2023年角平分线判定定理教学反思(9篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
角平分线判定定理教学反思篇一
(1)什么高
(2)怎样画高。 讲高时请学生回答概念(事前预习了,应当有了了解),同时我找一个同学来画高,然后学生动手在课前画好的三角形上画出高,
本节的一个难点:高。定义中向它的对边所在直线画垂线,对这些词语我加以强调,然后让学生来动手画一画,但并不是所有的同学都能画出,特别是钝角三角形,夹钝角的两条边上的高画法也出现了很多版本,我觉得还是同学们没有很好的掌握高的概念,不能很好的理解任一边上的高都是过这条边相对的顶点向对边做垂线。
这节课我主要采用新知与旧知相联,类比的方法,以师生交流的形式,在学生动中感,动中悟,从而创设良好的学习氛围,学生较好地接受所学的内容。
教材中直接告诉学生什么是高、角平分线、中线,学生学起来较被动而枯燥无味。在学习中我以提问的形式让学生回忆垂线的概念与画法,从而启发学生的思维,同时学生感悟前后知识的联系,然后再以提问的形式让学生知道垂线是射线,三角形的高是线段,这样学生对知识有充分的理解。
三角形的高相交于一点,是通过学生动手操作画不同三角形的高,让学生在动手操作中直观地感受锐角三角形的高交于三角形内部一点,直角三角形的高交于三角形的顶点,钝角三角形的高交于所在直线的一点,这样让学生在动中深刻地感受所学的内容。
然后用同样的方法来学习中线和角平分线,我相信同学们可以独立的完成任务。
本节课教学主要是用类比的教学方法——将书本的知识隐含的内容表达出来、给学生一种美的感受;将旧知与新知以有效的语言表达出来、合适的方式写在一起,为师生的交流创造良好的氛围;这样学生的学习就容易达到事半功倍的效果!
角平分线判定定理教学反思篇二
教师的成长在于不断地总结教学经验和进行教学反思,下面是我对这一节课的得失分析:
本节课是九年制义务教育课程标准实验教科书八年级上册11.3角平分线的性质的第一课时。角平分线是初中数中重要的概念,它有着十分重要的性质,通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础.
八年级学生有一定的自学、探索能力,求知欲强。借助于课件的优势,能使脑、手充分动起来,学生间相互探讨,积极性也被充分调动起来。教法和法学
通过创设情境、动手实践,激发学生的学习兴趣,促进学生积极思考,寻找解决问题的途径和方法。
在教师的指导下,采用学生自己动手探索的学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手动脑、动口的能力,使学生真正成为学习的主体。
首先,本节课我本着学生为主,突出重点的意图,结合课件使之得到充分的诠释。如在角平分线的画法总结中,我让学生自己动手,通过对比平分角的仪器的原理进行作图,并留给学生足够的时间进行证明。为了解决角平分线的性质这一难点,我通过具体实践操作、猜想证明、语言转换让学生感受知识的连贯性。
其次,我在讲解过程中突出了对中考知识的点拨,并且让学生感受生活中的实例,体现了数学与生活的联系;渗透美学价值。
再次,从教学流程来说:情境创设---实践操作---交流探究---练习与小结---拓展提高,这样的教学环节激发了学生的学习兴趣,将想与做有机地结合起来,使学生在想与做中感受和体验,主动获取数学知识。像采用这种由易到难的手法,符合学生的思维发展,一气呵成,突破了本节课的重点和难点。
本节课在授课开始,我没有把平分角的学具的建模思想充分传达给学生,只是利用它起到了一个引课的作用,并且没有在尺规作图后将平分角的学具与角平分线的画法的关系两相对照。
在授课过程中,我对学生的能力有些低估,表现在整个教学过程中始终大包大揽,没有放手让学生自主合作,在教学中总是以我在讲为主,没有培养学生的能力。
对课堂所用时间把握不够准确,由于在开始的尺规作图中浪费了一部分时间,以至于在后面所准备的习题没有时间去练习,给人感觉这节课不够完整。再就是课堂上安排的内容过多,也是导致前面所提问题的原因。这也使我注意到在授课内容的安排上不应死板教条,而应根据内容和学生情况进行更合理的配置。
通过这节课的反思我深刻的意识到自己在新课改的教学中还有太多的不足,以后不仅要在思想上认识到新课改的重要性,更要在实际教学中始终贯彻先学后教的模式,更好地培养学生的合作精神与探究能力。
数学角平分线教学反思二
教材中的引入是一种用被动的方式将学生的知识回想起来。而笔者的引入以交流方式让学生主动回想起角平分线的概念以及画法,这样对学生思维的启发度深;也让学生明白前后知识的联系,以填空的形式给出让学生的思维对角平分线是射线、三角形的角平分线是线段有了充分的理解与掌握。这样学生对知识的学习达到知其然、知其所以然的效果。
1、这节课主要是用类比的教学方法——将书本的知识隐含的内容表达出来、给学生一种美的感受;将旧知与新知以有效的语言表达出来、合适的方式写在一起,为师生的交流创造良好的氛围;这样学生的学习就容易达到事半功倍的效果。通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.
