2023年小学数学圆的认识教案通用(三篇)
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。大家想知道怎么样才能写一篇比较优质的教案吗?下面是小编整理的优秀教案范文,欢迎阅读分享,希望对大家有所帮助。
小学数学圆的认识教案篇一
“圆的认识”是在学生已经认识了长方形、正方形、平行四边形、三角形、梯形等平面图形和初步认识圆的基础上进行学习的,在学生认识了多种平面图形的基础上认识的由曲线围成的平面图形,是小学阶段认识的最后一种常见的平面图形。
由于学生已经对圆有了初步的感性认识,所以教材首先从日常生活的常见物体中引出圆,再凭借圆形物体画出圆,然后利用折叠的方法找出圆心,在此基础上,通过测量、比较和交流等活动,引导学生认识圆的半径和直径以及它们的长度之间的关系,从而使学生掌握圆的特征。考虑到小学生的认知水平,教材并没有给出圆的本质特征的描述,但教材通过观察与思考、画一画等活动帮助学生逐步对此加以体会,为学生到中学学习圆的定义提供了感性认识和直观经验。
我班学生在低年级已经对圆有了初步认识,加之生活中比较常见的缘故,已经有了一定的感性积累,只是在概念上尚不具体化,同时已经学过了几种常见图形认识,如:长方形、正方形、三角形等,为本课的'学习奠定了基础。小学五年级的学生思维处于经验性的逻辑思维,思维的形成与发展需要依赖具体形象的经验材料来理解和抽象事物之间的内在联系,以前学的几种常见图形是由线段围成的,而圆则是由曲线围成的图形,无论从内容本身,还是研究问题的方法,都有所变化。
故此,在教学中要紧密联系学生的实际生活,列举出日常生活、生产中所见到的圆形物体,引出圆的概念,了解圆的特征。圆的相关知识与特征,学生通过自己的操作、探索都能获得,“学”数学就是“做”数学;而学生的心理特点,决定了应当重视引导学生运用多种感官,参与知识的形成过程,因此我借助多媒体课件为自己的探索所得提供科学验证和知识深化、运用的机会。通过认识圆、画圆过程,体验数学的乐趣。
1、使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径,能借助工具画圆,能用圆规画指定大小的圆,能应用圆的知识解释一些日常生活的现象。
2、使学生进一步体验圆形与生活的联系,体会圆形物体的美。
进一步认识圆的特征及其内在联系,使学生深切体会圆的特征与我们的生活紧密相连,并学会用圆规画圆。
一、情境引入
师在黑板上板书“圆”字,问:看到这个字你想到什么?(指名回答)
生:十五的月亮、轮胎、月饼、圆脸蛋、唱片……
师:一个“圆”字让大家浮想联翩,在我们的生活中,圆无处不在,说了这么多的圆,看了这么多的圆,你想不想亲自动手画一个?用你手上的工具动手画一画。问:圆和以前学过的平面图形有什么不同?(长方形、正方形、三角形、平行四边形、梯形都是由线段围成的,而圆是由曲线所围成的。)
二、探究特征
师:刚才大家用各种工具画了圆,但是,大家可能也发现了,有的工具并不好用,而且大多数只能画一种大小的圆,有没有一种工具可以很方便地画各种大小的圆呢?是什么?
生:圆规。
师:对,这个工具就是圆规,圆规就是专门用来画圆的工具(生拿出自己的圆规观察),圆规有一个小圆柄,画圆时手要握住这个小圆柄,还两只脚,一只脚是针尖,另一只脚是用来画圆的笔,画圆时,针尖必须固定在一点,不可移动,两只脚要叉开,手握住小圆柄旋转一周。
师:你能试着用圆规画出一个圆吗?(生画圆)
师:让学生说说自己用圆规画圆的过程(组织交流)
师在黑板上示范画圆,大家看,我们在用圆规画圆的时候要注意一些什么问题?
1、注意圆规这个针尖要固定在一个点上,我们画的图形才够圆。(板书:1、定点)
2、圆规的两只脚之间的长度不能变,否则圆形不能闭合。(板书:2、定长)
3、要用手握住圆规的这个小圆柄旋转一周。(板书:3、旋转)
师:同学们,现在大家运用刚才总结的方法,再在练习本上画一个圆,看看是否画得更顺畅了。(生画圆)
师:现在大家都已经学会画圆了,那么同学们再想想,有没有什么办法让我们画的圆都一样大呢?
