2023年6.1反比例函数教学设计(九篇)
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
6.1反比例函数教学设计篇一
本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
知识与技能
1、能灵活列反比例函数表达式解决一些实际问题。
2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。
过程与方法
1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
情感态度与价值观
体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
重点:掌握从实际问题中建构反比例函数模型。
难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
6.1反比例函数教学设计篇二
本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
1、能灵活列反比例函数表达式解决一些实际问题。
2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。
1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
情感态度与价值观
体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
掌握从实际问题中建构反比例函数模型。
从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
教学方法
启发引导、合作探究
教学媒体
课件
(一)创设问题情境,引入新课
[师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?
[生]是为了应用。
[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。
问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。
6.1反比例函数教学设计篇三
1.理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;
2.利用反比例函数的图象解决有关问题。
1.经历对反比 例函数图象的观察、分析、讨论、概括过程,会说出它的性质;
2.探索反比例函数的图象的性质,体会用数 形结合思想解数学问题。
一、创设情境
上节的练习中,我们画出了问题1中函数 的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数 (k是常数,k0)的图象,探究它有什么性质。
二、探究归纳
1.画出函数 的图象。
分析 画出函数图象一般分 为列表、描点、连线三个步骤,在反比例函数中自变量x 0.
解 1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1) 、(-3,-2)、(-2,-3)等。
3.连线:用平滑的 曲线将第一象限各点依次连起来,得到图象的 第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。
上述图象,通常称为双曲线(hyperbola).
提问 这两条曲线会与x轴、y轴相交吗?为什么?
学生试一试:画出反比例函数 的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).
学生讨论、交流以下问题,并 将讨论、交流的结果回答 问题。
1.这个函数的图 象在哪两个象限?和函数 的图象 有什么不同?
2.反比例函数 (k0)的图象在哪两个象限内?由什么确定?
3.联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?
反比例函数 有下列性质:
(1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
注 1.双曲线的两个分支与x轴和y轴没有交点;
2.双曲线的两个分支关于原点成中心对称。
以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?
在问题1中反映了汽车比自行车的速 度快,小华乘汽车比骑自行车到镇上的时间少。
在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。
三、实践应用
例1 若反比例函数 的图象在第二、四象限,求m的值。
分析 由反比例函 数的定义可知: , 又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值。
解 由题意, 得 解得 .
例2 已知反比例函数 (k0),当x0时,y随x的增大而增大,求一次函数y=kx-k的图象经过的象限。
分析 由于反比例函数 (k0 ),当x0时,y随x的增大而增大,因此k0,而一次函数y=kx-k中,k0,可知,图象过二、四象限,又-k0,所以直线与y轴的交点在x轴的上方。
解 因为反比例函数 (k0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kx-k的图象经过一、二、四象限。
例3 已知反比例函数的图象过点(1,-2).
(1)求这个函数的解析式,并画出图象;
(2)若点a(-5,m)在图象上,则点a关于两坐标轴和原点的对称点是否还在图象上?
分析 (1) 反比例函数的图象过点(1,-2),即当x=1时,y=-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;
(2)由点a在反比例函数的图象上,易求出m的值,再验证点a关于两坐标轴和原点的对称点是否在图象上。
解 (1)设:反比例函数的解析式为: (k0).
而反比例函数的图象过 点(1,-2),即当x=1时,y=-2.
所以 ,k=-2.
即反比例函数的解析式为: .
(2)点a(-5,m)在反比例函数 图象上,所以 ,
点a的坐标为 .
点a关于x轴的对称点 不在这个图象上;
点a关于y轴的对称点 不在这个图象上;
点a关于原点的对称点 在这个图象上;
例4 已知函数 为反比例函数。
(1)求m的值;
(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?
(3)当-3 时,求此函数的最大值和最小值。
解 (1)由反比例函数的定义可知: 解得,m=-2.
(2)因为-20,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。
(3)因为在第个象限内,y随x的增大而增大,
所以当x= 时,y最大值= ;
当x=-3时,y最小值= .
所以当-3 时,此函数的最大值为8,最小值为 .
例5 一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。
(1)写出用高表示长的函数关 系式;
(2)写出自变量x的取值范围;
( 3)画出函数的图象。
解 (1)因为100=5xy,所以 .
(2)x0.
(3)图象如下:
说明 由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。
四、交流反思
本节课学习了画反比例函数的图象和探讨了反比例函数的性质。
1.反比例函数的图象是双曲线(hyperbola).
