平均数教学设计课时二(通用16篇)
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
平均数教学设计课时二篇一
教学内容:体会平均数
教学目标:
1.结合具体事例,经历认识平均数、求平均数以及讨论平均数意义的过程。2.初步体会平均数的作用,能计算平均数,了解平均数的实际意义。3.通过创设情境和学生自主探究,掌握求平均数的方法。
4.能正确、全面看待问题,同时学会与他人合作交流,培养积极地数学学习情感。
学情分析:
一、情境导入 教师出示课件
师:你们喜欢运动吗?你最喜欢哪种运动?四(1)班的孩子也很爱运动,他们将进行踢毽子比赛,请你们来当裁判。
比总数,再引导看一般水平,女生每人6个,女生的一般水平就是6个。男生每人7个,男生的一般水平就是7,男生的一般水平比女生高。女生敢不敢再赛一场,让我们快来看看第二轮成绩。各位裁判,这一场,谁赢了?你怎么想的? 女生:6+9+7+6=28 男生:10+4+7+5=26 在黑板上列式。
这一场女生胜利了。这一组一个请病假的男同学来上学了,正好赶上了这场比赛,他也要参加,你们同意吗?说说你们的看法。
四(1)班的女生商量了一下,同意了,看到成绩后,就得意地笑了。女生为什么会得意地笑了?女生总共28个,男生总共30个呀? 生:因为人数不相等,比总数不公平,比的是一般水平。
6、9、7、6个,平均每人踢几个?怎么变得每人一样多呢?
男生
10、4、7、5、4,平均每人踢几个?怎么变得每人一样多呢? 和同桌讨论。汇报。
师小结:平均数常用来反映一组数据的一般情况和平均水平,是指在一组数据中所有数据之和再除以这组数据的个数。
二、巩固新知 谈谈对平均数的理解 生活中你有听过哪些平均数?
老师也收集了一些平均数的信息,咱们来看看。例子1:903路公交车,乘客平均等候时间是10分钟。例子2:长沙黄花国际机场2020年日均起降700架次飞机。
学生谈自己的理解。
讨论:水塘平均水深110厘米,小明130厘米,下河游泳会不会有危险。北京自然博物馆门票信息,估平均数,求平均数。谈建议。
三、拓展
如果男生再加一人参加比赛,这名队员踢几个就能和女生打平手? 思考并汇报。
四、课堂
总结
谈谈收获。作业:书93页第1、2、3题。 板书:
移多补少
同样多
一般水平
求和平分
平均数教学设计课时二篇二
《平均数》是人教版课标版小学数学三年级下册第三单元的内容。我在教学这节课时,刚好看到《小学教学》杂志上刊登了“数学王子”张齐华老师的关于《平均数》一课的课堂实录与报告,我非常兴奋,并尝试运用张老师的思路上了这节课,效果非常好。因此,今天的说课,我就选择了这节内容来和大家交流。
我直接从教学过程说起,并顺便结合教学中的各个环节来阐述我的教学方法和其蕴含的教学思想,以及所达到的教学目标。
1、出示李强3次投篮的成绩:5个、5个、5个。
问:可以用哪个数表示小强一分钟投篮的水平?
2、出示万林3次投篮的成绩:3个、5个、4个。
问:可以用哪个数表示小林一分钟的投篮水平?为什么?(在学生回答的基础上,多媒体演示“移多补少”的过程。)
3、出示王鹏3次投篮的成绩;3个、7个、2个。
问:可以用哪个数表示王鹏一分钟投篮的水平?还可以怎么求出这个数来?
这里,我把李强的成绩设定为3个“5”,让学生很自然地想到用“5”表示小强一分钟的投篮水平,然后让第二个出场的万林设出3个不一样的成绩,制造认识冲突,引发学生想出“移多补少”求平均数的想法,并通过多媒体动画演示,给学生比较直观的表象,强化学生的认知。最后再给出一组不同的数据,巩固“移多补少”求平均数的想法,并追问“还可以怎么想”,逼学生想出求平均数一般方法来,即“先合并再均分”,并板书在黑板上。
完成板书后,教师适时进行点评总结,告诉学生:“这种通过‘移多补少’或‘先合并再均分’得到的同样多的这个数,就叫做原来几个数的平均数。”并连续几个追问:“4”能代表王鹏第一次、第二次、第三次投中的个数吗?它究竟代表什么?最终,让学生体会到,平均数不能代表其中的每一个数据,它只是表示一组数据的`总体水平(板书)。
至此,在直观演示、板书算式、连续追问,课前设定的知识与技能目标:让学生理解平均数的含义,掌握求平均数的一般方法,已经基本达成。
1、三个学生完成比赛后,该老师出场了,我故意卖个关子说:
2、在学生多次猜测后,老师出示第4次投篮成绩:1个,然后问:
请估计一下老师最后的平均成绩是几个?你为什么不估计为6个或1个?
3、试想一下,如果老师最后一次投5个、投9个的话,平均成绩会是多少?可以动手算一算。
4、多媒体出示3个统计图:问:认真观察,你发现了什么?
“学以致用”是教学的一个重要目标。因此,每学一点新知识,我们都应该安排一些恰当的问题情境,让学生运用学习到的新知识去尝试解决问题,达到“学以致用”目的。我设计的练习以下几项:
4、生活中,哪些地方还用到了平均数?它们各代表什么?
数学来源于生活,最终还要运用到生活当中去,我设计的这几个问题,旨在让学生学会用数学的眼光去观察、思考、进而解决生活的问题,让学生感受到数学是和我们的生活密切相关的,而且我们学习的数学是生动的,有价值的。
文档为doc格式
平均数教学设计课时二篇三
苏教版《义务教育课程标准实验教科书数学》三年级(下册)第92~94页。
【教学目标】
1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和思考体会平均数的意义,学会并能灵活运用方法求简单数据的平均数(结果是整数)。
2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
3.进一步发展学生的思维能力,增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。
【教具、学具准备】
教具:课件、男女生套圈成绩图。
学具:每四位学生一副男女生套圈成绩学具板。
【教学过程】
一、创设情境,激趣导入。
谈话:很多同学都知道套圈游戏,一起来看。(媒体出示:三年级一班的男女生进行套圈比赛,每人套15个圈。下面的统计图表示他们套中的个数。)想请大家来当裁判,愿意吗?可要比比哪个裁判最公正哦!
二、合作探索,解决问题。
(一)两队人数相同,每人套中的个数不同。
学生回答后教师相机引导并小结。
(二)两队人数不同,每队中每人套中的个数相同。
结合媒体演示小结。
(三)两队人数不同,每人套中的个数也不完全相同。
1.提出问题,自主探究。
出示第三小组的套圈成绩图(例题),引导比较,得出与第二小组套圈成绩图的异同。
小小组四位同学利用学具板探索解决问题的方法,教师巡视。全班交流比的结果。
指出:其实,象这样移了以后再比,是分别求出了男、女生平均每人套中的个数再去比的。结合电脑演示教师讲解揭示平均数的含义。
2.提问:你还能用其他方法求出男生平均每人套中了几个吗?女生呢?
