小学数学教案一年级 小学数学教案四年级(5篇)
作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。那么问题来了,教案应该怎么写?这里我给大家分享一些最新的教案范文,方便大家学习。
小学数学教案一年级 小学数学教案四年级篇一
练习二 px。
巩固6、7、8、9的加减法。
算式卡、小圆片。
一课时。
一、口算
学生独立完成,请一学生到黑板上练习。
二、画一画,填一填
先让学生画一画,再根据画好的进行填空,注意画图要与填算式相对应。
三、看图做题
1、第3题:生独立看图,完成题目,集体交流,答案不唯一。
2、第4题:先指导看清图意,体会大括号、问号的含义;再由生独立完成题目。
3、第4题的拓展训练。如果船上的总数是人呢?
如果捉迷藏的小朋友是4人呢
四、连一连
指导学生算出每个算式的得数,再把得数相同的用线连起来。指名两名学生板演。
五、小动物回家
先在黑板上贴出6、7、8、9四座小房子的图。再组织学生做贴卡片的游戏,帮助它们找回自己的家。找对的同学给予适当的奖励。
六、数学游戏
先讲评游戏的玩法,再请学生同桌组成一个组玩一玩、填一填。
小学数学教案一年级 小学数学教案四年级篇二
教学内容:
苏教版课程标准实验教科书小学数学五年级下册第15-16页“确定位置”。
教材分析:
本课主要学习数对的含义,以及用数对在方格图上确定位置,学生在以前已经学习了类似“第几”“第几排第几个”等方式描述物体在方向或平面上的位置,初步获得了用自然数表示位置的经验。本课主要对这种经验加以提升,用抽象的数对来表示位置,进一步发展空间观念,提高抽象思维能力。数对能帮助学生初步建立二维空间的表象,架起数与形间的桥梁,初步渗透数形结合及坐标思想,这也是学生以后学平面直角坐标系的重要基础。
教学目标:
1、使学生在具体情境中认识列、行的含义,知道确定第几列、第几行的规则;初步理解数对的含义,会用数对表示具体情境中物体的位置。
2、使学生经历用数对描述实际物体的位置到用数对描述方格图上点的位置的抽象过程,知道数对与方格图上点的对应,逐步掌握用数对确定位置的方法,丰富对现实空间和平面图形的认识,进一步发展空间观念。
3、使学生积极参与学习活动,感受数对与生活实际的联系,体会数学文化的价值,拓宽知识视野,激发数学学习的兴趣。
教学重点、难点:
初步理解并掌握数对的含义,理解用数对描述方格图上点的位置的方法。
教学过程:
一、用自己的方法确定位置
1、谈话:仔细观察这一张座位图,你知道小红的位置在哪里吗?
2、交流:学生用自己的方式确定小红的位置。
3、设疑:为什么同一个位置,说法却不一样呢?引发学生对已有的确定位置的方法进行质疑。
4、揭题:怎样才能统一、正确、简明地确定小红的位置呢?今天我们一起来研究确定位置。
【设计意图:让学生用自己的语言来描述小红的位置,激活了学生头脑中已有的描述物体位置的经验,学生的描述可能比较简练但不够准确,可能比较准确但不够简练,通过学生之间互动交流,使他们认识到这些表示方法的优点和不足,产生用统一、简明的方式来确定位置的需求。】
二、用列与行的方法确定位置
1、认识列和行的概念。
谈话:像这样排列时,一般用“列”和“行”来确定位置。什么是“列”,什么是“行”呢?
交流:哪儿是第一列,哪儿是第一行呢?
讲授:一般确定第几列从左往右数,确定第几行从前往后数。
2、用列和行确定位置。
表示:小红的位置,你能用第几列第几行确定吗?让学生尝试用第几列第几行进行描述。
简化:为了研究方便,还可以把这张座位图简化成点子图,小红位置所在的点,我们用a表示。
运用:这儿还有两个点,b、c,也能用第几列第几行说出它们的位置吗?
【设计意图:引导学生建立用“第几列第几行”的方法确定位置的规则,并观察从座位图到点子图的变化过程,感受到用“列与行的方法”确定位置的统一性和准确性。这一板块也是学习在方格图上确定一个点位置的必要过渡环节。】
三、用数对的方法确定位置
1、初步认识数对。
谈话:第几列第几行,让我们确定位置有了统一的说法。不过数学还追求简明,像第4列第2行,能否写得再简明些呢?
