新人教版高一数学必修一教案 高一数学必修一教案(大全14篇)
作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。那么问题来了,教案应该怎么写?那么下面我就给大家讲一讲教案怎么写才比较好,我们一起来看一看吧。
新人教版高一数学必修一教案篇一
(1)理解直线与圆的位置关系的几何性质;
(2)利用平面直角坐标系解决直线与圆的位置关系;
(3)会用“数形结合”的数学思想解决问题、
用坐标法解决几何问题的步骤:
第二步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成几何结论、
重点与难点:直线与圆的方程的应用、
问 题设计意图师生活动
生:回顾,说出自己的看法、
2、解决直线与圆的位置关系,你将采用什么方法?
生:回顾、思考、讨论、交流,得到解决问题的方法、
问 题设计意图师生活动
3、阅读并思考教科书上的例4,你将选择什么方 法解决例4的'问题
生:自 学例4,并完成练习题1、2、
生:建立适当的直角坐标系, 探求解决问题的方法、
8、小结:
(1)利用“坐标法”解决问对知识进行归纳概括,体会利 师:指导 学生完成练习题、
生:阅读教科书的例3,并完成第
问 题设计意图师生活动
题的需要准备什么工作?
(2)如何建立直角坐标系,才能易于解决平面几何问题?
(3)你认为学好“坐标法”解决问题的关键是什么?
新人教版高一数学必修一教案篇二
教学准备
教学目标
熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。
掌握两角和与差的正、余弦公式,能用公式解决相关问题。
教学重难点
熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。
教学过程
复习
两角差的余弦公式
用- b代替b看看有什么结果?
新人教版高一数学必修一教案篇三
掌握三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型·
·利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·
一、练习讲解:《习案》作业十三的第3、4题
(精确到0·001)·
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的`进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材p65面3题
三、小结:1、三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型·
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·
四、作业《习案》作业十四及十五。
新人教版高一数学必修一教案篇四
2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;
3.通过参与编题解题,激发学生学习的爱好.
教学重点是通项公式的熟悉;教学难点是对公式的灵活运用.
实物投影仪,多媒体软件,电脑.
研探式.
一.复习提问
等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.
二.主体设计
通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求).找学生试举一例如:“已知等差数列中,首项,公差,求.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.
1.方程思想的运用
(1)已知等差数列中,首项,公差,则-397是该数列的第x项.
(2)已知等差数列中,首项,则公差
(3)已知等差数列中,公差,则首项
这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.
2.基本量方法的使用
(1)已知等差数列中,求的值.
(2)已知等差数列中,求.
若学生的题目只有这两种类型,教师可以小结(请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些等差数列是确定的,由和写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量.
教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的`制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).
如:已知等差数列中,…
由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知等差数列中,求;;;;….
类似的还有
(4)已知等差数列中,求的值.
以上属于对数列的项进行定量的研究,有无定性的判定?引出
3.研究等差数列的单调性
4.研究项的符号
这是为研究等差数列前项和的最值所做的预备工作.可配备的题目如
(1)已知数列的通项公式为,问数列从第几项开始小于0?
(2)等差数列从第x项起以后每项均为负数.
三.小结
1.用方程思想熟悉等差数列通项公式;
2.用函数思想解决等差数列问题.
