2023年新高考高中数学知识点精选(七篇)
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
新高考高中数学知识点篇一
错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。
在求一般函数定义域时要注意下面几点:
(1)分母不为0;
(2)偶次被开放式非负;
(3)真数大于0;
(4)0的0次幂没有意义。
函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。
二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。
对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。
解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。
抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。
函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。
错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。
错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。
研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。
出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。
新高考高中数学知识点篇二
其次,对其他的整个知识体系的版块有一个基本认识,可分为以下板块:函数的基本题型、函数与导数、三角函数相关内容、平面向量和空间向量、立体几何、数列、不等式、解析几何初步、圆锥曲线、统计与概率,选修内容不同省份安排不一样:极坐标、不等式、平面几何等。
知道了整个知识体系框架,就可以考虑在这一个学期里把哪些板块安排在哪一个月、哪一周,同时参考老师带领复习的进度,互为补充。每一周上课前,可以把老师上一周带动复习的内容再给自己计划一下,计划这一周在以前老师讲过的基础上再给自己添加哪些内容,无论是做新题,还是整理做过的题型来寻找考试方向,都要提前安排好,六天(可能高三时期周六都要拿出一些时间给学习吧)时间每天给自己规定额外的几个小时的自习时间来完成自己的数学计划。比如说,老师上周带我们复习了三角函数中与解三角形有关的内容,如果发现自己这些方面还有一些不会做的题或者不熟练的方法或者题型,就在资料上寻找相关的题目来试试,并且按时总结,找出这些题型的共同点,摸索高考命题方式。如果觉得自己在解三角形这些方面比较熟练了,就可以考虑赶在老师前面,把老师接下来要带着复习的方面先复习一遍。总之就是要使两个进度互为补充,这样才会一直有一个合理的顺序,不至于到了某一个星期就觉得乱了。最后的结果就是,别人是复习了一轮,而自己在同样的时间可以使自己的知识掌握更加牢固。
另一方面,给自己准备几个笔记本。对于理科生来说,尤其又是数学这种学科,在笔记本上整理总结题型是很有用的。一轮复习做到的一些错题可能是很有代表性的,自己要学会分章节把错题或者自己觉得经典的题目记录下来,这些可能就是高考的某一些思路。不过,这些经典的题目并不一定是那些怪题偏题,高考范围内的数学还是比较中规中矩的,除了压轴题会有一些特殊的思路或者灵感之外,大多数题目都是常规题型。
同时,说到做题,一轮复习是可以尝试开始做一些综合题或者高考题的。可选择本省前几年的题目来做,不必求数量,尝试一下高考题即可,建议周末的时候找两个小时的时间按照高考的感觉来做一套题。记住,不求做太多,只是看一看高考题的难度和综合性,给自己一个参考。
还有一个小小的建议,可以为自己准备一个小本子,用来写一些任务。因为高三每天都会有各种繁杂的学习任务,可能有时候自己一时会忙得忘了某个任务,直到第二天老师提起来的时候才想起,哇,我这个作业竟然没做。所以每次出现任务时就记录下来,完成之后就划去,既可以作为任务提醒,也可以作为任务计划小册子。有时候在高三的时候会觉得自己有很多任务但是又不知道从什么开始,这是一种很常见但是必须要改变的现象,所以有一个小本子就会立刻知道自己要做什么,会有效利用高三的时间。
最后,在给学弟学妹带来一点感性一点的内容吧。高三是一场持久战,当你走过来了,才发现高三真的好快。同时,你会感激高三这一段奋斗的时光,十二年寒窗苦读这是第一次在学习上心无旁骛、花如此重大的精力冲刺一个目标,最后无论如何,不要让自己高考之后后悔。
新高考高中数学知识点篇三
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”;
(5)夹在两个平行平面间的平行线段相等;
(6)经过平面外一点只有一个平面和已知平面平行。
新高考高中数学知识点篇四
错因分析:由于空集是任何非空集合的真子集,因此,对于集合b,就有b=a,b,b,三种情况,在解题中如果思维不够缜密就有可能忽视了 b这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。
错因分析:如果原命题是若 a则b,则这个命题的逆命题是若b则a,否命题是若┐a则┐b,逆否命题是若┐b则┐a。
这里面有两组等价的命题,即原命题和它的逆否命题等价,否命题与逆命题等价。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对a,b都是偶数的否定应该是a,b不都是偶数,而不应该是a ,b都是奇数。
错因分析:对于两个条件a,b,如果a=b成立,则a是b的充分条件,b是a的必要条件;如果b=a成立,则a是b的必要条件,b是a的充分条件;如果ab,则a,b互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
p=p真或q真,
p=p假且q假(概括为一真即真);
pq真p真且q真,
pq假p假或q假(概括为一假即假);
┐p真p假,┐p假p真(概括为一真一假)。
错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。
在求一般函数定义域时要注意下面几点:
(1)分母不为0;
(2)偶次被开放式非负;
(3)真数大于0;
(4)0的0次幂没有意义。
函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。
二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。
对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
错因分析:很多抽象函数问题都是以抽象出某一类函数的共同特征而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。
解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。
抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。
函数的零点有变号零点和不变号零点,对于不变号零点,函数的零点定理是无能为力的,在解决函数的零点时要注意这个问题。
