最新北师大版高中数学必修一教案(汇总12篇)
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。
北师大版高中数学必修一教案篇一
专题八当今世界经济的全球化趋势通史概要:
当今世界经济发展有两个明显的趋势:一是世界经济区域集团化,二是世界经济全球化。世界经济区域集团化是最终实现经济全球化的重要步骤和途径,经济全球化则是区域经济集团化的最终归宿。
世界经济区域集团化是生产力高度发展的必然产物,是生产国家化、国际分工向纵深发展需要加强合作的结果,也是世界经济竞争激烈的表现。它产生的原因有:现代科技的发展、国际间经济竞争和客观上存在的分工。区域集团化的发展分为三个阶段:第一阶段为五六十年代,世界经济集团化的趋势主要出现在欧洲,如欧洲煤炭共同体的出现。第二阶段为六七十年代,区域集团化成为一种世界经济现象。欧洲区域集团化趋势进一步发展,如欧共体的建立;一些发展中国家的地区性经济集团也纷纷出现,如东盟的出现。第三阶段为80年代至今,区域集团化掀起新的浪潮,进入了较高层次的经济一体化时期,出现了欧盟、北美自由贸易区和亚太经合组织三大区域经济集团。
世界经济全球化是世界生产力发展的要求和结果,是不以人的意志为转移的历史趋势。它突出的表现在国际贸易、国际投资、国际金融和跨国公司的发展。经济全球化的过程中的问题是:在经济全球化的过程中,不可避免地把资本主义固有的矛盾扩展到全球,造成南北矛盾、贫富分化、环境问题、能源危机、全球性的经济金融危机、恐怖组织活动猖獗等等,直接影响到人类的生存与发展。
我国在当今世界经济发展趋势中,作为发展中国家,应该如何面对机遇和挑战,成了新时期经济发展人们共同关心的话题。从中国加入亚太经合组织、加入世界贸易组织,加强同东盟的联系的史实中,我们的态度是:在坚持独立自主、自力更生的前提下,拥有“双赢”的思维,抱着开放的心态,加强国际的合作与交流,参与国际竞争,抓住机遇,接受挑战,在国际的竞争和合作中,提高我国的经济发展水平,跟随世界发展的潮流。概括而言,就是辩证地看待世界经济发展趋势这一经济现象,树立正确的.发展观。
一欧洲的联合
课标要求:以欧洲联盟、北美自由贸易区及亚太经济合作组织为例,认识当今世界经济区域集团化发展趋势。
教学目标:
(1)知识与能力:分析第二次世界大战后西欧经济进入“黄金时代”的原因;简述欧洲国家从“欧共体”走向欧盟的历程,认识欧洲联盟成立对世界经济和政治格局的影响。
概述欧元产生的影响,培养多角度、多层次理解问题的能力。
(2)过程与方法:通过讨论西欧经济在二战后进入“黄金时代”的共同原因,进一步思考中国的社会主义建设应如何借鉴其合理的方法与正确的经验,学习用联系的方法看待问题,提高理论指导实践的能力;通过分组学习,搜集“欧共体”及“欧盟”成立的资料,了解整个欧洲走向联合的过程,认识当今世界经济区域集团化发展趋势。
(3)情感、态度与价值观:通过对欧洲走向联合这段历史的学习,认识当今国际社会国家间团结协作的重要性,树立国际意识;通过对欧洲走向联合的史实的归纳,得出一个别国家或地区怎样才能快速发展的一般规律;并结合我国的实际,进一步探讨一下我们可以借鉴哪些做法,从而树立为我国社会主义现代化建设而奋斗的责任感。
教学课时:1课时
重点难点:
重点:欧洲走向联合过程及影响。
难点:欧洲走向联合的原因。
教学建议:
1、本课共有三个方面的内容,“西欧经济的'黄金时代'”主要讲述:二战后的20世纪50年代到60年代,西欧各国经济在恢复的基础上,进入调整增长期,被称为西欧经济的“黄金时代”;“从'欧共体到'欧洲联盟'”主要是欧洲从经济一体化到政治一体化的发展趋势;“货币王国的世界公民”主要以欧元的流通为例,进一步表明欧洲走向联合的趋势。
2、西欧经济高速发展的共同原因:第一,西欧各国进行社会改革和政策调整。进行社会改革,例如:推行福利制度,适当改善人民的生活条件,缓和社会矛盾,稳定社会秩序;进行政策调整,如:将一些私人垄断企业国有化,并建立有关国计民生的重要工业部门。这些政策的推行,促进了西欧经济的稳定持续高速发展,从而出现前所未有的繁荣。第二,马歇尔计划的实施,解决了西欧战后经济发展的启动资金,西欧重工业在短时期内完成了新的装备,并有能力购买足够的工业原料。第三,战后西欧广泛使用第三次科技革命的成果,并对产业部门进行了改造,使劳动生产率大大提高,从而有力地推动了经济的高速发展。