四.板书设计
等差数列通项公式1.方程思想的运用
2.基本量方法的使用
3.研究等差数列的单调性
4.研究项的符号
新人教版高一数学必修一教案篇五
高一数学学习技巧
1.要读好课本
有些“自我感觉良好”的学生,常轻视课本中基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳”。因此,同学们应从高一开始,增强自己从课本入手进行研究的意识。
2.要记好笔记
首先,在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。
3.要做好作业
在课堂、课外练习中培养良好的作业习惯也很有必要.在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径,必须独立完成。同时可以培养一种独立思考和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,疲疲惫惫的作业习惯使思维松散、精力不集中,这对培养数学能力是有害而无益的。
4.要写好总结
一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。“不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。”自然界适者生存的生物进化过程便是最好的例证。学习要经常总结规律,目的就是为了更一步的发展。
通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。
2怎样把高中数学学好
1.课前预习教材。课前可以把教材上第二天老师要讲的内容看一下,看看哪些能看懂,哪些不懂。这样老师在讲课的时候我们就能带着问题去听,把自己没看懂的问题听懂。
2.上课专心听讲。这是很重要的,很多同学以为自己什么都弄懂了,就自己做自己的题目。其实即使是自己看懂了的,也可以看看老师也没有另外的理解方法,老师的方法是不是比自己好。听老师有时候讲比自己看更好。
小编推荐:高一数学怎么学才能学好
3.课后认真复习。刚学的知识,还没完全被消化吸收成为自己的知识,如果不及时复习,就很容易忘记。所以,课后一定要抽出一些时间,及时对所学进行巩固。
4.通过习题巩固。数学是理科,需要通过一定量的习题来巩固,量变积累到了一定量才能质变嘛。这个并非要各位打题海战术,只要求各位做到熟练为止。
5.错题反复研究。自己准备一个错题本,把考试时候做错的题目记录下来,写上做错的原因,反复研究,避免再次出错。
新人教版高一数学必修一教案篇六
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像。
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉。教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实。
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点。
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来。
(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。
新人教版高一数学必修一教案篇七
一、自主学习
1.阅读课本练习止.
2.回答问题
(1)课本内容分成几个层次?每个层次的中心内容是什么?
(2)层次间的联系是什么?
(3)对数函数的定义是什么?
(4)对数函数与指数函数有什么关系?
3.完成练习
4.小结.
二、方法指导
1.在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
一、提问题
1.对数函数的自变量和函数分别在指数函数中是什么?
2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?
3.是否所有的函数都有反函数?试举例说明.
二、变题目
1.试求下列函数的反函数:
(1);(2);
(3);(4).
2.求下列函数的定义域:
(1);(2);(3).
3.已知则=;的定义域为.
1.对数函数的有关概念
(1)把函数叫做对数函数,叫做对数函数的'底数;
(2)以10为底数的对数函数为常用对数函数;
(3)以无理数为底数的对数函数为自然对数函数.
2.反函数的概念
在指数函数中,是自变量,是的函数,其定义域是,值域是;在对数函数中,是自变量,是的函数,其定义域是,值域是,像这样的两个函数叫做互为反函数.
3.与对数函数有关的定义域的求法:
4.举例说明如何求反函数.
一、课外作业:习题3-5a组1,2,3,b组1,
二、课外思考:
1.求定义域:.
2.求使函数的函数值恒为负值的的取值范围.
新人教版高一数学必修一教案篇八
教学准备
教学目标
o 了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.
o 通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
o 通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.
教学重难点
教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.
教学难点:平行向量、相等向量和共线向量的区别和联系.
教学过程
(一)向量的概念:我们把既有大小又有方向的量叫向量。
(二)(教材p74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)
1、数量与向量有何区别?(数量没有方向而向量有方向)
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点o,这是它们是不是平行向量?
这时各向量的终点之间有什么关系?
课后小结
1、描述向量的两个指标:模和方向.
