小学五年级数学教案(大全14篇)
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。那么我们该如何写一篇较为完美的教案呢?那么下面我就给大家讲一讲教案怎么写才比较好,我们一起来看一看吧。
小学五年级数学教案篇一
1.知识与技能
理解并掌握小数化分数和分数化小数的方法;
2.过程与方法
能熟练的将分数和小数互化;
3.情感态度价值观
分数与小数互化的方法;
课件、投影仪。
教学环节
设计意图
教学预设
一、复习准备
通过两个题的复习,为这节课的学习做铺垫,这节课会用到这些解题的方法。
1.读出下面各小数,并说出它们的意义。
0.3,0.25,0.14,1.34,4.06,0.08,1.042,0.315。
2.求下面各题的商。(小数、分数。)
3÷4 15÷45 1÷8
5÷10 9÷10 6÷15
在我们的日常生活和进一步的学习中,常会遇到一些比较分数和小数大小的实际问题,今天我们就来学习怎么比较分数和小数的大小。(板书课题)
二、探索发现
通过两种动物的赛跑比赛,沟通分数与小数的联系,让学生在自主的学习中发现小数与分数互化的方法。
先让学生自己来做,教师巡视,看学生的计算情况,同桌之间可以互相交流,然后找学生回答自己的作法。
生1:根据小数的意义,把0.9写成分数,0.9=,这时只要比较和这两个分数的大小即可。
生:在比较和的大小时,需要先把这两个数通分,它们的公分母是10,所以,,由此可得0.9,所以羚羊比鸵鸟跑的快。
师:这种方法很好,是先把小数化成了分数,然后再比较分数的大小。谁还有不同的方法?
生一齐:也可以把分数化成小数,然后比较两个小数的大小。
师:对,谁是用这种方法做的,来说一说。
生:把化成小数是:=4÷5=0.8,0.8
师:通过上面的分析过程,我们可以看出,在比较分数和小数的大小时,既可以把分数化成小数,也可以把小数化成分数。
[议一议]:怎样把分数化成小数?怎么把小数化成分数?
我们再来看下面的几个例题,通过例题我们来总结规律。(教师演示课件“分数与小数的互化”)
三、课堂练习
通过练习熟练这节课所学知识。
课本p86“试一试”:
1.把下面的分数化成小数。(除不尽的保留两位小数)
2.把下面的小数化成分数。(能约分的要约分)
0.4 1.5 0.12 2.8
四、课堂小结
这节课你有哪些收获,同桌之间相互交流一下。
五、课后作业
课本p86“练一练”1、2、3题。
板书设计:
课题:分数、小数互化
1.复习
2.1分钟赛跑
3.例题
4.课堂练习
小学五年级数学教案篇二
书第54——55页,有趣的测量及试一试第1、2题。
1.知识与技能:结合具体活动情境,经历测量石头的试验过程,探索不规则物体体积的测量方法。
2.过程与方法:在实践与探究过程中,尝试用多种方法解决实际问题。
3.情感、态度与价值观:在观察、操作中,发展学生空间观念。
用多种方法解决实际问题。
探索不规则物体体积的测量方法。
不规则石头、长方体或正方体透明容器、水。
一、导入新课
老师出示准备好的不规则石快。
师:这个石块是什么形状的?(不规则)
什么是石块的体积?
你有什么困难?
二、教学新知
1.测量石块的体积
(1)小组讨论方案
师:我们不能直接用公式计算出石块的体积,可以怎么办呢?你有什么好的方法吗?
(2)小组制定方案
(3)实际测量
方案一:找一个长方体形状的容器,里面放一定的水,量出水面的高度后把石头沉入水中再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的体积。也可以分别计算放入石头前的体积与放入石头之后的总体积之差。
师:为什么升高的那部分水的体积就是石块的体积?
方案二:将石头放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积。
师:为什么会有水溢出来?
这两种方案实际上都是把不规则的石头的体积转化成了可测量计算的水的体积。让学生说出“石块所占空间的大小就是石块的体积”。
1.实际应用
(1)读题,理解题意。
(2)分析:你是怎么想的?
(3)学生尝试独立解答。
(4)集体反馈,订正。
让学生运用在探索活动中得到测量的方法,即“升高的水的体积等于土豆的体积”,然后用“底面积×高”的方法计算。2×1.5×0.2=0.6(立方分米)
三、课堂小结
学习了这节课,同学们有什么感受和体会?有什么提高?