师:对!我们可以让两只脚固定,这样就可以画出固定大小的圆了。现在我们先拿出直尺,让针尖和铅笔头之间的距离是3厘米,把圆规固定好,在纸上画一个圆。
师:这个针尖是什么?(圆心)用什么字母表示?(o)圆心,顾名思义就是圆的中心,刚才我们画的两个圆一样大,但位置不同,想一想:圆的位置是由什么来决定的?(圆心)圆心可以确定一个圆的位置,针尖固定在哪个位置,圆就在那个位置。(板书:圆心决定圆的位置)
师:大家看这个刚才画的两脚距离是3厘米的圆,要是有人问这个圆有多大,你们怎么回答呢?(半径3厘米的圆),对这个两脚间的距离就是半径,用什么字母表示?(r)(指导书写r,说说什么是半径,作相应的练习。)
师:请你在纸上画一个圆,比原来的圆要小得多。请你在纸上再画一个圆,比原来的圆要大得多。(生画)
师:刚才我们画了大小不同的两个圆,谁来说一说:圆的大小是由什么来决定的?(板书:半径决定圆的大小)
师:同学们,你们再想一想,在同一个圆里,这样的半径可以画几条呢?现在我们来做个小小的竞赛,怎么样?在一分钟内看看哪位同学在同一个圆里画的半径又多又好。(板书:在同一个圆里,有无数条半径)请同学们用尺子来量一量这些半径,它们的长度到底是怎样的。(板书:在同一个圆里,所有的半径都相等。)
师:除了半径以外在圆中还有能决定圆的大小的线段吗?
生:直径。
师画一条直径,讲解:通过圆心并且两端都在圆上的线段,叫做直径,用什么字母表示(d)(做相应的练习)
师:如果我给你们一分钟的时间画直径,想一想:能够画出圆的所有直径吗?(板书:有无数条直径),同样在同一个圆里,所有的直径也相等吗?(板书:所有的直径也相等)
师:请同学们量一量半径和直径,有什么发现?(r=d=2r)
师:我们来做个小游戏,比一比谁的反应比较快。(师报半径,生说直径;师报直径,生说半径。)
师:大家还记得什么是轴对称图形吗?(生拿圆片折,发现交流。)
三、巩固练习
师:同学们学得可真不错,大家有没有兴趣接受新的挑战呢?
1、判断题。
(1)在一个圆中,有一个圆心,无数条半径,无数条直径。()
(2)两端都在圆上的线段叫做直径。()
(3)半径总是直径的一半。()
(4)圆心决定圆的位置,半径决定圆的大小。()
(5)圆内直径是最长的线段。()
(6)所有的半径都相等,所有的直径都相等。()
2、欣赏图片。
小学数学圆的认识教案篇二
九年义务教育六年制小学数学[人教版]第十一册《圆的认识》。
1、使学生认识圆,掌握圆的特征;了解圆的各部分名称。
2、会用字母表示圆心、半径、直径;理解并掌握在同圆(或等圆)中直径与半径的关系。
3、能正确熟练地掌握用圆规画圆的操作步骤。
4、培养学生动手操作、主动探究、自主发现、交流合作的能力。
1、导入新课
(1)学生活动(边玩边观察)。
①球、球相碰玩具表演。
②线系小球旋转玩具表演。
[教师要求学生将观察到的形状告诉大家,学生异口同声回答:圆形。这里,教师采用学生感兴趣的玩具表演活动,既直观形象,又易于发现,进而抽象出“圆”。学生从“玩”入手,不知不觉进入学习状态。学习兴趣浓厚,乐于参与,利于学习。]
(2)师生对话(学生可相互讨论后回答)。
教师:日常生活中或周围的物体上哪里有圆?
学生:在钟面、圆桌、人民币硬币上……都有圆。
教师:请同学们用手摸一摸,体会一下有什么感觉?