2.反比例函数有如下性质:
(1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线 从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
五、检测反馈
1.在同一直角坐标系中画出下列函数的图象:
(1) ; (2) .
2.已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;
(2)当 时,y的值;
(3)当x取 何值时, ?
3.若反比例函数 的图象在所在象限内,y随x的增大而增大,求n的值。
4.已知反比例函数 经过点a(2,-m)和b(n,2n),求:
(1)m和n的值;
(2)若图象上有两点p1(x1,y1)和p2( x2,y2),且x1 x2,试比较y1和 y2的大小。
6.1反比例函数教学设计篇四
1、能运用反比例函数的相关知识分析和解决一些简单的实际问题。
2、在解决实际问题的过程中,进一步体会和认识反比例函数是刻
画现实世界中数量关系的一种数学模型。
运用反比例函数解决实际问题
运用反比例函数解决实际问题
引例:小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己的眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数y(度)与镜片的焦距为x(m)成反比例,并请教师傅了解到自己400度的近视眼镜镜片的焦距为0.2m,可惜她不知道反比例函数的概念,所以她写不出y与x的函数关系式,我们大家正好学过反比例函数了,谁能帮助她解决这个问题呢?
反比例函数在生活、生产实际中也有着广泛的应用。
例如:在矩形中s一定,a和b之间的关系?你能举例吗?
例1、见课本73页
例2、见课本74页
例3、某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(千帕)是气球体积v(米3)的反比例函数
(1)写出这个函数解析式
(2)当气球的体积为0.8m3时,气球的气压是多少千帕?
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积不小于多少立方米?
6.1反比例函数教学设计篇五
教学目标:
1、通过实践活动,理解反比例的意义,并能根据反比例的意义,正确地判断两种相关联的量是否成反比例;
2、通过小组间的合作学习,培养学生的合作意识、参与意识,训练其观察能力及概括能力;
3、利用多媒体动画的演示,让学生体验到反比例的变化规律。
教学重点:感受反比例的变化,概括反比例的意义;
教学难点:正确判断两种相关联的量是否成反比例;
教学准备:20支铅笔、一个笔筒;相关课件;学生分小组(每组一份观察记录单)
每次拿的支数
10
5
4
2
1
拿的次数
总支数
教学过程:
一、复习
1、什么叫做“成正比例的量”?
2、判断两种量是否成正比例关键是什么?
3、练习:课本表中的两种量是不是成正比例?为什么?
二、小组协作 概括“成反比例的量”的意义
(一)活动一
师:好,现在请同学们拿出课前准备的学具,以小组为单位,动手操作,按要求认真填写观察记录单。看哪个组完成的又快又好!
1、学生汇报观察记录单的填写结果。
2、引导观察:在填、拿的过程中,你发现了什么?
3、师:你能根据表格,写出这三个量的关系式吗?
4、小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。
5、揭示反比例的意义(阅读课本,明确反比例关系)
6、如果用x、y 表示两种相关联的量,用k表示积,反比例关系式怎样表示?
(二)活动二:(例3)
1、课件出示例3,指名读题,学生独立完成
2、总结归纳出正比例和反比例的相同点和不同点
三、强化练习 发展提高
1判定两个量是否成反比例,主要看它们的( )是否一定。
2全班人数一定,每组的人数和组数。
( )和( )是相关联的量。
每组的人数×组数=全班人数(一定)
所以( )和( )是成反比例的量。
3判断下面每题中的两种量是不是成反比例,并说明理由。
糖果的总数一定,每袋糖果的粒数和装的袋数。
煤的总量一定,每天的烧煤量和能够烧的天数。
生产电视机的总台数一定,每天生产的台数和所用的天数。
长方形的面积一定,它的长和宽。
4机动练习:
想一想:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?
四、全课总结
1、你能不能结合日常生活举一些反比例的例子。
2、今天这节课,你有什么收获?还有什么遗憾?