1.书第55页第2题。
本题引导学生开展测量不规则物体体积的活动。一粒黄豆比较,先测量100粒黄豆的体积,再计算出一粒黄豆的体积。
2.学生再找一些实物,测量出体积。
板书设计:
有趣的测量
方案一:
方案二:
“底面积×高”的方法计算。
2×1.5×0.2=0.6(立方分米)
小学五年级数学教案篇三
1.结合具体情境,能说出简单的随机现象中所有可能发生的结果,体验事件发生的随机性。
2.在游戏中感受随机现象结果发生的可能性是有大小的,能对简单随机现象发生的可能性大小作出定性判断。
3.借助观察猜测、操作实验、活动交流,培养学生合理推测的能力,并能用数学的眼光看待生活现象。
1.初步感受事件发生的可能性是不确定的,
2.体会事件发生的可能性有大有小。
多媒体课件、球以及摸球用的袋子、记录单、扑克牌。
师:同学们你们都喜欢玩游戏,这节课我们就一起来玩游戏。看谁能在玩游戏的过程中学到最多的数学知识。玩游戏前老师先分组,1、2?大组为甲队,3、4大组为乙队。哪一个组先来玩游戏。
师:两个组都想先来,我们用什么方法来决定那个组先来。
生:石头、剪刀、布。
师:石头、剪刀、布你们觉得这种方法公平吗?同桌之间单号代表甲队,双号代表乙队互相猜三次试试看。
师:刚才谁赢了?你们觉得这个游戏公平吗?(公平)
师:为什么,能不能用可能性的知识来说明这个游戏的公平性呢?今天这节我们继续来研究可能性。板书课题。
1、你觉得两个同学玩石头、剪刀、布的游戏,其中一人获胜的可能性是多少?为什么?
2、要想知道每人获胜的可能到底是多少,我们必须列举出两个人完游戏时会出现的所有可能的结果。请同学们小组合作讨论用自己的方法,把完游戏时会出现的所有可能的结果记录下来。
3、小组合作交流
4、汇报:发现:有的学生列举了7种、8种、9种等各种不同的结果和记录方法。
5、有没有办法不漏掉也不重复呢?
6、老师利用表格归纳总结列举方法?
1、做一
(1)老师读题:
(2)相信大家都能用这3个数字组成不同的三位数吧。那么谁能办法写出所有不同的三位数呢?请把它写下来。
师:用这样的方法来决定“胜负”你觉得公平吗?为什么?
生:单数赢了4次,赢和可能性是4/6,双数赢了2次。赢的可能性2/6。
2、出示练习1。两人一组,算出2、3、7、8中任意两个数的积。
通过今天的学习,你有什么收获?
小学五年级数学教案篇四
1、联系长方体表面积在生活中的运用,培养学生用数学知识解决问题的意识。
2、在摆、算、想象、猜想等学习活动中,培养学生有序思考、合理分类、化繁为简的思维方法,并发展空间观念。
3、会根据实际需要,合理策划选择包装样式,体现解决问题策略的多样化。
4、能用准确的数学语言描述思考过程。
教学过程
一、引入。
师:生活中,常把几个长方体物体包成一个大长方体。这样就会有各种各样的包装。
学生间相互交流了解的情况。
师:前几天,我曾让大家去了解这方面的情况,谁来说说你带来了什么?
生:火柴盒、香烟盒或药盒等。
师:这节课,我们一起来讨论、研究问题。(揭题)。
二、展开。
2、试一试:要求摆得出,还要说得明白。
交流:有哪几种?为了方便表达,最大面用字母a表示,次大面用字母b表示,最小面用字母c表示。
归纳:三种不同包法:
a面重叠(上下叠);
b面重叠(前后叠);
c面重叠(左右叠)。
生:6、7、8、9、10、12种等。
师:那么,究竟有几种呢?想试试吗?(生:想!)
师:两人一组,边摆边思考,怎样说才能让大家明白你的摆法?
合作学习:
生:包装方式多,记一记,不会重复。
(2)大组交流、汇报。
两人一组汇报,要求一位同学边说边摆,另外一位同学选择相应的直观图贴在黑板上。
学生汇报:总共有9种不同的包法。(见下图)
师生归纳:按接触面思考:a、b、c各一种;ab、ac、bc各两种。
师:这种方法怎么样?它是按什么思考的?