指名列式并说说想法。
3.理解平均数的意义。
谈话引导学生观察、比较,加深对平均数意义的理解。
4.小结。
三、巩固深化,拓展应用
1.辨一辨、说一说。
2.移一移、估一估、算一算。
(1)“想想做做”第1题。
(2)“想想做做”第2题。
(三条丝带的长度分别改成6厘米、44厘米、13厘米。)
3.想一想,选一选。
平均数教学设计课时二篇四
《平均数》是人教版课标版小学数学三年级下册第三单元的内容。我在教学这节课时,刚好看到《小学教学》杂志上刊登了“数学王子”张齐华老师的关于《平均数》一课的课堂实录与报告,我非常兴奋,并尝试运用张老师的思路上了这节课,效果非常好。因此,今天的说课,我就选择了这节内容来和大家交流。
我直接从教学过程说起,并顺便结合教学中的各个环节来阐述我的教学方法和其蕴含的教学思想,以及所达到的教学目标。
1、出示李强3次投篮的成绩:5个、5个、5个。
问:可以用哪个数表示小强一分钟投篮的水平?
2、出示万林3次投篮的成绩:3个、5个、4个。
问:可以用哪个数表示小林一分钟的投篮水平?为什么?(在学生回答的基础上,多媒体演示“移多补少”的过程。)
3、出示王鹏3次投篮的成绩;3个、7个、2个。
问:可以用哪个数表示王鹏一分钟投篮的水平?还可以怎么求出这个数来?
这里,我把李强的成绩设定为3个“5”,让学生很自然地想到用“5”表示小强一分钟的投篮水平,然后让第二个出场的万林设出3个不一样的成绩,制造认识冲突,引发学生想出“移多补少”求平均数的想法,并通过多媒体动画演示,给学生比较直观的表象,强化学生的认知。最后再给出一组不同的数据,巩固“移多补少”求平均数的想法,并追问“还可以怎么想”,逼学生想出求平均数一般方法来,即“先合并再均分”,并板书在黑板上。
完成板书后,教师适时进行点评总结,告诉学生:“这种通过‘移多补少’或‘先合并再均分’得到的同样多的这个数,就叫做原来几个数的平均数。”并连续几个追问:“4”能代表王鹏第一次、第二次、第三次投中的个数吗?它究竟代表什么?最终,让学生体会到,平均数不能代表其中的每一个数据,它只是表示一组数据的总体水平(板书)。
至此,在直观演示、板书算式、连续追问,课前设定的知识与技能目标:让学生理解平均数的含义,掌握求平均数的一般方法,已经基本达成。
1、三个学生完成比赛后,该老师出场了,我故意卖个关子说:
2、在学生多次猜测后,老师出示第4次投篮成绩:1个,然后问:
请估计一下老师最后的平均成绩是几个?你为什么不估计为6个或1个?
3、试想一下,如果老师最后一次投5个、投9个的话,平均成绩会是多少?可以动手算一算。
4、多媒体出示3个统计图:问:认真观察,你发现了什么?
“学以致用”是教学的一个重要目标。因此,每学一点新知识,我们都应该安排一些恰当的问题情境,让学生运用学习到的新知识去尝试解决问题,达到“学以致用”目的。我设计的练习以下几项:
4、生活中,哪些地方还用到了平均数?它们各代表什么?
数学来源于生活,最终还要运用到生活当中去,我设计的这几个问题,旨在让学生学会用数学的眼光去观察、思考、进而解决生活的问题,让学生感受到数学是和我们的生活密切相关的,而且我们学习的数学是生动的,有价值的。
平均数教学设计课时二篇五
教学目标:
1、使学生在丰富的具体问题情境中,感受平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数。)
2、使学生在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
3、使学生进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,树立学习数学的信心。
教学重点:体会平均数的意义,掌握求平均数的方法。
教学难点:理解平均数的意义。
教学过程:
一、创设情境,提出问题
1、同学们,喜欢玩套圈游戏吗?前几天我校三(1)班举行了套圈比赛,想不想去看看?
2、(课件)师说:现在是第一小组的男女生进行比赛,每个人套15个圈。第一场单人赛开始了,男生一号队员进场(音乐,情境。)他套中几个?(7)再来看女生1号队员,(音乐。)套中几个?(4)这场比赛几个男生?几个女生?谁套得准一些?男同学为我们男生鼓鼓掌。再来看第二场双人赛,(比赛的音乐)四人同时走出来,同时套,这次比赛,几个男生?几个女生?谁套得准一些?为什么?(7+2=98+5=13)女同学为我们女生鼓鼓掌。第三场团体比赛开始了,哇,来了这么多同学,男生有几个人?女生有几个人?谁获胜?谁先说就先鼓掌。鼓掌完了问:你们男生有没有意见?有意见。(如果学生说因为,老师赶紧引过来你直接告诉大家你有没有意见?你认为哪个队获胜?)看来这场比赛情况比较复杂,怎样可以知道哪个队获胜呢?这就是我们今天要研究的内容。(三次比赛的数据不能一样。)(套圈图淡去,统计图渐出。)
平均数教学设计课时二篇六
以往对于平均数的概念引入,比较典型的是组织两组人数不等的比赛,在学生初步体会到比总数不公平的前提下,顺利过渡到比平均数的环节上来。而张齐华老师的“平均数”一课,从比投篮技术的情境引入:首先出场的是小强,他1分钟投中5个球,可是他对这一成绩似乎并不满意,觉得好像没有发挥出自己的真实水平,想再投两次。如果你是张老师,会同意他的要求吗?这样使学时体会到由于随机误差的存在而使得一次投球的成绩很难代表小强的真实水平,应该再给他两次机会。小强又投了两次,很巧的是后两次投篮成绩都是5个,显然是张老师精心设计的,使学生意识到用5来表示小强1分钟投中的个数最合适,避免了学生不会计算平均数的尴尬。接着小林出场,小林第一次只投中了3个球,“如果你是小林,会就这样结束吗?”从而自然引出第二组数据:3个、5个、4个。可是也引出了麻烦:三次成绩各不相同。这一回,又该怎么办?在学生思维的碰撞中,发现也用5来表示小林的成绩显然对小强来说是不公平的,学生凭直觉认为4最能代表小林1分钟的成绩,这样平均数的意义悄悄地被学生自己发现了。
张老师精巧的设计,再加上他灵活、智慧地处理生成,是课堂充满生机与活力,使我受益颇多。
平均数教学设计课时二篇七
1、结合解决问题的过程,初步认识平均数,体会平均数的必要性。
2、能读懂简单的统计图表,并能根据统计图表解决一些简单的实际问题。
3、在具体的情境中培养学生合作交流的能力,并能根据情况进行合理推测。
理解平均数的意义,学会计算简单数据的平均数。
三感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考,体会平均数的意义。
1、创设情境,体验产生平均数的必要性。
我们一起来看看比赛情况。
出示两幅统计图:这是男生队和女生队每个人在相同时间内投中球情况统计图。(0表示投中一个)
a、观察统计图,根据比赛情况,你认为哪队的投球水平高一些?说说你的想法。
学生讨论比总数——每队总人数不相同,不公平
比最多的——个人水平,不是整队水平
b、到底怎样比才公平地体现两队的实力(投球水平)呢?