比较:比较一下,这些方法中有哪些相同的地方?
交流:学生在交流想法的过程中,初步感受用数对表示位置方法的基本含义。
讲授:介绍数对的写法。
运用:这两个位置,用数对来表示,你能试着写一写吗?并交流写法。
2、及时练习。
谈话:学会了用数对表示点的位置,那根据数对,你能找到对应的点吗?
交流:生介绍找到两个点的过程。
感悟:在交流的过程中感悟数对的含义和思想,掌握数对的写法。
【设计意图:根据数学的简明性特点和符号化特点,自主探索更简捷的表示方法,让学生的主动性和创造性得以尽情释放。在此基础上提升到“数对”的方法上,使学生更加充分感受用数对确定位置的简明性,同时也体验到数对的意义。】
四、用数对的方法在方格图上确定位置
1、根据方格图上的点说出数对。
谈话:刚刚我们在点子图上研究了数对,如果在我们熟悉的方格纸上,你能用数对表示出这个点的位置吗?
交流:如果这就是学校的平面图,你还能用数对说出其他景点的位置吗?
感悟:在方格图上用数对的方法确定位置,首先要确定什么?
2、根据数对在方格图上找到对应点。
谈话:在方格图上,你还能根据数对找到对应的点吗?这儿有三个数对,请找到对应的`点并标上数对,边找边思考,你发现了什么?
交流:在你描点的过程中,你发现了什么?
延伸:根据这一个发现,想一想,同一列上的数对又有怎样的特点?
总结:看来数对不仅能表示出点的位置,还能反映出点和点之间的位置关系。
3、根据图形特点在方格图上选择数对。
谈话:如果顺次连结这些点,就围成了一个三角形。如果再确定一个d点,围成一个平行四边形,d点的位置用数对表示是多少呢?
交流:学生介绍选择数对的过程。
感悟:看得出,同学们对数对又有了新的认识。图形的特征可以反映在数对中,数对的特点也能通过图形来体现。
【设计意图:本课有两大主线贯穿始终,一是图例的抽象和演变,二是是确定位置的方法。两大主线的层层递进与发展,充分展现了本课的数学知识和思想的产生与发展过程。在方格图上用数对确定位置,不仅关注了数对方法的运用,还关注了在方格图用数对确定位置的背景,让学生真正体会到了图形与数对的联系,最重要的是学生真正亲身经历了数学知识的形成过程,感悟了最基本的数学思想。】
五、用数对的思想确定位置
谈话:其实类似这样的现象生活中非常多见,比如下棋时确定棋子的位置。(向学生介绍国际象棋的走法。)
延伸:用经纬线描述地球上各点的位置(介绍北京的位置等)。
总结:同学们,数对真是简单而又神奇,这数对究竟是谁发明的呢?介绍数对发明的背景。
【设计意图:学生掌握了用数对表示位置的方法,为了帮助学生建立数对的思想,“生活中哪些地方用到了数对思想(国际象棋)”和介绍“地球上经纬线知识”两个环节,让学生感悟了“数对思想”的价值。在此基础上,再向学生介绍数对产生的背景,促发学生学会思考,做一个“思想者”。】
小学数学教案一年级 小学数学教案四年级篇三
1、知识与技能
认知角的计量单位——“度”,认识量角器,并学会用量角器量角的方法,能正确测量角的度数。
知道角的大小是由角的两条边叉开的大小决定的
2、过程与方法
通过“摆”,“量”,“画”,加深对角的大小的印象。
3、情感、态度与价值观
能积极参与量角的学习活动,在探究量角方法的过程中获得成功的体验,在实践中产生发现数学规律的兴趣。
观察、比较、练习、小组合作、动手操作。
量角器、多媒体课件。
一、创景引新,以情激趣
1、学生进行画角活动,教师任意的选两个角进行比较,提出问题:角1和角2比,哪个大?大多少?有谁知道?