6.1反比例函数教学设计篇六
1、能灵活列反比例函数表达式解决一些实际问题。
2、能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题。
1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2、 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的`能力。
1、积极参与交流,并积极发表意见。
2、体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
教学重点
掌握从物理问题中建构反比例函数模型。
教学难点
从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
教具准备
多媒体课件。
活动1
问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用。下面的例子就是其中之一。
在某一电路中,保持电压不变,电流i(安培)和电阻r(欧姆)成反比例,当电阻r=5欧姆时,电流i=2安培。
(1)求i与r之间的函数关系式;
(2)当电流i=0.5时,求电阻r的值。
设计意图:
运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力。
师生行为:
可由学生独立思考,领会反比例函数在物理学中的综合应用。
教师应给“学困生”一点物理学知识的引导。
师:从题目中提供的信息看变量i与r之间的反比例函数关系,可设出其表达式,再由已知条件(i与r的一对对应值)得到字母系数k的值。
生:(1)解:设i=kr ∵r=5,i=2,于是2=k5 ,所以k=10,i=10r 。
(3) 当i=0.5时,r=10i=100.5 =20(欧姆)。
师:很好!“给我一个支点,我可以把地球撬动。”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢?
生:这是古希腊科学家阿基米德的名言。
师:是的。公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;阻力阻力臂=动力动力臂。
下面我们就来看一例子。
小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米。
(1)动力f与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?
(2)若想使动力f不超过题(1)中所用力的一半,则动力臂至少要加长多少?
物理学中的很多量之间的变化是反比例函数关系。因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用。
先由学生根据“杠杆定律”解决上述问题。
教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系。
6.1反比例函数教学设计篇七
反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。
由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式。
解决问题:能从实际问题中抽象出反比例函数并确定其表达式。情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。
重点:理解反比例函数意义,确定反比例函数的表达式。
难点:反比例函数表达式的确立。
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;
(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的表达式
14631000(2)y=txk可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。由于是分式,当x=0时,分式无意义,所以x≠0。
当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。
举例:下列属于反比例函数的是
(1)y=(2)xy=10(3)y=k—1x(4)y=—
此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x—1成反比例,y+1与x成反比例,y+1与x—1成反比例,将如何设其解析式(函数关系式)
已知y与x成反比例,则可设y与x的函数关系式为y=
kx?1
k已知y+1与x成反比例,则可设y与x的函数关系式为y+1=xkxkxkxkx2x已知y与x—1成反比例,则可设y与x的函数关系式为y=
已知y+1与x—1成反比例,则可设y与x的函数关系式为y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
例:已知y与x2反比例,并且当x=3时y=4
(1)求出y和x之间的函数解析式
(2)求当x=1.5时y的值
解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2
和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业
通过此环节,加深对本节课所内容的认识,以达到巩固的目的。
本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式。应该对这一方面的内容多练习巩固。
6.1反比例函数教学设计篇八
1.对教材的分析
本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
本节课前一课时是在具体情境中领会反比例函数的意义和概念。函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。
传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。这也充分体现了重视获取知识过程体验的新课标的精神。
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
2、对学情的分析
九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较{}形象,便于学生接受。
一、忆一忆
师:同学们还记得我们在学习一次函数时,是怎么作出一次函数图象的吗?一次函数的图象是什么图形?
生:作一次函数的图象要采用以下几个步骤:
(1)列表
(2)描点
(3)连线。
生乙:一次函数的图象是一条直线。
师:大家说的很好,看来大家对过去的知识掌握的很牢固,那么同学们想一下,y=4/x是什么函数?
生:反比例函数。
师:你们能作出它的图象吗?
生:可以。
点评:复习旧知识,让学生感受到新旧知识的联系,并为后面的作反比例函数的图象做好准备。
二、作图象,试比较
师:请填写电脑上的表格,并开始在坐标纸上描点,连线。
师:再按照上述方法作y=-4/x的图象。
(学生动手操作)
师:下面大家分小组讨论:对照你们所作出的两个函数图象,找出它们的相同点与不同点。
(学生讨论交流,教师参与)
师:讨论结束,下面哪个小组的同学说说你们的看法?