(平均每人投中多少个球)——实际就是每队队员投球的平均数
揭题板书——认识平均数
2、认识平均数
a、同桌合作完成
b、反馈:哪队赢了?你是用什么方法研究出来的'?
a、移一移,学生板演,其他生观察:在移的过程中,什么变了,什么没变?
每人投球个数变了
每队的总个数不变
(每队内部的个数调整,不影响整个队的实力)
刚才同学们用移多补少的方法求出了男生队投球的平均数是5,女生队投球的平均数是6,从而认为女生队投球的实力比男生队强一些。
还有别的方法吗?
c、算一算,(7+3+5+9)/4=6(个) (4+7+5+4+5)/5=5(个)
(1)、算式中的数都表示什么意思?
(2)、比较平均数,谁赢了?
比较两种方法,你喜欢哪一种?为什么?
小结:当数字比较小又接近的时候我们用移多补少更简便,
当数字比较大而复杂的时候我们用计算的方法更为简单。
3、理解平均数的意义
(1)、仔细观察女生队每人的投球数,和平均数相比,你发现了什么?
有的比5大――可能相等或不相等
有的比5小――
(2)、同样都是“5”,它们所表示的意义相同吗?
是个体的投球水平
是整个队的总体投球水
4、其实,我们身边也有许多平均数,你能举个例子吗?
昨天、我从咱们班第一横排中选5个同学,了解了他们的身高,一起来看看吧。
(1)、出示身高计表
同学12345
身高cm131136134132137
(2)、估计:他们的平均身高大约是多少?你是怎么估算的?
145cm、130cm可以吗?最小数平均数最大数
(3)、算一算他们的平均身高(计算方法)
平均数134cm和表格中的134cm有什么不同?(5个人的整体的身高状况、3号个人的实际身高)
小结:看来平均数的作用真大,它不仅让我们了解了一个小整体的状况,还能根据小整体的状况推测出大整体的状况。
2、小熊商店
(1)、出示统计图,你知道了什么?
(2)、求出前三周的平均数
(3)、预测一下第四周进几箱?
淘气身高1.3米,不会游泳,到平均水深0.8米的小河洗澡,有危险吗?
这堂课你学得开心吗?有什么收获吗?
平均数教学设计课时二篇八
教学目标:
1、在具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。
2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
3、进一步增强与他人交流的意识与能力,体会运用已学的统计知识解决问题的乐趣,建立学习数学的信心。
教学重难点:
理解平均数的意义,学会求简单数据的平均数。
教学过程:
1.呈现套圈情境。
2.收集整理数据。
多媒体依次演示4个男生和5个女生套圈比赛情况,最后将每个选手卡通像与其套圈结果“定格”组合成一个画面。要求学生根据男、女生套圈成绩,小组合作利用小方块完成统计图(每小组中男生合作完成男生队成绩的统计,女生合作完成女生队成绩的统计)。
3.引入平均数。
出示男、女生套圈成绩统计图。提问:看了这里的统计图,你发现了什么?要比较哪一队套得准,你准备从哪个方面去比较?结合学生的想法,适时进行引导。想法一:因为吴焱套中的个数最多,所以女生队套得准(比最多)。追问:用一个人的成绩代表整个队的成绩,这样合适吗?想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?可以怎么办呢?想法三:先要求出两个队平均每人套中了多少个,再比较哪个队套得准(比平均数)。追问:这样比公平吗?(公平)我们就用这种方法试一试。(板书:平均)
4.理解平均数。操作:男生平均每人套中多少个呢?女生平均每人套中多少个呢?下面请同学们仔细观察自己面前的统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。提问:怎样求男生平均每人套中的个数?学生可能出现两种方法:一是移多补少;二是先合后分。反馈时,先让学生在实物投影上边操作,边讲解移多补少的过程,教师利用课件动态演示。再让学生说一说怎样用先合后分的方法求平均数(课件动态演示:将统计图中的涂色方块合并起来,再平均分成4份),并引导列式:6+9+7+6=28(个),28÷4=7(个)。
谈话:请大家看男生套圈成绩统计图(用红色线条标出平均数,并不断闪烁),图中闪烁的红色线条表示什么?根据学生回答,在前面板书的“平均”后面添上“数“。
观察:图中的平均数与实际每人套中的个数相比,你发现了什么?(平均数比最大的数小,比最小的数大??)多媒体闪烁平均数的取值范围。
我们一起玩闯关游戏好吗?
1、挑战第一关“走进生活”平均数能为我们解决生活中的问题。
(2)想想做做第2题。小丽有这样的3条丝带,这3条丝带的平均长度是多少?请你先估计一下这3条丝带的平均长度是多少?在哪两个数之间?然后学生独立练习,集体校对。
2、挑战第二关“明辨是非”
(1)一条小河平均水深1米,小强身高1.2米,他不会游泳,但他下河玩耍池肯定安全。()
(2)大泗学校全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。()
(3)学校排球队队员的平均身高是160厘米,李强是学校排球队队员,他的身高不可能是155厘米。()
(4)学校篮球队可能有身高超过160厘米的队员。()
3、挑战第三关:“合情推测”四(2)班第一小组同学身高情况统计表
学号12345
身高(厘米)132134136140142
(1)明明算了他们的平均身高是143厘米,不计算,你能不能知道他算得对不对?
(2)星星公园规定:购买团体票时平均身高不足140厘米的学生可享受七折优惠。如果第一小组同学集体去玩能享受优惠吗?不计算你能知道结果吗?说出你的想法。
今天我们认识了新朋友“平均数”,你想对它说些什么赞美之词呢?