生:按接触面来思考;这样思考有序,不容易漏掉。
生:按上下、前后、左右的方向拼摆,有3种包法。
师:大家从中受到什么启发?还可以怎样考虑?。
生:哦,我明白了!还可以将两个b面重叠(前后叠)的长方体看作一个大长方体,按上下、前后、左右的方向拼摆,又有3种包法。
生:还可以将两个c面重叠(前后叠)的长方体看作。
生:(抢着说)对,对!它也有3种包法。因此6个长方体共有33=9种不同的包法。
师:这种方法怎么样?
生:这种方式很好,很清楚。
师:先把2个小长方体看作一个大长方体,那么6个小长方体就可以看作3个大长方体。2个小长方体间的位置不同,就得到了3个不同长方体的包装问题。这种将复杂的问题转化为已经解决简单问题,是我们解决问题的基本方法,很重要。
4、师:现在我们来猜猜,哪些样式的表面积较大、较小?说理由,并算算。
师:哪个表面积更小些呢?
生:可以算一算。
师:假设a面面积为6,b面为3,c面为2。
生:62+312+212=72,64+36+212=66,64+312+26=72。这几个表面积都比较小。
三、讨论现实生活中的各种包装。
教师取一种物品(火柴),先请大家猜可能的包装样式,再说说理由,结合实际谈想法。
学生打开一包火柴观察后说,(见图)这种样式表面积小,也就是材料省。
师:是不是厂商对商品的包装都考虑节省材料呢?
生:不一定。
师:分小组,互相观察带来的其他物品,说说自己的看法。
学生纷纷举例说明:有的考虑经济、实用,有的考虑美观、大方,有的考虑方便不同的需要就有不同的标准。
四、小结。
师:这节课对你有什么启示?
生:生活中有许多事,可以用数学方法来解决;包装这一小问题,学问可不小。
小学五年级数学教案篇五
教材19页内容,能被3整除的数的特征。
使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。
教学重点:
能被3整除的数的特征。
教学难点:会判断一个数能否被3整除
教学方法:
三疑三探教学模式
教具学具:
课件等。
教学过程
一、设疑自探(10分钟)
(一)基本练习
1、能被2、5整除的数有什么特征?
2、能同时被2和5整除的数有什么特征?
(二)揭示课题
我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)
(三)让学生根据课题提问题。
教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)
(四)出示自探提示,组织学生自探。
自探提示:
自学课本19页内容,思考以下问题:
1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。
2、能被2、3整除的数有什么特征?
3、能被2、3、5整除的数有什么特征?
二、解疑合探(15分钟)
1、检查自探效果。
按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。
2、着重强调;
一个数各个数位上的数字之和能被3整除,这个数就能被3整除。
三、质疑再探(4分钟)
1、学生质疑。
教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?
2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)
四、运用拓展(11分钟)
(一)学生自编习题。
1、让学生根据本节所学知识,编一道习题。
2、展示学生高质量的自编习题,交流解答。
(二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。
1、判断下列各数能不能被3整除,为什么?
72 5679 518 90 1111 20373
2、58 115 207 210 45 1008
有因数3的数:( )
有因数2和3的数:( )
有因数3和5的数:( )
有因数2、3和5的数:( )
让学生说说怎么找的。
(三)全课总结。
1、学生谈学习收获。
教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。
2、教师归纳总结。
学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。
板书设计:
能被3整除的数的特征 一个数各个数位上的数字之和能被3整除,
这个数就能被3整除。
小学五年级数学教案篇六
1、使学生能比较熟练的把低级单位的名数聚成高级单位的名数的练习。
2、能比较熟练的比较分数的.大小
教学过程:
1、把低级单位的名数聚成高级单位的名数的练习。
2、长度单位,面积单位。重量单位,和时间单位。
二、用分数表示各题的得数
7分米=()米
31厘米=()米
309米=()千米
119千克=()吨
13分=()小时
63克=()千克
51平方厘米=()平方分米
97平方分米=()米
2、比较分数的大小
14/25和13/255