学生用眼看一看、用手摸一摸,感觉:……闭封的、弯曲的。
教师(多媒体演示:圆形物体→圆):这(指圆)和我们以前学过的平面图形,有什么不同呢?
学生:以前我们学过的平面图形如长方形、正方形、三角形、平行四边形和梯形的共同特征,都是由线段围成的直线图形。而我们现在看到的(指圆)这种图形是由曲线围成的图形。
教师(鼓励表扬学生):对,这个图形就是圆,你能说说什么是圆吗?
学生讨论后回答:圆是平面上的一种曲线图形。(这时,教师请同学们把眼睛闭上,在脑子里想圆的形状,睁开眼睛再看一看,再闭上眼睛想一想,能否记住它。)
教师在此基础上揭示课题,并请学生回答:你还想认识圆的什么?学生说:还想认识圆的圆心、直径、半径……
[这里通过生生交流、师生互动,形象感知、抽象概括,帮助学生正确建立“圆”的概念。]
2、探索新知。
(1)探究——圆心
①徒手画圆。
教师请两个学生一同在黑板上徒手画圆,然后请同学们评一评(3个人)谁画的圆好呢?师生认为用工具画圆才能画得好。[师生共同表演、平等相待、大家评说、其乐融融。]
②用工具画圆。
教师请同学们用自己喜欢的工具画圆。学生画圆:a、用圆规画圆;b、用圆形物体画圆。[画圆方法任学生自选,既体现因人而宜、因材施教,又体现尊重学生(个性)、教学民主。]
③找圆心。
学生动手剪一剪、折一折,再议一议、找一找……自我探索发现圆的“圆心”。[教师放手让学生在动手操作中探索,在探索中发现新知,培养探究能力。]
教师引导学生归纳小结:圆中心的一点叫做圆心,圆心用字母“o”表示。(学生在圆形纸片上点出圆心,标出字母。)
④游戏趣味题。
在操场上,体育老师在地上画了一个大圆,给同学们做游戏。老师说,不管你站在什么位置,都会派上用场。你喜欢站在什么位置呢?请你点出来。
[教师请学生边点边说明这点与圆的位置关系,同时给予评说。如学生点到“圆心”,师评说:“你很有雄心,喜欢别人围着你转,将来必成大器。”如学生点到“圆内”,师评说:“你比较守规矩,喜欢在一定的范围内活动,将来不容易犯错误。”如学生点到“圆上”,师评说:“你做事很有规律,能够遵循原则,同时与‘上司’相处喜欢保持一定距离。”如学生点到“圆外”,师评说:“你很了不起,思维活跃,思路开阔,做事不愿受条条框框的束缚,喜欢创新,有开拓精神,将来定会大有作为。”这样教学,生动有趣,其乐无穷,激励性强,学生乐学,学得轻松愉快、积极主动。学生对圆、圆心、圆内、圆上、圆外等基本概念能够有深刻的理解。]
(2)探究——圆的直径、半径及其关系。
教师:你还想知道什么?
学生:还想知道圆的直径、半径,直径与半径之间有什么关系?
小学数学圆的认识教案篇三
苏教版九年义务教育小学数学第十一册第115~118页。
知识技能在尝试画圆的过程中领悟画圆的方法,会正确使用圆规画圆,能结合自学、交流、探索等活动,准确理解“圆心、半径、直径”等概念。
数学思考引导学生经历探索、发现、创造、交流等丰富多彩的数学活动过程,并在这一过程中深刻把握圆的特征,发展学生的空间观念和数学交流能力。
问题解决使学生学会从数学的角度认识世界、解释生活,逐步形成“数学地思维”的习惯。
情感态度使学生初步体会圆的神奇及其所包蕴的美学价值。
一、现象激趣,引入探究
1.交流:生活中,你在哪儿见到过圆?通过交流,使学生感受到生活中圆无所不在。
2.结合波纹、向日葵等事物,进一步带领学生领略圆的神奇,激发学生的探究欲望。
二、分层探究,体悟特征
1.画圆剪圆──首次感知。
(1)学生尝试画圆。通过交流,在师生互动过程中帮助学生掌握圆规画圆的方法,并将“画指定半径的圆”这一要求巧妙地孕伏其中。
(2)剪圆。既帮助学生感知圆的特征,又为下面的探究活动准备素材。
2.认识概念──初尝成功。
结合学生的原有经验和教师提供的“学习材料”,引导学生通过自学、交流、操作等活动。自主建构起对圆心、半径、直径等概念的理解。为探究活动做好认知层面的铺垫。
1.开放探究──体验特征。
先通过交流,引导学生初步明确探究方向。在此基础上,引导学生以小组为单位,结合手中的圆片和教师提供的相关支持性材料,共同研究圆的特征,并将研究过程中的发现记录下来。教师以合作者、组织者的身份介入学生的研究活动。对有困难的研究小组提供支持。并收集学生中有价值的发现,以备交流。
2.交流展示──共享发现。
将学生探索过程中生成的具有代表性的发现汇集成“我们的发现”,并引导全班学生相互交流。共同分享,深化理解,直至建构起对于圆的完整、系统的认识。
二、实践拓展,文化渗透
1.基本练习。
(1)判断:图中的哪一条线段是圆的半径或直径?