易错点 混淆两类切线致误
错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。
错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。
研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。
出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。
错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q1时,前n项和公式sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。
这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1和n2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其分段的特点。
当题目中给出了数列{an}的an与sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式可以通过数列求和的方法求出sn,知道了sn可以求出an,解题时要注意体会这种转换的相互性。
错因分析:等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。
一般地,有结论若数列{an}的前n项和sn=an2+bn+c(a,b,cr),则数列{an}为等差数列的充要条件是c=0在等差数列中,sm,s2m-sm,s3m-s2m(mn*)是等差数列。
解决这类题目的一个基本出发点就是考虑问题要全面,把各种可能性都考虑进去,认为正确的命题给以证明,认为不正确的命题举出反例予以驳斥。在等比数列中公比等于-1时是一个很特殊的情况,在解决有关问题时要注意这个特殊情况。
错因分析:数列的通项公式、前n项和公式都是关于正整数的函数,要善于从函数的观点认识和理解数列问题。
但是考生很容易忽视n为正整数的特点,或即使考虑了n为正整数,但对于n取何值时,能够取到最值求解出错。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴远近而定。
(1)原来数列的第一项;
(2)一个等比数列的前(n-1)项的和;
(3)原来数列的第n项乘以公比后在作差时出现的。在用错位相减法求数列的和时一定要注意处理好这三个部分,否则就会出错。
新高考高中数学知识点篇五
1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
中元素各表示什么?
注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3.注意下列性质:
(3)德摩根定律:
4.你会用补集思想解决问题吗?(排除法、间接法)
的取值范围。
6.命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
(一对一,多对一,允许b中有元素无原象。)
8.函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
9.求函数的定义域有哪些常见类型?
10.如何求复合函数的定义域?
义域是_____________。
12.反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)
13.反函数的性质有哪些?
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;
14.如何用定义证明函数的单调性?
(取值、作差、判正负)
如何判断复合函数的单调性?
∴……)
15.如何利用导数判断函数的单调性?
值是()
a.0b.1c.2d.3
∴a的值为3)
新高考高中数学知识点篇六
高考主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分 布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
平面向量和三角函数
高考数学重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
数列
数列这个板块,在高考中重点考两个方面:一个通项;一个是求和。
空间向量和立体几何
在高考数学考试里面重点考察两个方面:一个是证明;一个是计算。
概率和统计
这一板块主要是属于数学应用问题的范畴,在高考复习中应该掌握下面几个方面,第一概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。
解析几何
解析几何是整个高考数学试卷里难度比较大,计算量最高的题,在高考数学复习中考生应该掌握这类题的解题思路,尽管计算量很大,但是造成计算量大的原因, 往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,来应对高考。
押轴题
考生在高考数学备考复习时,应该重点不等式计算的方法,虽然说难度比较大,小编建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
数学对于考生来说是个大难题,有些同学甚至“谈数学色变”。其实只要掌握恰当的数学学习方法,一样可以在高考中取得满意的分数。
新高考高中数学知识点篇七
错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。
这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。当题目中给出了数列{an}的an与sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式可以通过数列求和的方法求出sn,知道了sn可以求出an,解题时要注意体会这种转换的相互性。
易错点3 对等差、等比数列的性质理解错误
错因分析:等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。一般地,有结论“若数列{an}的前n项和sn=an2+bn+c(a,b,c∈r),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,sm,s2m-sm,s3m-s2m(m∈n*)是等差数列。解决这类题目的一个基本出发点就是考虑问题要全面,把各种可能性都考虑进去,认为正确的命题给以证明,认为不正确的命题举出反例予以驳斥。在等比数列中公比等于-1时是一个很特殊的情况,在解决有关问题时要注意这个特殊情况。
错因分析:数列的通项公式、前n项和公式都是关于正整数的函数,要善于从函数的观点认识和理解数列问题。但是考生很容易忽视n为正整数的特点,或即使考虑了n为正整数,但对于n取何值时,能够取到最值求解出错。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴远近而定。
易错点5 错位相减求和时项数处理不当致误
(1)原来数列的第一项;
(2)一个等比数列的前(n-1)项的和;
(3)原来数列的第n项乘以公比后在作差时出现的。在用错位相减法求数列的和时一定要注意处理好这三个部分,否则就会出错。