12和5/167
11和5/11
7/30和7/249
28和15/284
27和4/31
3、比较下面每组数的大小,并用小于号连接
5/14、3/14和9/1411/13、
11/12和11/146/17、
6/23和6/19
12/35、16/35和9/353
5.3/4和2/54/
15.11/15和11/12
第4、5题是求一个数是另一个数的几分之几的应用题
1、学生掌握比较分数大小的算理和方法,再进行比较。
2、几个分数排列是,是要求从大到小,还是从小到大,根据意思进行解答。
小学五年级数学教案篇七
(1)理解小数乘法的意义和计算法则,会根据实际需要求积的近似数,会计算小数连乘、乘加、乘减,并根据整数乘法的运算定律计算小数乘法。
(2)提高学生计算、估算的能力及观察、分析、判断的能力。
(3)培养学生认真书写、认真计算及时检验的好习惯。
第一课时
教学内容:小数乘整数
教学目标:
(1)理解小数乘以整数的意义,掌握小数乘以整数的计算法则,正确地进行计算。
(2)通过运用迁移的方法学会新知识,培养类推的能力。
(3)培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。
重点:
(1)理解小数乘以整数的意义和计算法则。
(2)熟练掌握小数乘以整数的计算方法,能够正确地进行计算。
难点:
理解计算法则的算理。
教学过程:
一、复习辅垫
1.读题列式,并说一说各算式所表示的意义
4个13是多少?18个20是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算。)
小学五年级数学教案篇八
1、能正确估计不规则图形面积的大小。
2、能用数格子的方法,计算不规则图形的面积。
能用数格子的方法,计算不规则图形的面积。
课件
一、开门见山,揭示课题
在现实生活中,学生将接触到大量的不规则图形的面积问题,本节课我们就来学习估计、计算不规则图形的面积。
二、探索新知
本探索活动分为三个部分,前两个部分主要是呈现了小华出生时与2岁时两个不同年龄段脚印面积的大小,第三个部分是让学生运用自己探究出的方法,估计自己的脚印面积。在开展实践活动时,可以按照教材前后呈现的内容,先讨论估计小华两个年龄段脚印面积的大小,然后采用数格子的方法(不满一格的可以按半格来数)来验证前面的估计值。通过两个年龄段脚印大小的估计,要让学生理解成长期中脚印面积的大小与年龄的增长有着密切的关系。
估计自己脚印的面积可以回家完成,然后将所描好的脚印图带到学校进行交流。教学时,教师还可以找一幅公园或某个活动场所的平面图,利用方格纸估算这幅平面图形的面积,再组织同学交流。
如果有些班级的学生能力较强,也可以补充一些没有方格背景的不规则图形面积的估计与计算。学生在估计与计算这些图形的面积时,首先要会把这个图形看作近似的基本图,并围一围,随后用尺量一量基本图的相关条件的尺寸,并计算面积。
板书设计:成长的脚印
小学五年级数学教案篇九
1、复习:果园里有梨树42棵,桃树的棵数是梨树的3倍。梨树和桃树一共有多少棵?(板演)
2、根据下列句子说出数量之间的相等关系。
杨树和柳树一共120棵
杨树比柳树多120棵
杨树比柳树少120棵
3、出示线段图:梨树:
桃树:
从图上你可以知道什么?如果梨树的棵树用x表示,桃树的棵数怎样表示?
4、出示条件:母鸡的只数是公鸡的5倍。
5、在括号里填上含有字母的式子。(练习二十一第1题)
6、交流:板演,你是根据怎样的数量关系来解答的?
7、导入:在四年级时我们学习了列方程解应用题,谁来说一说列方程解应用题的步骤是怎样的?今天这节课,我们继续来学习列方程解应用题。(出示课题)
(1)齐读。
(2)这道题已知什么条件,要求什么问题?边问边画出线段图。
(3)“梨树和桃树各有多少棵”是什么意思?
这道题要求的.数量有两个,你认为用什么方法做比较简便?
(4)下面我们就以小小组为单位进行讨论:这道题用方程来做,学生讨论。
(5)交流。
(6)通过讨论和同学们的交流,你们会解这道题了吗?请做在自己的作业本上。一生板演,其余齐练。
校对板演。还可以怎样求桃树的棵树?
(7)方程解好了,下面要做什么了?你准备怎样检验?(把问题作为已知数进行检验,)生说,师板书,齐答。
2、教学想一想。
现在我们把第一个条件改一下,变成“果园里的桃树比梨树多84棵”,你能列方程解答吗?(出示改编题)
一生板演,其余齐练。
集体订正。提问:设未知数时你是怎样想的?你是根据什么来列方程的?
3、请同学们比较这两道题,在解答上有什么相同的地方?又有什么不同的地方?为什么会不同?因此,你认为列方程解应用题的关键是什么?(找出数量之间的相等关系。)
4、小结。
从刚才的两道题可以看出,如果两个数量有倍数关系,就可以把1份的数看做x,几份的数就是几x;把两部分相加就是它们的和,两部分相减就是它们的差。我们可以根据数量之间的相等关系,列方程来解答。
1、练一练。校对:你是根据哪个条件说出数量之间的相等关系的?