3、伴随着欧洲经济合作的成功,欧洲经济不断的恢复,要求在国际上发挥更重要的作用。因而要加强在政治领域的合作成为欧洲各国的一致要求。面对二战结束后以美苏为首的两极争霸的冷战格局,欧洲各国迫切要求组成一个更加强大的团体来维护自己的利益。于是在政治领域的合作很快便实施开来。
4、为进一步加强欧洲共同体之间的经济合作与交流,减少共同体内部成员国存在的贸易壁垒,用统一的货币在欧共体各国之间流通,实现经济的联合,从而进一步加强欧洲各国之间的政治合作。
二、发展的亚太
课标要求:以欧洲联盟、北美自由贸易区及亚太经济合作组织为例,认识当今世界经济区域集团化发展趋势。
教学目标:
(1)知识与能力:了解东盟的发展历程,说说中国与东盟的交往情况;分析北美自由贸易区建立的原因和影响,比较北美自由贸易区与欧盟的异同;概述亚太经济合作组织建立的过程,探讨亚太国家加强合作的途径与方式。
(2)过程与方法:通过搜集中国与东盟交往的材料,了解东盟日益扩大及其影响;用列表等方式比较北美自由贸易区与欧盟的异同,学习用比较的方法认识历史问题;通过上网等途径搜集中国参加apec会议的资料,多渠道去了解和认识apec建立的史实及影响。
(3)情感、态度与价值观:通过对东盟、北美自由贸易区和亚太经合组织等区域经济一体化进程的学习和了解,体会当今世界国家间加强合作、竞争与发展的重要性,树立合作与竞争的意识。
教学课时:1课时
重点难点:
重点:通过了解欧洲联盟、北美自由贸易区及亚太经济合作组织,认识当今世界经济区域集团化发展趋势。
难点:中国积极参与世界区域经济组织的意义。
教学建议:
1、在经济全球化的进程中,亚太地区的经济集团化也在不断深入发展。世界三大区域性经济集团有两个分别在该地区。这一地区成为当今世界上经济发展最活跃地区。课文分别以“东盟”、“北美自由贸易区”和“亚太经全组织”三个经济区域集团为例,介绍了当今世界经济区域集团化发展趋势。每个集团内部有着自身的规则的同时也不断与其它区域集团相联系,从而使世界经济形成了密不可分的一个整体。
2、东南亚国家联盟自1967成立以来,已经历时近三分之一世纪。东盟在维护和促进各成员国相互间的政治和经济合作,实现地区和平稳定,加快成员国经济增长,提高成员国人民生活水平等方面都取得了显著成绩。尤其是在国际政治方面,极大地增强了东盟的国际地位。东盟在由四大洲国家组成的apec中具有举足轻重的政治地位,又是由亚欧两大洲主要国家参加的亚欧会议的倡议者和发起者,在东亚乃至亚洲政治舞台上成为使日本、中国和印度等大国瞠乎其后的主角。
3、日本经济的崛起,特别是欧洲经济一体化实施的外在压力,美国、加拿大和墨西哥3国发展各自经济的内在动力,是北美自由贸易区成立的根本原因。美、加、墨3国又是山水相连的邻邦;语言文字、价值观念、风俗习惯等又颇相似;经济互补性强;相互贸易基础良好,美、加、墨3国具有实行经济一体化的必要性,又具有实行经济一体化的可能性。美国认为要取得世界经济的主导地位,只有建立以自己为中心经济区域集团,才能在经济全球化大潮中立于不败之地。
4、二十世纪七十年代后,亚太地区,特别是东亚各国和地区的对外开放经济政策和经济迅速发展为亚太区域经济合作创造了条件。东亚地区经济的发展,国际收支条件的改善,缓解亚太地区南北之间的矛盾,为亚太经济合作创造了条件。欧共体统一市场和美加自由贸易区的建立,刺激了亚太向区域经济合作的方向发展。亚太经合组织的主要活动,为各成员提供区域经济,科技,贸易和发展等方面多边合作的机会,交流各成员在这些领域内的经验,促进本区域的共同发展.它从产生、发展及运作模式均区别于欧盟和nafta,有自身的特点,这些特点适应了apec各成员国经济发展的状况和经济运行模式。
三、经济全球化的世界
课标要求:
(1)以“布雷顿森林体系”建立为例,认识第二次世界大战后以美国为主导的资本主义世界经济体系的形成。
(2)了解世界贸易组织(wto)的由来和发展,认识它在世界经济全球化进程中的作用。了解中国参加世界贸易组织(wto)的史实,认识其影响和作用。
(3)了解经济全球化的发展趋势,探讨经济全球化进程中的问题。
教学目标:
(1)知识与能力:了解“布雷顿森林体系”建立的基本史实,分析其影响;简述世界贸易组织(wto)的由来和发展,认识它在世界经济全球化进程中的作用;了解中国参加世界贸易组织(wto)的史实,认识其影响和作用;概述经济全球化的发展趋势,探讨经济全球化进程中的问题。