2、平面向量的概念和向量的几何表示;
3、向量的模、零向量、单位向量、平行向量等概念。
新人教版高一数学必修一教案篇九
本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效手段。另外,三视图部分也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的表面积或体积设置在选择或填空中。同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的帮助。所以在人们的日常生活中有着重要意义。
二、教学目标
(1)知识与技能:能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。
(2)过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。
(3)情感、态度与价值观:让感受数学就在身边,提高学生学习立体几何的兴趣,培养学生相互交流、相互合作的精神。
三、设计思路
本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的设计思路。通过大量的多媒体直观,实物直观使学生获得了对三视图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识上升为理性认识。培养学生的空间想象能力,几何直观能力为学习立体几何打下基础。
教学的重点、难点
(一)重点:画出空间几何体及简单组合体的三视图,体会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。
(二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。
四、学生现实分析
本节首先简单介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的两种投影形式,学生具有这方面的直接经验和基础。投影和三视图虽为高中新增内容,但学生在初中有一定基础,在七年级上册“从不同方向看”的基础上给出了三视图的概念。到了九年级下册则是在介绍了投影后,用投影的方法给出了三视图的概念,这一概念已基本接近了高中的三视图定义,只是在名字上略有差异。初中叫做主视图、左视图、俯视图。进入高中后特别是再次学习和认识了柱、锥、台等几何体的概念后,学生在空间想象能力方面有了一定的提高,所以,给出了正视图、侧视图、俯视图的概念。这些概念的变化也说明了学生年龄特点和思维差异。
五、教学方法
(1)教学方法及教学手段
针对本节课知识是由抽象到具体再到抽象、空间思维难度较大的特点,我采用的教法是直观教学法、启导发现法。
在教学中,通过创设问题情境,充分调动学生学习的积极性和主动性,并引导启发学生动眼、动脑、动手、同时采用多媒体的教学手段,加强直观性和启发性,解决了教师“口说无凭”的尴尬境地,增大了课堂容量,提高了课堂效率。
(2)学法指导
力争在新课程要求的大背景下组织教学,为学生创设良好的问题情境,留给学生充分的思考空间,在学生的辩证和讨论前提下,发挥教师的概括和引领的作用。
新人教版高一数学必修一教案篇十
要学好数学,最关键的是要有一个好的基础。只有打牢数学基础,才能够把高中数学好,同样只有打好基础,才能够数学取得高分。打好基础是最关键的!比如:建一栋大楼,如果地基不稳,不管大楼有多么豪华,都只是华而不实。
想学好数学,对数学感兴趣
其实学好数学最好的办法就是发自内心由衷的想要学习,渴望学习,才能体会到从学习中所收获的乐趣。自己的成就感提升,对于学习数学的积极性也就提高了,觉得数学并没有那么难,就愿意去多接触了。
多做题反复做,有题感
其实学好数学办法就是要大量做题,反复去做,题做多了就知道哪些方面需要自己去加强学习,还有就是同样做数学题做多了就会有题感。有些题,它的类型都是一样的,题做多了之后,即使你不会做,你也会找到一些解题的思路和技巧。
新人教版高一数学必修一教案篇十一
1、教材(教学内容)
2、设计理念
3、教学目标
情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、
4、重点难点
重点:任意角三角函数的定义、
难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、
5、学情分析
6、教法分析
7、学法分析
本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。
新人教版高一数学必修一教案篇十二
一、教学目标:
1、识记消费的不同类型,消费结构的含义以及恩格尔系数的含义。
2、理解影响消费水平的因素,最主要的是收入水平和物价水平;理解钱货两清的消费,贷款消费以及租赁消费时商品所有权和使用权的变化。
教学重难点
教学重点、难点:
影响消费水平的因素
恩格尔系数的变化的含义
教学过程
教学内容:
(一)情景导入:
学生活动:就日常生活的体验得出相应的回应,例如:买文具、食堂吃饭、买零食、买衣服、电话费等日常消费活动。
教师活动:多媒体课件展示丰富多彩的消费活动,其中主要集中于学生可能并有实际经验的消费内容。
所以我们这节课就影响消费的因素及消费的类型相关讨论
(二)情景分析:
探究活动一:如何安排生活费?
学生活动:互相安排并讨论各自的消费活动或消费内容,发现其中的区别
(1)收入
教师活动:设问解疑
同学们是否发现各自的消费有什么不同?而造成这个区别的原因在此主要是什么?
教师讲解:收入是消费的前提与基础。在其他条件不变的情况下,人们的可支配收入越多,对各种商品和服务的消费量就越大。收入增长较快的时期,消费增长也较快;反之,当收入增长速度下降时,消费增幅也下降。当前收入直接影响消费,预期消费则影响消费信心,当预期消费乐观时,消费信心就强;预期消费较低时,消费信心就弱。所以,要提高居民的生活水平,必须保持经济的稳定增长,增加居民收入。
(2)物价水平
教师活动:影响消费的因素除了收入水平还有没有其他了呢?