2、只列式不计算。
一个自然保护区天鹅的只数是丹顶鹤的2.2倍。
(1)已知天鹅和丹顶鹤一共有96只,天鹅和丹顶鹤各有多少只?
(2)已知天鹅的只数比丹顶鹤多36只,天鹅和丹顶鹤各有多少只?
3、选择正确的解法。
明明家鸡的只数是鸭的3倍,鸡和鸭一共56只,鸡和鸭各有多少只?
(1)解:设鸡和鸭各有x只。x+3x=56
(2)解:设鸡有x只,鸭有3x只。x+3x=56
(3)解:设鸭有x只,鸡有3x只。x+3x=56
商店里苹果的重量是梨的3.6倍,苹果比梨多26千克。苹果和梨各有多少千克?
(1)解:设梨有x千克,苹果有3.6x千克。3.6x-x=26
(2)解:设梨有x千克,苹果有3.6x千克。3.6x+x=26
老师有个疑问,想请你们帮我解决:为什么今天学的应用题用方程来做比较好,而复习题用算术方法做比较好呢?说明同学们掌握得不错。
练习二十一/2—5
小学五年级数学教案篇十
教学内容:
教学目标:
1.掌握看图找关系的方法。能根据给定的事件或行为从图表中选取相关的信息,进行有根有据地思考与分析;能根据图表中呈现的信息进行合理想像,想到图背后的事件或行为。
2.感受图表简洁、直观的特点,感受数学课的趣味性。
教学重点:
1.掌握看图找关系的方法。
2.能够根据需要选取相关信息,进行有根有据的分析。
教学过程:
一、看图
师:同学们,找相同游戏好玩吗?
生:好玩。
师:如果给你四幅图,让你找相同,还会吗?
生:会
师:那就开始吧。
生1:它们都是折线统计图。
师:没错,我们就用折线统计图的眼光来看看它们。还有什么相同?
生2:我看到都有横轴和纵轴
师:眼力不错,看出都有两条轴。(画出两条轴)还有吗?
生3:我看到都有时间和速度。
师:的确,它们都有两个量。(贴出卡片:速度、时间。呈现如下板书:)还有吗?
生4:它们都有向上的或向下的线。
生:没有了。
师(指着图问):看看这两个量,应该摆在什么位置上?(指名操作,学生将板书修正如下:)
师:瞧,他这么一摆,又摆出了一处相同,横轴都表示什么?(生齐:时间。)纵轴呢?(生齐:速度。)
师:看来,找相同难不倒大家,我们换个游戏——找不同。
生1:它们的折线都不相同。
生齐:速度和时间的关系。
【教学意图】将本课的生长点立于折线统计图,并以学生熟悉的、感兴趣的游戏拉开本课的序幕,让学生一下子以饱满的情绪投入了看图方法的探索中,既复习了折线统计图的有关知识,经历“看什么——怎么看——看到了什么”的过程,从而形成技能。
二、找关系
一创设情境
生:想。
师:不告诉你们。给段声音,看谁能听出来。(播放汽车行驶的声音)
师:听出来了?
生1:我听到汽车一开始是越来越快。然后就越来越慢。
师:听力不错。你说的越来越快,我们如果称它为速度增加,那么越来越慢就称为——
生1:速度减小。
师:聪明。只是,速度增加后马上就减小吗?
生2:不是,中间的一段速度是保持不变的。
师:很好,就用你的这个词——保持不变。
师:原来,汽车的速度经历了这样的变化过程:先是——(生:速度增加),接着——(生:保持不变),然后——(生:速度减小)。
师:想一想,刚才的.四幅图,哪一幅能表示出汽车的速度变化情况?
生1:图三。
师:都选图三吗?
生2:图四。
师:瞧,
师:商量商量,是让我把答案告诉你们,还是自己研究?
生:自己研究。
师:有志气,我就喜欢这样的孩子!现在请大家拿出抽屉里的探究单,选一幅自图进行研究,你可以选图三,也可以选四图四。开始吧。
二自主探究
三反馈交流图三
1.交流第一题
(1)体会函数一一对应的思想,渗透动态过程
(指名汇报第一题表中的数据)
师:有谁和他填的不一样的吗?