教后反思:
本节课我从学生的现实生活出发,极力选取学生身边的事例,使生活素材贯串于整个教学的始终,注意将数学与学生生活紧密相连,遵循了数学源于生活、寓于生活、用于生活的理念。通过数学教学,实现了数学的应用价值。
具体地说有以下几个特点:
1.紧密联系学生生活实际,使数学问题生活化。心理学研究表明:当学习的内容与学生熟悉的生活背景越贴近,学生自觉接纳的程度就越高。课一开始,就设计了一个情境,出示学生熟悉的套圈游戏以此来切入主题。这样做使学生感到所学内容不再是简单枯燥的.数学,而是非常有趣、富有亲近感,他们被浓厚的生活气息所感动,兴致勃勃地投入到新课的学习之中。
2.充分保障学生自主探索的时间与空间,把学习的自主权与选择权交给学生。《数学课程标准》指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式”,数学教学要努力改变单一的、被动的学习方式,建立和形成有利于发挥学生主体性的多样化的学习方式,促进学生在教师指导下主动地富有个性地学习。要让学生自主探索,在教学中教师要结合教学内容设计出具有开放性的、探索性的数学问题,给学生创设自主探索学习的情境,使之在开放问题的情境下积极主动地进行探索,使数学教学更加丰富多彩,学生学得更加生动、活泼,实现促进学生全面发展的目的。掌握求平均数的方法是本课的重点,学生只有掌握了求平均数的方法,才会解决生活中的求平均数的问题。因此,在这一环节的教学中,让学生自主动手操作学具,在小组合作、探索的过程中,找出求平均数的方法。这样,学生有了学习的自主权和选择权,他们的积极性与创造性得到了充分的发挥。
3、较好的渗透了数学思想和方法。如:在计算平均数前让学生利用平均数的意义进行估计,渗透估算的思想,即培养学生的估算能力又加深了对平均数的理解。总之,本节课较好地体现了教师主导和学生主体作用的和谐统一,实现了数学思想与数学方法的有机结合,符合素质教育要求,较好地达到了创新教育的目的。
平均数教学设计课时二篇九
1、在具体问题情境中,感受求平均数的需要,通过操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。
2、能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
3、进一步增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。
理解平均数的意义,学会求简单数据的平均数。
理解平均数的意义。
多媒体课件,作业纸。
一、谈话导入
谈话:同学们,你们喜欢玩游戏吗?你们经常玩些什么游戏呢?
追问:图上的小朋友们再玩什么游戏啊?(套圈游戏)
二、创设情境,自主探索
1、呈现套圈情境。
多媒体演示“套圈比赛”的场景。
谈话:这是三年级第一小队正在进行的套圈比赛,一队是男生,另一队是女生。比赛规则是每人套15个圈。
2、引入平均数。
出示男、女生套圈成绩统计图。
谈话:老师已经分别把男、女生的套圈成绩制成了统计图。看。
提问:看了这两张统计图,你知道了什么?
主要引导学生读出男女生每人的套圈个数。
提问:根据这两张统计图,你能提出一些什么问题呢?
谈话:男女生套完圈以后,他们想要知道到底是男生套得准一些还是女生套得准一些,想请我们的同学做小裁判帮帮他们,你们有什么方法去比较呢?先请小组4人交流一下。
结合学生的想法,相机进行引导。
想法一:因为吴燕套中的个数最多,所以女生队套得准(比最多)。
追问:用一个人的成绩代表整个队的成绩,这样合适吗?
想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。
谈话:那请同学们口算一下男生一共套了多少个?女生呢?
男生:28个女生:30个
谈话:如果比总数看起来是女生获胜了,男生对这样的比法有意见吗?为什么?
想法三:先要求出两个队平均每人套中了多少个,再比较哪个队套得准(比平均数)。
追问:这样比公平吗?(公平)我们就用“求平均每人套中的个数”这种方法试一试。(板书:求平均每人套中的个数)
想法四:去掉一个女生或者添上一个男生。
谈话:这样的想法是不错的,可是女生谁也不愿意被去掉,而且男生也没有人了。
3、理解平均数。
操作:男生平均每人套中多少个呢?下面请同学们仔细观察男生的统计图,先在小组里讨论用什么方法找出男生的平均成绩,再完成作业纸上的问题1。看哪些小组想的办法又多又好。
提问:你是怎么找到男生平均每人套中的个数?
学生可能出现两种方法:一是移多补少;
让学生讲解移的过程。
二是先合后分。
学生说一说怎样用先合后分的方法求平均数,并引导列式:6+9+7+6=28(个),28÷4=7(个)。
提问:第一步算得是什么?这里的7表示什么意思?
谈话:统计图中的红色线条表示什么?
根据学生回答,板书课题:这就是我们今天要研究的统计中的平均数。(板书课题:统计—平均数)
引导:平均数不可能比最大的数大,也不可能比最小的数小,因此平均数的范围在最小的数和最大的数之间。
多媒体出示平均数的取值范围。
提问:根据我们刚才的发现,谁能估一估女生队平均每人套中的个数在什么范围之间?
谈话:女生平均每人套中多少个圈呢?请你结合作业纸上的第二幅图和问题2,自己动手做一做。
提问:现在你能判断男生套得准还是女生套得准吗?
小结:通过刚才的活动,我们认识了什么?那你认识了平均数的哪些知识呢?
小结:平均数的大小应该在一组数据中的最大数与最小数之间。平均数是我们计算出的结果,它表示的是一组数据的平均水平,并不一定这一组数据都等于这个平均数,有些可能比平均数大,有些可能比平均数小,有些可能和平均数相等。
三、巩固深化,拓展应用
1、完成“想想做做”第1题。
先数一数每个笔筒里笔的枝数,引导学生用两种方法分别求出“平均每个笔筒里有多少枝”铅笔。
2、想想做做2
学生回答后谈话:那请你动手算一算,看看你得到的结果和你估计的结果是否符合。
3、谈话:生活中有很多事都是和平均数有关的,请看,这是我校篮球队的情况(出示想想做做3)
平均数教学设计课时二篇十
1、初步掌握求“平均数”的基本思想(移多补少的统计思想),理解“平均数”的概念。
2、掌握简单的求“平均数”的方法,并能根据具体情况灵活选用方法进行解答。
3、培养学生估算的能力和应用数学知识解决实际问题能力。
教学重难点
教学重点:灵活选用“求平均数”的方法解决实际问题。
教学难点:平均数的意义
教学准备:多媒体课件、秒表、绳子
教学流程
(一)创设情境,激发兴趣
生:比赛,在规定1分钟内看哪个小组跳的总数多,就是胜利者。
师:哦,好建议。不过,一节课只有40分钟,谁来出个好主意,在短时间内得出结果?
生:6人一起跳,分组数数。
师:哦,好主意!那就按你的方法比赛吧!
(二)解决问题,探求新知
1、引出“平均数”,体验“平均数”产生价值。
6名学生开始比赛,其余学生认真地数着。生汇报,师板书如下:
第一组:82、86、81第二组:78、83、82
师:请同学们以最快的口算算出结果,并汇报补充板书如下:
第一组:82+86+81=249第二组:78+83+82=243
师:(热情洋溢)通过比总数,第一组以248大于243获胜了,恭喜你们(师与他们一一握手表示祝贺,这时发现第二组同学鸦雀无声,面无表情)
师:我加入第二组,让老师也来跳一跳,你们帮我数着。(学生欢呼)
生:(议论纷纷,有几个喊叫)不公平的,第二组4个人,当然获胜了。
(全班寂然无声,学生思索着,半晌,有学生举手了)
生:我在电视上看到过这种类似的情况,比较平均数就可以了。
(这时有很多学生表示赞同,并投去了赞赏的目光)
师:(赞赏)哦,你知道的知识真多,老师佩服你!