(2)过程与方法:阅读课文和查找中国加入世贸组织谈判的历程等,了解“从gatt到wto”的过程,围绕世界贸易组织建立的必要性并对中国加入wto的利与弊等问题展开讨论;开展课堂讨论或辩论:经济全球化对本地区的影响是利大于弊还是弊大于利?如何解决经济全球化出现的问题?从多角度去分析历史问题。
北师大版高中数学必修一教案篇二
根据德国心理学家艾宾浩斯绘制的遗忘曲线,学生对知识的遗忘遵从先快后慢的规律,有效的回忆可以加深对知识的理解,掌握知识的内在联系,延缓知识的遗忘。教师要采用不同的形式,整理阶段的基础知识,使内容条理化、清晰化地呈现在同学的面前,从而完成由厚到薄的过程,对重难点和关键点,进行重点的、有针对性的讲解。配以适当的练习,提高学生对基本知识和基本方法的深刻性和准确性的理解掌握。促进学生科学合理的知识结构的形成,使知识系统化和网络化。
旧知检测
要想有效的提高课堂的复习效率,就须克服“眼高手低”的毛病。很多同学上课时处于一种混沌的状态,一听就懂,一做就错;一听就会,一到自己做就不会了。为避免这样的情况,就必须让学生更好地了解自己知识的掌握情况。可以设置几个基础的填空和一个左右的解答题,通过解答的过程让学生“自知自明”。激发起兴趣,有效地提高复习的效率。
精选精讲
精心的选择适量的典型例题,分析解决这些问题应该是一堂复习课的核心内容。解题的目的绝不是仅仅解决这个问题本身,而是要给出通性通法,揭示解决问题的一般规律,熟练掌握数学思想方法,提高学生分析问题、解决问题的能力。
北师大版高中数学必修一教案篇三
立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。
二、立足课本,夯实基础
学习立体几何的一个捷径就是认真学习课本中定理的证明,尤其是一些很关键的定理的证明。定理的内容都很简单,就是线与线,线与面,面与面之间的联系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。
三、培养空间想象力
为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。
四、“转化”思想的应用
解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:
(1)两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。
(2)异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。
(3)面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。
五、建立数学模型
新课程标准中多次提到“数学模型”一词,目的是进一步加强数学与现实世界的联系。数学模型是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的描述。数学模型的形式是多样的,它们可以是几何图形,也可以是方程式,函数解析式等等。实际问题越复杂,相应的数学模型也越复杂。
从形状的角度反映现实世界的物体时,经过抽象得到的空间几何体就是现实世界物体的几何模型。由于立体几何学习的知识内容与学生的联系非常密切,空间几何体是很多物体的几何模型,这些模型可以描述现实世界中的许多物体。他们直观、具体、对培养大家的几何直观能力有很大的帮助。空间几何体,特别是长方体,其中的棱与棱、棱与面、面与面之间的位置关系,是研究直线与直线、直线与平面、平面与平面位置关系的直观载体。学习时,一方面要注意从实际出发,把学习的知识与周围的实物联系起来,另一方面,也要注意经历从现实的生活抽象空间图形的过程,注重探索空间图形的位置关系,归纳、概括它们的判定定理和性质定理。
北师大版高中数学必修一教案篇四
教学目标
解三角形及应用举例
教学重难点
解三角形及应用举例
教学过程
一. 基础知识精讲
掌握三角形有关的定理
利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);
利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.