2、揭示课题:看来角是有大有小的,但光用眼睛我们是看不出来大多少,这就需要我们去进行测量,今天我们就来学习角的度量
二、目标导学,自主探究
建立1度角的表象和认识量角器的结构
1、过渡语:我们在以前学习测量物体的长度时,是需要有统一的长度单位和相应的测量工具;今天我们需要测量角的大小,同样也要有自己的计量单位和相应的测量工具。
2、建立1度角表象
课件演示:将一个半圆平均分成180份,每份所对应的角就是1度角,将1度角用蓝色显示并出来,让学生感知他有多大,再看看自己量角器上的1度角。
3、出示量角器:学生观察,看看量角器上都有些什么?
学生发言时教师抓关键词:中心点、0刻度线、内圈读数、外圈读数、90°刻度线。(课件演示)
三、尝试用量角器读角,为量角做铺垫
过渡语:通过刚才的观察和学习,我们了解了角的计量单位和测量工具,现在我任意地出示角,你能利用量角器读出这个角的度数吗?
1、出示30°角,学生尝试读角,并说明自己读角的方法。教师引导让学生明白读角时要看角的两条边:一条边要和0°刻度线重合,这样才能从0开始读起,另一条边对着的刻度选哪圈刻度要看0°在哪圈。
2、分别出示60°、90°、120°这些角让学生读,并说方法。
四、学法指导,合作质疑——在活动中探究量角方法
1、尝试量角:出示两个角(p37的角),学生先估一估,(结合直角、锐角、钝角的知识进行估计),到底有多少度,学生自己用量角器进行测量
2、交流方法,从而得出量角的方法。学生上台展示并说一说自己的方法。
3、教师小结:两重合,一读数。分别用课件演示
两重合:量角器中心和角的顶点重合0刻度线和角的一条边重合一读数:看角的另一条边对的刻度数
4、出示两个角(角的开口一个朝上一个朝下)学生上台操作,教师再次强调两重合再读数。
5、练一练
(1)做一做第二题
(2)判断题。学生判断后说明理由。
6、出示一个边很短的角,量角器放上去无法清楚地看准读数,学生想办法。方法:利用直尺或将角的边延长
五、目标检测
1、填空
量角的大小要用 ,角的计量单位是 ,用符号 表示,表示把半圆分成180等份,每份所对的角的大小是1度,记作 。
量角时,量角器的中心与 重合,0刻度线与 重合,角的另一条边所对的量角器上的刻度就是这个角的 。
2、判断
角越大,角的两边越长。
用一个5倍的放大镜看角,这个角也扩大5倍。
画在黑板上的40度的角比画在纸上的40度角大。
角的大小与角两边叉开的大小有关,与角两边的长短无关。
五、全课小结
学生谈谈自己的收获。
小学数学教案一年级 小学数学教案四年级篇四
教学目标
1、初步感知分类的意义,学会分类的方法。
2、学生通过分一分,看一看,提高造作能力,观察能力,判断能力,语言表达能力。
3、初步学会与他人合作交流。
4、体会到生活中处处有数学
单一标准讲课教案
教学过程
一、创设情景探究新知
1、感知分类
出示例1
你们都看到了什么?可以怎样分类呢?
苏教版小学一年级下册数学《单一标准》讲课教案:揭示课题,生活中把一样的东西放在一起就叫分类。
(板书课题:分类)
2、巩固发展体验分类
按形状来分一分,怎样记录分的结果呢?
讨论汇报。
板演分法。
还可以怎么分?
二、巩固提升发散创新
1、课件出示练习七1、2、3题,学生集体完成。
2、开放练习拓宽思路(分正方体)师:同学们拿出你们的另外一袋学具,请给这些物品分类。学生小组活动(4分钟)汇报交流
三、课堂小结
今天同学们都学到了哪些知识?这些知识对你有什么帮助?
小学数学教案一年级 小学数学教案四年级篇五
教学内容:
苏教版数学教科书五年级(下)p93-94
教学目标:
1、通过对已知图形的观察、思考初步建立圆的基本概念,沟通新旧知识之间的联系;在几次画圆过程中理解什么是圆,掌握基本绘图方法,在画和对比中感受圆的本质。
2、让学生经历操作验证的全过程,通过交流分享,不断深化对圆心、半径、直径意义的理解,对它们之间的关系进行深入思考。
3、结合生活实例让学生感受圆的本质,应用半径、直径的意义、联系思考解决问题,体会新旧知识之间的联系,体会数学的价值。
教学重点:
在尝试、操作、思考中理解圆心、半径和直径的意义、联系,感受圆的本质。
教学难点:
沟通新旧知识的联系,在实际问题中思考、应用圆心、半径和直径的意义及联系。
教学准备:
圆规、圆片、练习纸、课件、应用模型。
一、引入
1、从学习过的正方形开始。
引导学生找到正方形的中心点。
从中心点引出到边、顶点的距离,明确其长度不等。
2、逐步呈现正多边形的变化。
引导学生通过比较,形成数学思考。
思考:如果正多边形的边数不断增加,中心点到边、顶点的距离会怎样变化?多边形将趋于……?