2、探索求平均数的方法
师:怎样计算每个组跳绳的平均数呢?
(在老师的引导下,学生提出了方法,师要求任选一组说想法)
生1:我用算术法求第一组的平均数,我是这样算的:(82+86+81)/3=83
师:谁听明白了吗?(再指5名学生说)
师:(看着生2)你能给你的这种方法取个名字吗?
(由于平时有渗透过这种方法,生2很自然地说出是“移多补少”)
师板书:算术法移多补少法
(生摇头,大胆学生说:除不尽的)
师:(乘机)那你们有什么好办法?
生:用我们学过的“估算”
师:好,那你们试试吧!(指1名板演)
板书:(78+83+82+83)/4~81
师:从两组平均数83和81中,你知道了什么?
生:第一组平均数大,所以还是第一组总体水平好一些。
3、理解平均数的意义
师:第一组的83表示什么?你怎么理解“83”这个数?
(引导学生明白:“83”是个“虚数”,第一组的83不表示每人真跳了83下,有可能小于83,有可能大于83,还有可能等于83。)
生(自由发言)生1:平均数,你真厉害,使不公平的事变公平了。
生2:平均数,因为有了你,世界上才会太平
......
4、沟通平均数与生活的联系。
师:在平时生活中,你们见过平均数吗?
生举例:统计考试成绩需要平均数;平均每月用电量;节目比赛打分用到平均数......
(三)、联系生活,拓展应用
1、多媒体呈现:下面是某县—xxxx年家庭电脑拥有量的统计图。
(1)求出这五年来,平均每年拥有电脑多少台?
(出现算术法和移多补少法两种方法)
(2)估计一下,到20xx年这个县的家庭电脑拥有量是多少?为什么?
(3)从图上你还知道些什么?
师:请你帮他算一算平均每月用水多少吨?应该选择哪个算式?
(1)(16+24+36+27)/4
(2)(16+24+36+27)/12
(3)(16+24+36+27)/365
a、生举手表决
(四)、总结评价,提高认识
师:通过这节课的学习,你有什么收获?
师:你觉得这些知识对你以后生活或学习有什么影响或作用?
板书设计
求平均数(算术法移多补少法)
当人数不相等,比总数不公平时,我们就得看“平均数”。
平均数教学设计课时二篇十一
教学内容:
人教版《义务教育课程标准实验教科书数学》三年级(下册)统计中求平均数例1。
教学目标:
1.在具体问题情境中,感受求平均数的需要,通过操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。
2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
3.进一步增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。
教学重点、难点:
平均数的意义及求平均数的方法。
教学过程:
一、情境导入
阳光体育运动启动后男生和女生举行了一场趣味投篮比赛,想知道他们的得分情况吗?
课件出示统计图。
(1)看到统计图,你知道了什么?(板书每组每人得分)
(2)金灿灿的奖杯在那儿等着呢,请你来当裁判,这金灿灿的奖杯该被哪组捧走呢?
学生说出自己的裁判理由,其他同学可以发表自己的意见,也可以反驳他人的观点。
当学生讨论、交流出需要求出每组平均每人得多少分时,师板书出“平均”。
(3)刚才同学们通过讨论,认为用平均数来比较那个对的实力强一些比较公平,那什么是平均数呢?(指名学生回答)
师:那么什么是平均数呢?下面老师给大家做个小实验。
二、在操作中体验平均数的涵义。
1.课件演示:出示一个玻璃水槽,里面用三块挡水板平均分成四个部分,形成四个水柱高低不同的水柱。
师:四根水柱的高度一样吗?(指名回答)
2.师继续演示:如果拿开挡水板,会发生什么?(课件演示)
师:现在高度一样了吗?(指名回答)
师:这个一样的高度就是原来四个高度的什么数?(指名回答)
师:刚才老师是怎样使他们变得一样高的呢?(拿开挡水板,水会从高处流向低处)(指名回答)
师:你的意思是把多的一一部分给少的,使大家变得一样多。这种方法我们把它们叫做“移多补少”(板书)
师:在移多补少的过程中,水的总量有没有变?(指名回答)
师:下面我们就用移多补少的方法来求出男女队投篮比赛中各自的平均数。
3.请同学们拿出你手中的小圆片代替投中的个数在小组内进行移多补少的操作。
(1)。第一组和第二组操作男生队,第三组和第四组操作女生队,摆完后在小组内交流操作过程。
(2)指名汇报交流。
4.教师用课件演示投篮的移多补少过程。
5.课件出示小练习。
5.演示后小结:(课件出示)像这样,几个不相同的数,在总数不变的前提下,可以通过移多补少是他们变得相等,这个相等的数就是这几个数的平均数。(学生齐读)
师:理解了平均数的含义,那么平均数有什么特征呢?同学们想不想做个小游戏?
三、游戏中感悟平均数的特征。
1、出示:各装有3根小棒的红蓝两个纸袋(红带内平均每根长14厘米,蓝袋内平均每根长10厘米)课件出示两个纸袋。
2、师:猜一猜,如果从两个纸袋中各拿出一根小棒,哪个纸袋拿出的小棒长些?为什么?
师:下面我们来做个游戏,请几位同学上来,每位同学从两代中各抽出一根来比一比。(请三位同学上讲台操作)
.先让学生在小组里讨论,然后全班交流。(平均数大一些,并不是说每一根都长一些。平均长14厘米,不一定每一根都是14厘米,也有可能比14厘米短的,也有可能比14厘米长的。平均长10厘米的小棒,有可能正好是10厘米,也有可能比10厘米短,还有可能比10厘米长。)
4、师:(课件演示)平均数和原来那些数相比,处在什么位置?(处在中间的位置,比最大的数要小,比最小的数要大。)(课件出示平均数的特点)
师:我们感悟了平均数的特点,敢不敢挑战一下?
5、挑战练习——明辨是非
四、探索中建构平均数的算法。
1、师:前面我们用移多补少的方法求的男女队各自的平均数,知道了女队的实力强一些。如果现在要进行班与班之间的对抗赛,那么要计算什么的平均数呢?(要计算班级的平均数)
2、师:一个班有六十来名学生,如果还用移多补少的办法来获得平均数,你感觉怎么样?(指名交流)
3、师:是啊,移多补少的方法对数据较小或数据个数比较少时,还是挺管用的。但是当一组数据比较大,数据的个数有比较多的时候,这种方法就有局限性了。看来,我们需要探索一种更加通用的计算方法。
4、以小组为单位,让学生讨论计算方法:(1)平均分是怎样分的?平均分需要知道哪两个条件?(师举例:有12块糖平均分给3个小朋友,每个小朋友分几块?)
(2)哪个条件已经知道了?哪个条件还没知道?
(3)怎样求平均数?(师举例,3个小朋友一共有12块糖,平均每个孩子分几块?