学生活动:就材料进行相应的讨论,得出初步的结论,消费活动还受到物价水平的影响
教师讲解:消费品价格的变化会影响人们的购买能力。人们在一定时期的总收入是有限的,如果消费品价格上涨,会引起购买力下降,因而消费需求就降低。反之,则购买力提高,消费需求就增加。因此,物价的稳定对保持人们的消费水平,安定生活和稳定社会具有重要意义。正是由于这个原因,稳定物价才成为国家宏观调控的重要目标。
教师:虽然我们是用同学们的消费活动做的说明,但要明白家庭消费的影响因素也是同样的道理。我们在考察了总体消费状况的前提下,接着来讨论一个具体的消费案例:
探究活动二:小君的苦恼
(1)按交易方式不同,可分钱货两清的消费、贷款消费和租赁消费
教师活动:按交易方式不同,可分钱货两清的消费、贷款消费和租赁消费。
租赁消费也是一种比较常见的消费方式,我们可以通过租赁的方式使商品的所有权不发生变更,而获得该商品在一定期限的使用权。
贷款消费是一种新兴的消费方式,主要用于购买大宗耐用消费品及服务。因为这些消费品超出消费者当前的支付能力,因而预支自己未来的收入,来满足当前的需要。也就是我们常说的“花明天的钱,园今天的梦”。贷款消费的交易方式,其消费品的所有权与使用权没有完全转移。在消费者按照约定按时还贷的前提下,消费品的所有权与使用权逐渐发生转移,直至还完贷款为止,其所有权与使用权才彻底转移到消费者手里。
贷款消费不仅满足了消费者的生活需要,提高了消费者的生活质量,而且促进了经济的发展,特别是我国经济发展进入买方市场后,贷款消费对扩大内需,拉动经济的增长起来重要的作用。所以,我们要转变传统的消费观念,以积极的态度来对待贷款消费,通过贷款消费满足来满足当前的需要,通过生活质量。当然,在贷款消费是也要考虑自己的偿还能力,还要讲究信用,按时还贷。
学生活动:就相关情境进行讨论,做出自己的选择并给出相应的解释理由
(2)按消费对象分,消费分为有形商品消费和劳务消费
教师活动:按消费对象分,消费分为有形商品消费和劳务消费,有形商品消费消费的是有形的商品,而劳务消费消费的是无形的服务。
万事大吉了!大家知道小君已经达到哪种消费层次了吗?
生存资料消费?发展资料消费?享受资料消费?
学生活动:讨论并回答相应问题,得出享受资料消费的结论
(3)按消费的目的不同,可分为生存资料消费、发展资料消费和享受资料消费
教师活动:按消费的目的不同,可分为生存资料消费、发展资料消费和享受资料消费。其中生存资料消费是最基本的消费,满足较低层次的衣食住用行的需要;发展资料消费主要指满足人们发展德育、智育等方面需要的消费;享受资料消费满足人们享受的需要。随着经济水平的提高,发展资料和享受资料消费将逐渐增加。
探究活动三:考查自己家里的消费结构
学生活动:认真阅读并讨论得出结论家庭消费的不同内容体现了不同的消费水平
(1)消费结构
教师活动:多媒体展示近几年社会的消费现状,例:假日旅游、电子产品、汽车等。引导学生通过不同层面的直观感受来了解消费结构的变化。
要了解家庭消费水平先要知道一个概念就是消费结构,是指人们各类消费支出在消费总支出中所占的比重。消费结构会随着经济的发展、收入的变化而不断变化,变化的方向遵循由生存需要到发展需要再到享受需要的顺序。
(2)恩格尔系数
教师活动:恩格尔系数指食品支出占家庭总支出的比重,用公式表示:恩格尔系数=食品支出费用/各项消费总支出费用×100%。一般恩格尔系数越大,越影响其他消费支出,特别是影响发展资料和享受资料的增加,限制消费层次和消费质量的提高,因此生活水平就越低,相反恩格尔系数减小,生活水平就提高,消费结构会逐步改善。恩格尔系数是消费结构研究中的重要概念,在国际上受到普遍承认和重视。
国际上甚至用它作为区分国际间消费结构层次高低的最一般标准。联合国粮农组织在20世纪70年代中期提出划分穷国富国的标准:恩格尔系数在60%以上为绝对贫困国家;50%~59%的国家为勉强度日(我们称之为温饱型);在40%~49%为小康水平;在20%~39%为富裕水平;20%以下为极富裕国家。
我国这几年经济结构有了很大改善,消费水平不断提高。
(三)情景回归:
教师组织学生反思总结本节课的主要内容,并进行当堂检测,了解教学反馈。
高一政治必修二教案
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
新人教版高一数学必修一教案篇十三
1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.
(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.
(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.
2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.
3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.
教材分析
(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.
(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.
(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点.
教法建议
(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
新人教版高一数学必修一教案篇十四
1.使学生掌握的概念,图象和性质.
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.
(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.
2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.
教材分析
(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.
(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.
教法建议
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.
(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.
人教版高一数学必修一教案