引出圆,呈现课题。
设计意图:
从正方形引入,观察中心点到边、顶点距离之间的关系,渗透圆的本质:“平面内到定点的距离等于定长的点的集合”,感受极限思想。
二、画圆
1、用身边的素材自己画圆。
交流不同工具的画法,初步感受圆规画圆有优势。
2、学生汇报,教师示范、规范画圆的方法。
3、学生们再次尝试画圆。
4、对比用圆规画圆和用其它方式画圆的共同点,体会“平面内到定点的距离等于定长的点的集合”。
设计意图:
第一次让学生自主画圆,初步体会,充分容错,引发对圆规画圆“工作原理”的思考;第二次教师示范画圆,尊重教材,有效讲授,形成学生对规范画圆的“有意接受”;第三次再让学生画圆,“反刍”画圆的核心要素,建立圆心、半径的初步感知,为自学做好铺垫。
三、自主学习
1、自学与分享。
(1)了解圆心、半径、直径的意义;(2)在自己画的圆里面标出圆心、半径和直径;画好以后和同桌交流。
2、交流并理解。
学生汇报,教师引导学生补充、质疑,关注理解。
过程中教师示范画圆心、半径、直径。
3、发现与思考。
用圆形纸片折一折、画一画,发现圆中半径、直径的特点,这个圆中半径、直径之间有什么联系?
组织交流反馈。
4、现象与本质。
学生观察自己手中的圆,思考:
(1)半径(直径)真的有无数条?
(2)半径(直径)的长度都相等?
(3)圆中,直径最长吗?半径呢?
结合课件演示,理解圆心、半径、直径间的联系,再次领悟圆的本质。
设计意图:
“以学定教”。学生会的不教,学生通过自学能理解和掌握的不教。
介绍“如何画圆心、半径和直径”时,既提供自主画图、理解同圆半径、 直径联系的机会,又让学生自己的话解释,逐步贴近数学用语。尊重学生与尊重教材并重。
从验证的角度设问“圆中半径真的有无数条?” 让不同层次的孩子产生不同的思考,这个环节具有多重效能,既传递给学生“经得起检验的东西,才能揭示其规律”,又在验证过程中从不同视角去理解圆。
四、深度研究、联系生活。
1、怎样找到圆心。
(1)学生思考、交流自己不同的想法,结合“生成”引导思考。
学生介绍想法,用圆片演示。
在学生理解后,教师课件呈现,再次引发质疑----为什么这样折出来的就是圆心?
引导学生结合今天学习的知识进行分析和解释。
设计意图:
“折一折”并不那么简单,要“折”出半径的意义、直径的意义,要“折”出数学的味道。不断地“反刍”半径、直径的意义,加深印象,深刻体会三要素“圆心、半径、直径”间的联系。
(2)再找圆心。
引发思考:无法折一折的圆形怎样找其圆心?
引导发现:解决问题的过程中体会新旧知识有联系。
充分预设,呈现学生可能出现的思考。
设计意图:
此处设计再一次打破学生刚刚构建的“找圆心”的“好”方法,“折一折”并不那么简单,因为生活中太多的“圆”折不了,设置这样的问题意在引导学生联系已有知识经验进行分析,进行数学思考。学会在解决新问题中发现已有知识的价值,培养学生发现问题、提出问题、应用知识解决问题的能力。
2、联系生活。
引导学生自主使用学到的知识、概念,解决生活中与圆形有关的实际问题。
设计意图:
与教学伊始呼应,从“方”中进入,回“方”中思考。让学生感受数学源于生活,高于生活,又应用于生活的轮回现象;领悟数学可以还解释生活现象,解决现实问题的应用价值;养成用数学眼光、数学思维观察、分析事物的习惯。
六、全课小结。
引导学生简要回顾、梳理本节课学到的知识,小结收获,提出希望。