生:没有。
师:看来,每个时间点只有一个速度和它相对应。
【教学意图】本节课上,学生答案都一致。其实,我更希望学生出现不同的答案。如果不同的答案,则可根据生成引导学生比较,谁对谁错?怎么看出来?这样既复习了用数对知识看点的方法,还可使函数一一对应的思想让学生体会得更深刻。正因为每个时间点都对应着的速度,因此可将这无数个点汇集成折线,才表示出了汽车的行驶速度变化情况。
(2)完善图中的信息。
生1:第一个0是第0分的速度,最后一个0是第四分的速度。
师:时间不同。从哪儿看出来的?
生1:从表上看出来的。
师:图上看得出来吗?
生1:图上也看得出来。
师:还有不同吗?
生2:第一个0是汽车起动时速度为0,第二个0是汽车停止时的速度为0。
师:真了不起,他联系了生活实际,想到汽车的运动状态。还有不同吗?
生3:第一个0,汽车在“久久厝边超市”,第二个0,汽车在三实小。
师:同意吗?
生齐:同意。
师:那我把这两条信息填到图中。(在探究单上补上两个地点的词语)
这么一交流,我们发现,原来表格中藏着这么多知识!同学们,交流快乐吗?(生:快乐)。让我们继续交流第二题。
2.交流第二题
(指名学生交流)
(1)师生互动
师:我们来看看他填写的第一句话。“从第0分到第1分”你是从哪儿看出来的?
生1:从横轴看出来的。
生2:从纵轴上看出来的。
师:竖看看,看出了速度的变化。(板书:竖看)
师:结合横看、竖看得到的信息想一想(板书:想一想):时间在变,速度在(生:增加),所以这段折线表示速度增加。
师:我们这么一交流,不仅知道了这一段为什么表示出速度增加,还知道了看图的方法。
(2)生生互动
师:我们就像这样继续交流第二句话和第三句话好吗?
生齐:好。
师:那么下面的交流活动就交给同桌进行了,开始交流吧。
3.描述汽车的行驶情况。
师:汽车的行驶情况现在清楚了吗?
生:清楚了。
师:谁能完整地描述一下汽车这段时间的速度变化情况?
生:(略)
师:说得怎样?
生(齐):很好!
师:那就把掌声送给他。现在,你们对汽车的行驶情况还有问题吗?
生:没有了。
4.数_想
师:我有个问题,想请大家回答:从第一分到第三分,汽车行驶的路程是多少米?
生1:1200米。
生2:800米。
师:你怎么知道是800的?
生2,从第一分到第三分,时间是两分钟,每分钟速度是400米,所以路程是800米。
师:你怎么却说是1200米呢?
生1:我把时间看成了三分钟。
师:你也是横看,看出时间,竖看,看出速度后算出来的吧?
生2点点头。
师:原来要解决这个问题也得用到看图找关系的方法。现在,你们会看图找关系了吗?
四反馈交流图四
生:不能。因为汽车不可能一下子把速度从0增加到400米/分。
生:没有时间,速度是不可能变化的。
师:说得多好啊,那么你认为第一段的折线要怎么摆放才合适?(指名上台调整第一段折线)
师:这样可以了吗?
生1:不行,第三段不对,要这样摆。(学生上台操作)
师:这么一摆,不就是图三了吗?
三、拓展延伸
一离家的距离与时间的关系图
生(齐)好玩
师:还想不想看看别的图?
生(齐):想
师:瞧,图来了。
师:这两幅图中有一幅表示的是林老师出门散步,走到读报栏,在那儿看了一会儿报纸后回家。请问:是哪幅?说说你的理由。
生答略
师:如果是图a,林老师的散步情况又是怎样的?
生答略。
生(齐):有。
师:好的,一起来看看。
师:这幅图描述的是谁和谁的关系?
生1:是足球场的音量和时间的关系。
师:是的,这是我看过的一场足球比赛,从音量和时间的关系来看,你觉得精彩吗?
生:精彩。
师:精彩的球赛还需要有精彩的解说员。现在我们就开展优秀解说员评比活动。谁能解说得精彩就评他为“优秀解说员”。
师:同学们,要当好优秀解说员,解说时应该注意什么?
生1:要说清楚时间的变化和音量的变化。
师:也就是说要用上这节课学到的本领——看图找关系。这个要求很重要。还有补充吗?
生2:要关注场上的变化,说清楚比赛的情况。
师:也就是要根据图想像赛场的情况。这个建议不错。还有吗?