二.问题讨论
思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.
思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.
例6:在某海滨城市附近海面有一台风,据检测,当前台
风中心位于城市o(如图)的东偏南方向
300 km的海面p处,并以20 km / h的速度向西偏北的
方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,
并以10 km / h的速度不断增加,问几小时后该城市开始受到
台风的侵袭。
一. 小结:
1.利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2。利用余弦定理,可以解决以下两类问题:
(1) 已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
3.边角互化是解三角形问题常用的手段.
三.作业:p80闯关训练
北师大版高中数学必修一教案篇五
(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2、过程与方法
学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3、情感态度与价值观
(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
重点、难点:用斜二测画法画空间几何值的直观图。
1、学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2、教学用具:三角板、圆规
(一)创设情景,揭示课题
1、我们都学过画画,这节课我们画一物体:圆柱
把实物圆柱放在讲台上让学生画。
2、学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知
1、例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2、例2,用斜二测画法画水平放置的圆的直观图
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3、探求空间几何体的直观图的画法
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体abcd-a’b’c’d’的直观图。
教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。
(2)投影出示几何体的三视图、课本p15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。
4、平行投影与中心投影
投影出示课本p17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。
5、巩固练习,课本p16练习1(1),2,3,4
三、归纳整理
学生回顾斜二测画法的关键与步骤
四、作业
1、书画作业,课本p17练习第5题
2、课外思考课本p16,探究(1)(2)
北师大版高中数学必修一教案篇六
教学目标
掌握三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型。
教学重难点
。利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。
教学过程
一、练习讲解:《习案》作业十三的第3、4题
(精确到0.001)。
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的 “思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材p65面3题
三、小结:1、三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型。
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。
四、作业《习案》作业十四及十五。
北师大版高中数学必修一教案篇七
1、知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。
2、过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3、情感态度与价值观:提高学生空间想象力,体会三视图的作用。
二、教学重点:画出简单几何体、简单组合体的三视图;
难点:识别三视图所表示的空间几何体。
三、学法指导:观察、动手实践、讨论、类比。
四、教学过程
(一)创设情景,揭开课题
展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。
(二)讲授新课
1、中心投影与平行投影:
中心投影:光由一点向外散射形成的。投影;
平行投影:在一束平行光线照射下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:
正视图:光线从几何体的前面向后面正投影,得到的投影图;
侧视图:光线从几何体的左面向右面正投影,得到的投影图;
俯视图:光线从几何体的上面向下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规则:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;
高平齐:正视图与侧视图的高度相等,且相互对齐;
宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:
正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:
5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
(三)巩固练习
课本p15 练习1、2; p20习题1.2 [a组] 2。
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)布置作业
课本p20习题1.2 [a组] 1。
北师大版高中数学必修一教案篇八
一)、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二)、适当多做题,养成良好的解题习惯。
要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三)、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
北师大版高中数学必修一教案篇九
1、把握菱形的判定。
2、通过运用菱形知识解决具体问题,提高分析能力和观察能力。
3、通过教具的演示培养学生的学习爱好。
4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。
二、教法设计
观察分析讨论相结合的方法
三、重点·难点·疑点及解决办法
1、教学重点:菱形的判定方法。
2、教学难点:菱形判定方法的综合应用。
四、课时安排
1课时
五、教具学具预备
教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具
六、师生互动活动设计
教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨
七、教学步骤
复习提问
1、叙述菱形的定义与性质。
2、菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.
引入新课
师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?
生答:定义法。
此外还有别的两种判定方法,下面就来学习这两种方法。
讲解新课
菱形判定定理1:四边都相等的四边形是菱形。
菱形判定定理2:对角钱互相垂直的'平行四边形是菱形。图1
分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形。
分析判定2:
师问:本定理有几个条件?
生答:两个。
师问:哪两个?
生答:(1)是平行四边形(2)两条对角线互相垂直。
师问:再需要什么条件可证该平行四边形是菱形?
生答:再证两邻边相等。
(由学生口述证实)
证实时让学生注重线段垂直平分线在这里的应用,
师问:对角线互相垂直的四边形是菱形吗?为什么?