(4))推出求平均数的公式。
五、学习例1,巩固公式计算法。
1、出示主题图,先用移多补少的方法获得平均数。(课件演示)
2、让学生试着用公式计算例题中的平均数。
3、集体订正讲解。
六、生活中的平均数。(课件出示)
七、巩固练习。
1、算出三条彩带的平均长度。
2、算一算你们小组的平均体重。
七、课堂小结
平均数教学设计课时二篇十二
冀教版小学数学三年级下册53页例1
教材从学生最熟悉、最感兴趣的投球游戏入手,将生活素材贯穿于整个教学活动的始终,始终遵循数学与生活密不可分的理念。众所周知,从《教学大纲》到《课程新标准》“平均数”也经历了从应用题到统计学的统计量的迁移,我更觉得这才是平均数的真正回归,因此我在设计本节教学时着重体现它的意义,深挖其价值和产生的必要性。
之前学生虽然对统计有了粗浅的认识,那也只是停留在简单的统计数量、比较多少、再或者就是两个统计量的累加。此时的学生对于统计中的一个很重要的统计量——平均数的认知就感觉很抽象,学习时必须要依据实际经验和亲身经历,借助具体形象的支持,对平均数有初步的了解并到认可。根据三年级学生好胜心强、求知欲旺,有一定的探索意识,故在教学过程中设计了多个学生熟知可操作的活动,以便理解和总结,教师作为参与者、合作者从而引导探索并感悟,以便达标。
兴趣是最好的老师,学生的学习必须建立在有趣的基础上,学生富于挑战,乐于争胜,因此设计学生感兴趣的、或参与、或经历、或pk等活动。本着参与远远高于旁听的效果,尽量多的增加参与度和参与效果,在新课标的理念下,结合我校三三三高效课堂模式设计了“创设情境、自主学习、合作探究、理解感悟、应用巩固、堂清检测”这样的学习过程。
1、引导学生在实际生活情景中理解平均数产生的必要性及平均数的意义。
2、理解平均数算法的多样性,养成从数学角度思考问题的习惯。
3、学会与他人合作交流,获得积极的数学学习的情感。
1、理解平均数的意义和产生的必要。
2、理解平均数的算法的多样性。
平均数的区间范围以及它的“虚拟性”
平均数的计算。
平均数的计算公式必须是总数除以与之对应的总份数。
已知甲数比乙数多几,使两数相等,则甲数给乙数几个?
学习目标:
1、引导学生在实际生活情景中理解平均数产生的必要性及平均数的意义。
2、理解平均数算法的多样性,养成从数学角度思考问题的习惯。
3、学会与他人合作交流,获得积极的数学学习的情感。
学情分析:之前学生虽然对统计有了粗浅的认识,那也只是停留在简单的统计数量、比较多少、再或者就是两个统计量的累加。此时的学生对于统计中的一个很重要的统计量——平均数的认知却很抽象,必须要依据实际经验和亲身经历,借助具体形象支持,对平均数有初步了解并认可。
知识层面、时间预设
教师行为预设
学生行为预设
设计意图
一、激趣导入(5分钟)
二、自学交流+展示+感悟(30分钟)
1、自主学习:仔细看情境图,认真找寻信息,发现总结新信息,或提出疑惑……先是对子交流,然后有问题的组内解决。
2、通过活动,或参与,或经历,展示、争论、比较、总结、感悟出新知。
三、检测(5分钟)
学生认真审题、仔细推敲,回顾、理解并巩固平均数的意义及特点。
四、堂清(5分钟)
通过总结和课后练习,同学们会对平均数的意义、特点以及计算有更进一步的理解和巩固。
2、看来同学们评判得很正确,有没有信心再来当一次真正的裁判呢?自学课本53页,努力找寻并挖掘数学信息和问题,如何解决?(因为学生对投球可能了解不多,老师可以顺势引导:据我所知,投球时,以10个为标准,投进篮筐为投中,当然这需要一定的技术。)
3、自由发言并将加分记录到评价栏中。
4、那组成绩好呢?
5、通过学生说出要求平均数,板书课题——《平均数》并简单的告诉同学们今天的学习目标并板书{逐渐补充其意义和算法。
6、找临近8位同学上讲台排成不同学生数的两行,让学生想办法排成学生数相同的两行。(老师在黑板上草书列表比较,表格内项目包括每组的最大数、最小数、以及待填充的平均数)
7、如果学生没能交流出“移多补少”时,教师指出:原来两行学生数不一样多时,经过移多补少,使两行的学生同样多,这种把几个不同数经过移多补少,得到的相同数就是这几个不同数的平均数。根据学生的疑问,从而引出平均数实际是一个虚数,并非一个实实在在的数,比如:某市统计家庭拥有孩子数目,结果平均每个家庭一个半孩子(因为此时学生还未涉及小数,只能说一个半了),你说谁家有一个半孩子呀!要么没有,要么有一个,再要么有两个?……因此平均数它既不是某一个具体的数,只能反应一组数据的一般情况。(根据同学们的总结和理解,顺势板书:虚数反应一般情况平均数在本组数据中的取值区间:比最大数小,又比最小数大)
8、要求学生迅速有序的摆放教科书。
9、解决53页两组投球那组优胜的问题时刻提醒同学们:注意平均数的取值区间、“总合均分”——总和不变均分相应的份数。据此一定要先估后算哟!(同时将刚刚学生用平均数可以比较两组的成绩,也只有用平均数来解决这个总数不同、份数也不同的问题——板书:比较和平均数产生的必要性)
10、小老师读题——检测题
11、学生自由发言总结今天收获。平均数的用处可真大呀!我们还可以根据平均数进行预测——预测输赢、预测天气等,这对我们的生活有一定的指导作用,日常生活中处处有数学,只要我们多留心,我们的数学本领就会越来越大!
12、课末,让学生当评委给自己的这节课打分,最后计算出自己所在组的平均分,(能明白并能叙述基础知识得6分、四个检测题全对得4分)争取每组的平均分不少于8分哟!
平均数教学设计课时二篇十三
1.使学生进一步掌握平均数的意义和求平均数的方法。
2.懂得平均数在统计学上的意义和作用。
3.培养学生能够灵活运用所学的知识,灵活的解决一些简单的实际问题。
掌握平均数的意义。
掌握求平均数的方法。
提问:题目的已知条件和问题分别是什么?
要求平均每一组投中多少个?应该怎样列?
提问:(28+33+23)3表示什么?3表示什么?把投中的总数以3表示什么?
提问:从这两张统计表中,大家发现了什么?
在一场篮球比赛中,除了技术因素以外,还有什么因素也比较重要?
场上哪一个对的身高占优势,我们能根据个别队员来作判断吗?我们要看整个对的平均身高。现在就请大家算一算,哪一个对的平均身高占优势。
从这两个平均数,能反映出这两个队除技术外的另一个实力,说明平均书可以反映一组数据的总体情况和区别于不同数据的总体情况,这是我们学习平均数的一个重要的作用。
(1)完成第1小题。提问:什么叫月平均销售量?
要求哪种饼干月平均销售量多?多多少?应该怎样列式?
