高涨,不一会就研究出了各种解法:一个面一个面的加;用前(后)面面积乘二加上左(右)面面积乘二再加上上(下)面面积乘二;上(下)面面积加前(后)面面积加左(右)面面积的和乘二。还有的学生考虑到了特殊情况,两个面是正方形的,用上面面积乘四加上左面面积乘二。虽然还有的方法没想到,但是这些方法我觉得已经足矣。
实践表明,我这样是正确的,我班学生对表面积这一块理解掌握比较好,即使是后三分之一学生也大部分掌握了它的求法。所以,深深的觉得,每一节数学课,抓住难点,抓住重点,是十分关键且必要的,通常会起到事半功倍。