生1:它们的图象都是由两支曲线组成的。
生2:y=4/x的图象的两条曲线分布在一、三象限内,而y=-4/x的图象的两支曲线分布在二、四象限内。
点评:这里让学生自己上台操作,既培养了学生的动手能力,又可以激发学生学好数学的兴趣。
三、细观察,找规律
师:大家都说得很好,下面我们一起观察反比例函数y=k/x的图象,当k的发值生变化时,函数的图象发生了怎样的变化,并分小组讨论有什么规律。
(展示图象,让学生观察y=k/x的图象,按下动画按钮,在运动中观察值的变化与函数的图象变化之间的关系,并与同学们充分讨论)
师:请同学们谈一谈刚才讨论的结果。
生:我发现函数图象的变化与k的值有关:当k>0时,在每一象限内,y随x的增大而减小,当k<0时,在每一象限内,y随x的增大而增大。
师:看来大家都经过了认真的思考和讨论,对规律总结的也比较完整,下面我们一起把刚才两个环节的知识点一起总结一下。
(1)反比例函数y=k/x的图象是由两支曲线所组成的。
(2)当k>0时,两支曲线分别在一、三象限;当k<0时,两支曲线分别在二、四象限。
(3)当k>0时,在每一象限内,y随x的增大而减小,当k<0时,在每一象限内,y随x的增大而增大。
师:如果我们将反比例函数的图象绕原点旋转180后,你会发现什么现象?这说明了什么问题?
(由学生在电脑上进行操作)
生:我发现旋转后的图象与原图象完全重合了,这说明反比例函数的图象是一个中心对称图形。
师:大家做得很好。那么,如果我们在图象上任取a、b两点,经过这两点分别作轴、轴的垂线,与坐标轴围成的矩形面积分别为s1、s2,观察两个矩形面积的变化情况,并找出其中的变化规律。
题目:
(1)拖动k,使k变化,观察k不断变化过程中,矩形面积的变化情况,讨论得出结论。
(2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。
生:我们发现,在同一个反比例函数中,不管k值怎么变化,矩形的面积始终不变。
师:大家的观察很仔细,总结得也很正确。
点评:在这个环节中,既让学生动手操作,又让他们分组交流,这样既培养了他们的动手能力,又增强了他们的团结合作的意识。结论主要有学生来发现,体现了新课程理论的精神。
四、用规律,练一练
1、课本137页随堂练习1
生:第一幅图是y=-2/x的图象,因为在这里的k<0,双曲线应在第二、四象限。
2、下列函数中,其图象唯一、三象限的有哪几个?在其图象所在象限内,的值随的增大而增大的有哪几个?
(1)y=1/(2x)
(2)y=0.3/x
(3)y=10/x
(4)y=-7/(100x)
生:其中(1)(2)(3)的图象在一、三象限;(4)的图象在每一象限内,y随x的增大而增大。
五、想一想,谈收获
师:通过今天的学习,你有什么收获?
生甲:我今天知道了怎样画反比例函数的图象。
生乙:我今天知道了反比例函数的图象是由两支曲线所组成的。
生丙:我还懂得了:当k>0时,图象分布在一、三象限,在每一个象限内,y随x的增大而减小;当k<0时,图象分布在二、四象限,在每一个象限内,y随x的增大而增大
生丁:我还能用反比例函数的相关性质解题。
师:看来大家今天学到了不少知识,只要大家能保持这种对数学的热情和勇于挑战的精神,在数学上一定会有所收获的。
总评:本节课很好的反映了新课程的一些理念,首先,就是将数学教学与多媒体教学进行了很好的整合,尤其是采用了z+z智能教育平台进行教学,在本节课从进入课堂到结束,始终有多媒体教学的参与,如在讲解反比例函数的性质时运用多媒体展示可以给学生以直观的感受,并给学生留下深刻的印象,教师也能熟练地操作电脑,可以看出教师扎实的基本功。其次,在本节课的教学中,教师将学习的主动权交给学生,课堂始终在学生自主探索、合作交流的气氛中进行,如在得出反比例函数的性质时,就在小组内进行了广泛交流,由学生自己去探索,去发现新知识,这样可以激发学生求知的欲望,达到事半功倍的目的。同时教师也主动的参与进去,把自己也当成了教室里的一员,真正体现了新课程的理念。
本节课由于在课前进行了大量的准备工作,包括对教材的钻研、教学内容的设计、多媒体课件的制作、学生学情的了解,因此在教学中比较顺利,对重难点内容也有效的进行了突破,尤其是电脑的引入,极大的调动了学生的学习积极性。学生由于成了课堂的主人,所以在课堂上保持了高涨的热情,因此这堂课的效果也较好。
6.1反比例函数教学设计篇九
1.利用反比例函数的知识分析、解决实际问题
2.渗透数形结合思想,提高学生用函数观点解决问题的能力
1.重点:利用反比例函数的知识分析、解决实际问题
2.难点:分析实际问题中的数量关系,正确写出函数解析式
3.难点的突破方法:
用函数观点解实际问题,一要搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题