(2)完成第2小题让学生自由发表看法。
(3)完成第3小题。你从图中还得到什么信息,告诉全班同学。
学生独立完成,集体订正。
本节课学习了什么?你有什么收获?
平均数教学设计课时二篇十四
这节课我们的话题就是平均数,关于平均数你们听说过它吗?或者在哪儿用到过他吗?或者我对平均数已经有了点想法?还有什么问题吗?没事儿上课的时候没有对错,我们可以一起讨论。
生:比如有一个苹果有三个人要吃,就把它平均分成三份每个人分一份。
师:哦,这是你心里的那个平均数对吗?在哪会用到呢?
1 师:你对90分没有什么感觉,没关系我们慢慢走近它就会有感觉。
生:我认为这个90分是,全班每个人的分数加起来除以全班人数得来的。
师:这个观点大家是否同意。大家都同意的,也就是说这个小姑娘那次有可能考多少分呢?
生:我可能高于90分或者低于90分。
师:感觉不就找到了吗,也就是说平均分是90分你可能考多说呀?高于90比如说你有可能考多少分儿?考得蛮好,95太谦虚了。你很有可能考98,大胆点我真有可能考100。
但是我可能最近有点困难或者有些什么特殊原因可能这次考得不大好,我也可能考了80,再低一点还会有吗?76还有的人会考多少分?还有60分的。
这90分是怎么来的,你们班有的人会考还有100,的,有什么90多分的,就跟他说98,有可能是他有可能是80还有可能是75,高高低低的可能都会有对不对?刚才这个女孩还说没感觉呢?你的感觉多好啊,他说我说不定也可能考比90要多也有可能比就是要少,说不定你还就考了一个90分。有没有这种可能性。
2 好不好?刚才这个女孩说她说我们所有同学的成绩加在一起,你们班多少人?53,假如就是53个数加在一起了这说不定有一个83的有可能对不对加在一起的怎么办?除以几最后就得了多少?然后这个90就叫做什么?(平均数)我听懂了我听懂了。
那现在我的问题在这儿呢,这90分到底你们怎么看他呀?他是个什么样的分数啊?不急这事儿得慢慢的体会四个人一组商量商量:你怎么认识90这个平均分的?用你们自己的话说好不好?(小组活动)
我认为你们的感觉真的很好!亲爱的同学们你们想给大家说说吗?吴老师真的很想听听,老师们也很想听听,哪 个组愿意说呢?没事儿,说错了也没事。我们讨论问题!好吗。谁说话看着谁,生:我觉得就是把高于90分的数让给别人…… 生:低的分就可以提高了。
3 师:你们的感觉都对着呢。……
师:我听懂他的意思了,把高的给低的,低的就慢慢涨高了,它们就慢慢平均了,这个数就是这个90分。
生:90分就是全班的平均分,·师:全班的平均分他表示的是什么呢?用你们自己的话说说看。好!那个女孩。
生:我觉得90分是代表整个班级的平均分。师:她说90分已经不是代表个人了,那它代表的是你们四四班那一次考试成绩的水平。
生:完了。
师:因为这50代表的是集体,那一定出问题了,是老师的出问题了是全班都这事可就大了。刚刚走进平均数你们就有了这么好的感觉。
师:为了进一步了解平均数,我们来看这里(贴图)
几个数呢,四个数7、6、3、4不许计算,估一估这四个数的平均数可能是几呢?
5 数,你们的方法蛮对的,加起来除以四。你看看这个图还可以怎么样呢?谁愿意到黑板上来移动移动这个平均数, 生:操作,我是把高的给低的,低的就升高,它们匀一匀就平了。
师:那这个五代表的是什么?谁的平均数?可以说代表的是7634这一组数的平均数。
师:(找到估到外边的同学),你们怎么不估2,你们怎么不估8呢?
生:因为最少的数是3,怎么可能平均数是2呢? 生:不估就是不估,没有道理。
师:小姑娘挺有个性的,其实,同学之间讲讲道理,我们的理解会越深刻。
生:平均数不会是最小了,当然也不会是最大的。师:在哪儿呢?
生:在最大的数和最小的数之间。
6 产生影响,这时候平均数很敏感。如果那个数跟它差不多的时候,他还会稳坐稳坐不动。
总结:平均数具有代表性,平均数他是有家,但是你们还有问题呢?
生:平均数到底有什么用?
显示:我国淡水资源总量 28000亿立方米,仅次于巴西、俄罗斯和加拿大,居世界第4位。
全世界那么多国家,100多个国家咱们排第几?我们应该感到非常的……
再次显示:我国人均水资源只有2300立方米,在世界上名列第121位。
怎么突然凝重了不讲话,不自豪了,不荣幸了!你看到这个数,你是想说点什么呢?
同学们的淡水总量这么多,世界上一排我们老四呢,但是你看懂了什么,数学人要学会阅读,学会理解,你看懂了什么?平均数要张开嘴巴又跟我们说话了,7 生:因为它是总数和平均数的区别 生:是我们国家人太多了,师:虽然水资源丰富,我们用水的人还多呢,对不对?有一句话叫做粥多僧也多呀,喝粥的人还多呢,平均到每个人身上我们立刻就凝重起来,我们还是一个淡水资源匮乏的国家。
同学们你说平均数你能告诉我们什么?它背后是有信息的。
不说了接下来的一个任务,这么一件事儿:
部级官员下政策可没那么容易,想好了,四个人商量商量,你准备怎么改?
8 师:之所以公平这个平均数代表的是什么呢?集体,代表的是大多数人的情况,对不对。就是因为它具有代表性。
师:把全市的儿童都找出来,太麻烦了,你有什么好办法吗?