(2)口答:根据半径求出直径。根据直径求出半径。
(说明:本项练习没有单独设置。而是结合上面的“交流展示”环节,在师生互动的过程中自然穿插。)
2.史料链接。
介绍我国数学史上关于圆的研究记载,比如“圆,一中同长也”(《墨经》)、“圆出于方,方出于矩”(《周髀算经》)、“没有规矩,不成方圆”(《周髀算经》),拓宽学生的数学视野。此外,教师结合相应史料的介绍,比如“圆出于方,方出于矩”,将一些联想题、开放题自然穿插其中,既渗透了数学历史、文化,又培养了学生的思维能力与想像能力。
3.解释应用。
引导学生运用圆的特征解释生活中常见的自然现象,比如“水纹为什么是圆形的”,“盛开的向日葵为什么是圆形的”等,帮助学生进一步深化对圆的特征的认识。并学会从数学的角度观察和理解生活。
4.圆与人文。
借助多媒体,直观地为学生展示圆在人类历史、生活、文化、审美等各个层面的广泛应用,比如“圆与桥梁设计”、“圆与中国剪纸”、“圆与中国结”、“圆与中外建筑”、“圆与著名标志设计”等,引导学生感受圆与人类生活的密切关联,体会圆的美学与人文价值。
数学也是一种文化,《数学课程标准(实验稿)》在前言中明确指出:“数学的内容、思想、方法和语言是现代文明的重要组成部分。”如何在课程实施过程中践行并彰显数学的文化本性,让文化成为数学课堂的一种自然本色,我们着眼“过程”与“凝聚”进行了初步的探索。
1.数学发展到今天,人们对于她的认识己经历了巨大的变化。如今,与其说数学是一些结论的组合,毋宁说她更是一种过程,一种不断经历尝试、反思、解释、重构的再创造过程。因而对于圆的特征的认识,我并没有沿袭传统的小步子教学,即在亦步亦趋的“师生问答”中展开,而是将诸多细小的认知活动统整在一个综合性、探究性的数学研究活动中,通过学生的自主探索、合作交流、共同分享等,引领学生经历了一次“研究与发现”的完整过程。整堂课,“发现与分享”成为真正的主旋律,而知识、能力、方法、情感等恰恰在创造与分享的过程中得以自然建构与生成。
2.承认“数学是一种过程”的同时,我们也应清晰地意识到,作为人类文化重要组成部分的数学,在经历了漫长的发展过程后,“凝聚”并积淀下了一代代人创造和智慧的结晶,我们有理由向学生展现数学所凝聚的这一切,引领学生通过学习感受数学的博大与精深,领略人类的智慧与文明。基于此,教学伊始,我们选择从最常见的自然现象引人,引发学生感受圆的神奇魅力;探究结束,我们介绍了中国古代关于圆的记载,拓宽学生的知识视野;最后,我们更是借助“解释自然的圆”和“欣赏人文的圆”等活动,帮助学生在丰富多彩的数学学习中不断积累感受、提升认识,努力使圆所具有的文化特性浸润于学生的心间,成为学生数学成长的不竭动力源