生3:要说的大声些,要有感染力,能带动观众。
师:这是个高标准,我觉得能做到这两点就已经很不错了。
师:解说标准制定好了,我们就开始pk吧,
(指名同学解说,其余学生点评,教师给学生颁发“优秀解说员”证。过程略)
【设计意图】出示足球场的音量变化图时,课已进入尾声。这幅图如果只让学生看图说出时间与音量的关系,显然肤浅了;如果只让学生进行数学计算,说出上下半场各用时多少,中场休息用时多少,显然片面了;如果要完成以上所有任务,时间不允许,且有重复教学的嫌疑。此时,应如何延续本节课的坡度与梯度?如何将学生的思维标杆立于点?我想到了评选优秀解说员的数学活动,因为pk的方式,可以有效激发学生的热情。pk前约定评比标准,使学生明确看图的要求:既要看出音量与时间的关系,还要合理地想像图背后隐藏的故事。pk过程与学生的评价,使学生提升看图找关系的能力,也感受到本课与生活的联系,体验到数学课的乐趣。
小学五年级数学教案篇十一
星期日的安排(第68~70页)
1、理解分数加减法混合运算的顺序。
2、能正确计算分数加减混合运算。
]理解分数加减法混合运算的顺序,能正确计算分数加减混合运算,理解分数中的剩余问题。
调查活动。'
一、复习导入
1、计算。3/8+1/2 5/6—3/4 11/12—1/6
问:进行分数加减法计算时应注意什么?
2、引入。这节课我们来探讨分数加减混合运算的方法。
板书课题:星期日的安排。
二、探索新知
1、展开“星期日的安排”调查活动。通过对星期日三种形式的安排,引出了问题“留在家中的同学占全班同学的几分之几?”
2、讨论出算式。先让学生们独立尝试列式,然后再引导学生们将全班学生看作整体“1”,并作为总数进行运算。
3、讨论具体的运算过程。可以是先全部通分,再进行计算;可以是先从“1”中减去部分,再用剩余的减去另外部分;还可以先计算两个部分的和,再从“1”中减去“和”。
4、做“试一试”题目。
5、归纳小结。
三、巩固练习
1、课本“练一练”的第1、2、3题。
第1题,请学生独自完成计算。
第2题,先作草图,再进行解答。
第3题,先填表,在组织学生进行讨论“为什么行一段山路,山路的路程占总路程的几分之几与所行时间占总数的几分之几会不同?”。建议作草图来帮助理解本题目。
2、课后完成“练一练”的第4~7题。
小学五年级数学教案篇十二
20xx年9月25日。
练习八7-10题。
1、使学生在练习的过程中进一步理解和掌握小数加减法的计算方法以及和整数加减法的关系,能熟练地进行计算。
2、进一步提高自己的计算能力。
3、在解决问题的活动中,培养学生与他人合作的.意识和能力。
进一步理解和掌握小数加、减法的计算方法。
1、口算。
2、计算并验算。
3、找出错误的地方。
学生解决,教师针对学生存在的错误予以纠正。
1、练习八第7题。
学生地理思考解决问题。
指名回答。
针对存在的错误予以纠正。
2、练习八第8题。
学生独立计算。
指名板演,教师讲解,纠正错误,予以改正。
3、练习八的第九题。
解决前三个问题后,还可以结合统计图的特点,
引导学生进一步提出:“这一天中哪段时间病人体温上升最快,上升了多少度”,“哪段时间病人体温下降得最快,下降了多少度”等问题,以激发学生解决问题的兴趣。
4、练习八的第十题:
可以让学生独立解答前两个问题,并要求说说每题的思考过程,再让学生提出一些不同的问题进行解答。
练习八的思考题。
可以先根据“5.1减去一个两位小数得2.76”,算出作为减数的两个小数应是2.34。再用5.1加上2.34,然后可得到正确的结果。
你认为你学的怎么样?能给自己一个评价吗?