他就是在一个群当中想了解一个整个的情况,可以抽一部分。比如说抽一部分举例啊,妈妈熬了一锅汤咸不咸怎么尝啊,你生病了到医院去抽血这些里面有没有细菌啊就抽了一滴对不对,从一滴血看看你全身的情况对不对。
平均数教学设计课时二篇十五
教材分析:
这节课的教学目的有以下3点:1、让学生经历平均数产生的过程,理解平均数的概念,了解平均数的特点和作用,掌握求简单平均数的方法。2、在解决问题的过程中培养学生的分析、综合、估算和说理能力。3、渗透统计初步思想。理解平均数的意义是本课的重点。学情分析:
学生的数感是从生活中得来的,所学的知识也是为了解决问题。学生理解了平均数的意义之后,让学生应用所学的知识去解决身边、生活中的实际问题,体会数学与生活的密切联系,产生学习数学的兴趣,感受成功的喜悦。教学内容: 人教版小学《数学》第八册 教学目标: 1、感悟平均数的意义,建构平均数的概念。
2、探究平均数的多种方法,鼓励解决问题策略的多样化。
3、感受平均数概念所蕴涵的丰富、深刻的统计与概率的背景,能
针对数据分析结果做出简单推断和预测。
4、体会平均数在现实生活中的实际意义及广泛应用,逐步具有自主探索与合作交流的意识与能力。 教学过程:
二、解决问题,探究问题。 1、感受平均数的产生
(1)每对先推选一名队员参赛,比赛的结果:女队的成绩:4个
男队的成绩:7个,男队获胜。
生:不行,一个人不能代表大家的水平……
(2)学生讨论后要求所有的队员参赛,继续比赛……
(3)女队的成绩:2、3、5,,男队的成绩:5、8、4,男队获胜,女生情绪低落。
(4)师:我看你们玩得那么高兴,我也想参加欢迎吗?我是女生就加入女队,师吹了6个后,让学生重新计算女队的成绩,最后的结果是女队获胜。
(5)生:这不公平,男队4人,女队有5人……
生:把这几个数匀一下…… 2、探索求平均数的方法(1)师:我们怎样求平均数呢?(2)生讨论并交流方法。
(1)师:男生队的平均数是6,你怎样认识理解6这个数?(2)生:6是它们的平均数
有的人成绩比6大,有的人的成绩比6小……
(3)师:平均数不是一个人具体的吹气球的数量,它代表的是几个人吹气球的平均水平。平均数是一个虚拟的数,比最小的数大,比最大的数小些,在它们中间 4、学生举出生活中平均数的例子。
三、联系实际,拓展应用。 1、课件出示宁夏科技馆十一期间的门票统计图,让学生讨论两个问题:
(1)求出平均每月的用电量。(2)请你们估计出下个月小明家的用电量,并说明理由。四、全课小结。
平均数教学设计课时二篇十六
1、在具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。
2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
3、进一步增强与他人交流的意识与能力,体会运用已学的统计知识解决问题的乐趣,建立学习数学的信心。
理解平均数的意义,学会求简单数据的平均数。
一、创设情境,自主探究
1.呈现套圈情境。
2.收集整理数据。
多媒体依次演示4个男生和5个女生套圈比赛情况,最后将每个选手卡通像与其套圈结果“定格”组合成一个画面。要求学生根据男、女生套圈成绩,小组合作利用小方块完成统计图(每小组中男生合作完成男生队成绩的统计,女生合作完成女生队成绩的统计)。
3.引入平均数。
出示男、女生套圈成绩统计图。提问:看了这里的统计图,你发现了什么?要比较哪一队套得准,你准备从哪个方面去比较?结合学生的想法,适时进行引导。想法一:因为吴焱套中的个数最多,所以女生队套得准(比最多)。追问:用一个人的成绩代表整个队的成绩,这样合适吗?想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?可以怎么办呢?想法三:先要求出两个队平均每人套中了多少个,再比较哪个队套得准(比平均数)。追问:这样比公平吗?(公平)我们就用这种方法试一试。(板书:平均)
4.理解平均数。操作:男生平均每人套中多少个呢?女生平均每人套中多少个呢?下面请同学们仔细观察自己面前的统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。提问:怎样求男生平均每人套中的个数?学生可能出现两种方法:一是移多补少;二是先合后分。反馈时,先让学生在实物投影上边操作,边讲解移多补少的过程,教师利用课件动态演示。再让学生说一说怎样用先合后分的方法求平均数(课件动态演示:将统计图中的涂色方块合并起来,再平均分成4份),并引导列式:6+9+7+6=28(个),28÷4=7(个)。
谈话:请大家看男生套圈成绩统计图(用红色线条标出平均数,并不断闪烁),图中闪烁的红色线条表示什么?根据学生回答,在前面板书的“平均”后面添上“数“。
观察:图中的平均数与实际每人套中的个数相比,你发现了什么?(平均数比最大的数小,比最小的数大??)多媒体闪烁平均数的取值范围。
二、联系实际,拓展应用
我们一起玩闯关游戏好吗?
1、挑战第一关“走进生活”平均数能为我们解决生活中的问题。
(2)想想做做第2题。小丽有这样的3条丝带,这3条丝带的平均长度是多少?请你先估计一下这3条丝带的平均长度是多少?在哪两个数之间?然后学生独立练习,集体校对。
2、挑战第二关“明辨是非”
(1)一条小河平均水深1米,小强身高1.2米,他不会游泳,但他下河玩耍池肯定安全。()
(2)大泗学校全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。()
(3)学校排球队队员的平均身高是160厘米,李强是学校排球队队员,他的身高不可能是155厘米。()
(4)学校篮球队可能有身高超过160厘米的队员。
3、挑战第三关:“合情推测”四(2)班第一小组同学身高情况统计表
学号1 2 3 4 5
身高(厘米)132 134 136 140 142
(1)明明算了他们的平均身高是143厘米,不计算,你能不能知道他算得对不对?
(2)星星公园规定:购买团体票时平均身高不足140厘米的学生可享受七折优惠。如果第一小组同学集体去玩能享受优惠吗?不计算你能知道结果吗?说出你的想法。
三、总结评价,感情升华
今天我们认识了新朋友“平均数”,你想对它说些什么赞美之词呢?
本节课我从学生的现实生活出发,极力选取学生身边的事例,使生活素材贯串于整个教学的始终,注意将数学与学生生活紧密相连,遵循了数学源于生活、寓于生活、用于生活的理念。通过数学教学,实现了数学的应用价值。
具体地说有以下几个特点:
1.紧密联系学生生活实际,使数学问题生活化。心理学研究表明:当学习的内容与学生熟悉的生活背景越贴近,学生自觉接纳的程度就越高。课一开始,就设计了一个情境,出示学生熟悉的套圈游戏以此来切入主题。这样做使学生感到所学内容不再是简单枯燥的数学,而是非常有趣、富有亲近感,他们被浓厚的生活气息所感动,兴致勃勃地投入到新课的学习之中。
2.充分保障学生自主探索的时间与空间,把学习的自主权与选择权交给学生。《数学课程标准》指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式”,数学教学要努力改变单一的、被动的学习方式,建立和形成有利于发挥学生主体性的多样化的学习方式,促进学生在教师指导下主动地富有个性地学习。要让学生自主探索,在教学中教师要结合教学内容设计出具有开放性的、探索性的数学问题,给学生创设自主探索学习的情境,使之在开放问题的情境下积极主动地进行探索,使数学教学更加丰富多彩,学生学得更加生动、活泼,实现促进学生全面发展的目的。掌握求平均数的方法是本课的重点,学生只有掌握了求平均数的方法,才会解决生活中的求平均数的问题。因此,在这一环节的教学中,让学生自主动手操作学具,在小组合作、探索的过程中,找出求平均数的方法。这样,学生有了学习的自主权和选择权,他们的积极性与创造性得到了充分的发挥。
3、较好的渗透了数学思想和方法。如:在计算平均数前让学生利用平均数的意义进行估计,渗透估算的思想,即培养学生的估算能力又加深了对平均数的理解。总之,本节课较好地体现了教师主导和学生主体作用的和谐统一,实现了数学思想与数学方法的有机结合,符合素质教育要求,较好地达到了创新教育的目的。