可画出图,显然对角线,但都不是菱形。
菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):
注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件。
例4已知:的对角钱的垂直平分线与边、分别交于、,如图。
求证:四边形是菱形(按教材讲解)。
总结、扩展
1、小结:
(1)归纳判定菱形的四种常用方法。
(2)说明矩形、菱形之间的区别与联系。
2、思考题:已知:如图4△中,,平分,,,交于。
求证:四边形为菱形。
八、布置作业
教材p159中9、10、11、13
北师大版高中数学必修一教案篇十
函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。
1、函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。
3、函数方程思想的几种重要形式
(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。
(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
北师大版高中数学必修一教案篇十一
1. 理解直线的方程的概念,会判断一个点是否在一条直线上.
2. 培养学生勇于发现、勇于探索的精神,培养学生合作交流等良好品质.
【教学重点】
直线的特征性质,直线的方程的概念.
【教学难点】
直线的方程的概念.
【教学方法】
这节课主要采用分组探究教学法.本节首先利用一次函数的解析式与图象的关系,揭示代数方程与图形之间的关系,然后用集合表示的性质描述法阐述直线与方程的对应关系,进而给出直线的方程的概念.本节教学中,要突出用集合的观点完成由形到数、由数到形的转化.
【教学过程】
环节
教学内容
师生互动
设计意图
引入
1.用性质描述法表示大于0的偶数构成的集合,并判断-1和6在不在这个集合中.
2.作函数y=x+3的图象,并判断点(0,1)和(-2,1)在不在函数的图象上.
教师提出问题,学生解答.
教师点评.
复习本节相关内容.
新课
1. 函数与图象
一次函数的图象是一条直线,如y=x+3的图象是直线ab,如图所示.
2. 直线的特征性质
例如,通过点(2,0)且垂直于x轴的直线l.
3. 直线的方程
一般地,在平面直角坐标系中,给定一条直线,如果直线上点的坐标都满足某个方程,而且满足这个方程的坐标所表示的点都在直线上,那么这个方程叫做直线的方程.
例分别给出下列直线的方程:
(1)直线m平行于x轴,且通过点(-2,2);
(2)y轴所在的直线.
练习
(1)写出垂直于x轴且过点(5,-1)的直线方程.
(2)已知点(a,3)在方程为y=x+1的直线上,求a的值.
师:y=x+3是一个代数方程,而直线ab是一个几何图形,也就是说,代数方程可以用几何图形表示,几何图形也可以用代数方程来表示.
学生在教师引导下理解代数方程与几何图形的对应关系.
师:既然直线是点的集合,那么我们就可以利用集合的特征性质来解决这一问题.
师:如图,在直线l上的点的横坐标有什么特点?横坐标是2的点也一定在直线l上吗?
直线l的特征性质能用x=2来表述吗?
学生回答教师提出的问题.
师:对于平面直角坐标系中的任意一点,只要看它的坐标是否满足x=2,就能判断出点是否在直线l上.
点a(2,1)的坐标满足方程x=2吗?点a在直线l上吗?
点b(2.3,2)满足方程x=2吗?点b在直线l上吗?
教师强调要从两方面来说明某个方程是不是给定直线的方程.
师:由上面分析,通过点 (2,0)且垂直于x轴的直线l的方程是什么?
学生回答.
教师引导学生解答.引导过程中进一步强调直线上的点的坐标都满足方程,而且满足这个方程的坐标所表示的点都在直线上.
学生小组合作完成练习,教师巡视了解学生掌握情况.
由特殊到一般,为引入直线的方程提供基础.
提出解决问题的方法.
引导学生分析直线l的坐标特点,为概念的引入打下基础.
通过具体的例子来说明判断某点是否在给定直线上的方法.
通过例题进一步加强学生对概念的理解.
小结
1.直线的方程的概念.
2.判断一个点是否在直线上的方法.
师生共同回顾本节内容,进一步深化对概念的理解.
总结本节内容.
作业
教材p73练习a组题.
教材p73练习b组题(选做).
学生标记作业.
针对学生实际,对课后书面作业实施分层设置.
语文、数学、英语、历史、地理、政治、化学、物理、生物、美术、音乐、体育、信息技术
语文、数学、英语、历史、地理、政治、化学、物理、生物、美术、音乐、体育、信息技术
北师大版高中数学必修一教案篇十二
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象、恰当地利用定义__题,许多时候能以简驭繁、因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
二、学生学习情况分析
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
三、设计思想
四、教学目标
1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用__解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3、借助多媒体辅助教学,激发学习数学的兴趣、
五、教学重点与难点:
教学重点
1、对圆锥曲线定义的理解
2、利用圆锥曲线的定义求“最值”
3、“定义法”求轨迹方程
教学难点:
巧用圆锥曲线定义__