布置作业:补充习题练习。
小学五年级数学教案篇十三
本课教学内容是在学生掌握了长方体特征及表面积计算等相关知识的基础上,进一步探究几个相同长方体组合成新长方体的多种方案以及使其表面积最小的最优策略。教材把《数学与购物》这一系列数学实践活动安排在第六单元后,主要意图是通过这样一系列与生活紧密联系的实践活动,培养学生综合应用所学的知识解决实际问题的能力。在这一系列实践活动中,教材安排了三个内容,主要涉及数与代数、空间与几何两部分知识,在解决生活实际问题的过程中,分别培养了学生的估算意识、计算中的最优策略以及多个长方体叠放后使其表面积最小的最优策略。本课教学内容是这一系列实践活动中的最后一个内容。
包装问题在日常生活与生产中经常遇到,教材创设包装的情境,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它不仅培养学生的节约意识,更体现了数学的优化思想。有助于培养学生空间观念,提高解决实际问题的能力,感受数学与实际生活的密切联系。同时有利于学生感悟数学思想,积累数学活动经验。
1、学生已有的知识基础。
在本课学习之前,学生已熟练掌握了长方体、正方体的特征,能准确、迅速地计算出单一物体的棱长、表面积、体积,能把几个相同的正方体组合成新的正方体。初步接触了由两个相同的正方体拼成一个长方体后表面积发生的变化。在第二单元探索活动《露在外面的面》中,又训练了学生有序的观察能力和计算露在外面的面 面积的能力。
2、学生已有的生活经验。
学生大都接触过物品的包装,能清楚地意识到用包装纸包装起来的部分就是求物体的表面积。
3、学生学习本课内容可能遇到的困难及学习方式的研究。
学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方案的多样化与策略的最优化可能存在问题,通过动手操作大多数学生可以得到由4个相同长方体组合成新的长方体时的六种拼摆方案,但思维可能会无序,对于方法的归纳和总结也存在困难。因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同归纳总结,有助于培养学生思维的有序性。
小学五年级数学教案篇十四
1、结合解决问题的具体情境,体会面积单位换算的必要性,以及面积单位之间的换算关系。
2、认识公顷、平方千米等面积单位。
3、能进行简单的面积单位换算,解决一些简单的实际问题。
体验1公顷、1平方千米的实际大小,发现平方千米和公顷之间的进率。
正确建立1公顷、1平方千米的表象。
1、引导学生通过观察、比较,自主发现如果用于计量面积很大的土地,需要用公顷和平方千米作单位比较方便。
2、使学生进一步体验解决问题的乐趣,提高解决问题的策略水平。
一、复习铺垫
1.在括号里填入合适的面积单位。
(1)一张银行卡的面积大约是40()。
(2)数学书的封面面积大约是2()。
(3)我们所在教室的面积大约是50()。
(4)我校田径场的面积大约是1()。
2.我们已经学过了哪些面积单位?联系实际说一说。
二、揭示课题
面积单位在生产、生活中有着广泛的应用,在此之前,同学已经学习和掌握了平方厘米、平方分米、平方米这些较小的面积单位。在生产、生活中,往往需要度量较大图形的面积,如:某林业局要对当地一块沙漠地区进行绿化,绿化区域是一个长为5千米、宽为4千米的长方形,他的面积是多少?学生列式计算,5000×4000=20000000平方米,即面积是两千万平方米,用学过的面积单位平方米来表示这个较大的数不方便,怎样解决这个问题呢?这就是这节课我们要学的内容。比平方米更大的面积单位“公顷”与“平方千米”。
三、活动感知1公顷的大小。
1.你认为1公顷到底有多大呢?请你发挥自己的想像猜一猜。
2.师指出:边长是100米的正方形(土地),面积是1公顷。算一算:1公顷等于多少平方米?(板书:1公顷=10000平方米)公顷是比平方米大得多的面积单位。
3、2公顷有多大呢?5公顷呢?
4.边长是100米的正方形到底有多大?联系日常生活实例找一找。
5.出示边长为50米的场地。
(1)这个正方形有1公顷吗?你是怎么判断的?
(2)多少个这么大的地方就是1公顷了?你会怎么把它们拼起来呢?
(3)展示各种拼法。
6.出示边长10米(几位同学手拉手为边长)的图。
(1)这个正方形有多大?
(2)多少个这么大的地方就是1公顷了?你会怎么把它们拼起来呢?
(3)展示各种拼法。
8.在我们学校周围有没有1公顷大小的地方?能举例说明吗?
小结:在估计时,你们都运用了什么方法?
(设计意图:通过各种活动,让学生充分感知1公顷的大小,形成1公顷的表象。)
四、想一想,1平方千米有多大?
1、边长是1000米的正方形,面积是1平方千米。它比两个天安门广场的占地面积还要大。
天安门广场的面积为40公顷,1平方千米相当于几个天安门广场的占地面积呢?比两个天安门广场的占地面积还要大,相当于2个天安门广场的面积。