2.重视情境创设,让学生经历求知过程。本节课引入问题教学的模式,其目的是引导学生积极参与课堂,积极投入到解题思路的探索过程中,通过合作学习引导学生深层次参与,倡导同学们要学会用大脑去思考,用耳朵去倾听,用眼睛去观察,用双手去操作,使学生言语与行动逐步起到自觉调控的作用,促进思维的“内化”,从而发展学生的独立思考。
3、教学过程不足之处
在具体的教学过程中,整个课堂显得时间仓促,没有给学生留下足够的时间和空间进行定理应用。特别是课堂小结,在对知识的梳理上显然做的不够。假如对本节课进行第二次设计,我想只探讨角平分线性质定理即可,而后补充一些例题给学生足够的时间让他们进行分析和运用,落实对推理问题思路的探寻和清晰、条理性书写证明的过程,切实培养学生的逻辑推理能力和灵活运用知识解决问题的能力。另外,教学语言不精练,有的话重复了好几遍,过多的点拨剥夺了学生的思维参与机会;课堂提问质量不高,尤其是对课堂语言的锤炼,不仅仅是表达清楚,更要言简意赅,把更多的时间留给学生,让学生在课堂上有更多的时间去思考。还要注意,发挥学生的主体性不应停留在口头上,还要在实际操作时充分体现教师是学生学习的引导者,学生是学习的真正的主人。
角平分线判定定理教学反思篇三
教学设计时需要理解学生,了解学生的认知起点、认知规律、思维障碍,才能使教学设计更贴近学生,激发学生积极主动进行知识建构。
这一点对于刚刚参加工作4年的我来说,往往是在教学后才能更好地把握的。比如本节的内容,要让学生自己经过探究总结出“角的平分线的性质”,学生们在归纳时能说出“角的平分线上的点,向角两边作垂线段,垂线段的长度相等。”但却不能将垂线段的长度,与点到直线的距离联系在一起,从而在得出性质定理时,出现了一些困难,就是因为我没有充分考虑学生对原有知识的认识,在布置预习作业时没有让学生回忆什么是点到直线的距离。发现这个问题之后,我在2班布置预习作业时,就提起了注意,从而让教学顺利的进行了下去。
在教学过程中,我们首先要做到的就是理解学生,清楚学生学习数学的基础、潜能、需求与差异,清楚学生已有的数学知识、新的知识生长点与潜在的困难,使教学更合理,帮助学生顺利的进行知识建构。如果离开对学生现状的准确把握,教学设计就很难达到理想的效果。
本节课的目标之一就是:会用尺规作图的方法,画任意角的平分线。如何让学生理解、记住作法,从而掌握画角平分线的方法呢?
我由“平分角的仪器”入手,让学生们自己发现仪器的原理,从中得到启发,画一个角的平分线关键是找到满足条件的三个点,学生能理解到这儿,就能自己找到方法并画出角平分线。也就让学生的学习处在一种自然生成的状态。新知识的发生、形成、应用,不是教师强加于学生的,是符合他们的认知规律的。
本节内容教材在编排时构建了一个完整的探究活动,教学中应让学生充分经历这个探究过程,在明确探究目标、形成探究思路的前提下,动手操作,得出猜想,并进一步进行推理论证,感受结论的合理性,体现数学研究的严谨性。
我在设计性质探究这个环节时,充分的挖掘了教材,一步一步的引导学生深入思考,环环相扣、循序渐进,以问题为载体,逐步要求学生独立分析、形成完整的证明过程,从而训练了学生推理论证的能力。
教材的结构体系、内容顺序是反复考量的,语言是反复斟酌的,例题是反复打磨的,习题是精挑细选的。教学设计时需要理解教材,理解教材内容、编排意图,重视教材的特色栏目,善于将教材内容“生长”开去,教师应深入理解数学知识的本质、结构,进而把知识教“活”,促进学生丰富或调整原有的认知结构,让学生顺利开展数学活动,进行知识建构。
教学设计时需要理解教学,重视教学过程、教学方式、课堂提问的设计,才能优化学生主动建构知识的过程,使学生学会学习。
本课教学时有一个突出的特点,设计了问题串,教师的提问一定要有针对性、启发性,这些问题环环相扣,循序渐进,让数学定理的归纳过程、命题的发现过程充分“暴露”给学生。
学生在经历观察、猜想、验证、证明的数学活动中,发展合情推理能力,并能有条理、清晰地阐述自己的观点。这正是培养学生数学素养,发展学生能力的有效方式。只有这样,才能让学生在掌握知识的同时,经历一个主动发现问题、提出问题、分析问题、解决问题的完整过程,才能克服教学中只重数学结果的倾向,实现从“被动的接受”到“主动地建构”的转变,让课堂涌动着生命的灵性。
数学教学不仅要让学生学会知识,更要让学生掌握解决问题的基本方法,这就是大家常说的“授人以鱼,不如授人以渔”。
如本节课的例题,可以用两步全等的方法,也可以结合本节课的新内容,这样就只需证一步全等。让学生体会证明线段等、角等,可以用全等的方法,当然也可以用角平分线的性质,将来还会有别的思路,这样的总结,能帮助学生整理做题思路,不会在解决问题时一脸茫然、无从下手。
角平分线判定定理教学反思篇四
本节课是12.3角平分线的性质的第一课时。角平分线是初中数中重要的概念,它有着十分重要的性质,通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
八年级学生有一定的自学、探索能力,求知欲强。借助于课件的优势,能使脑、手充分动起来,学生间相互探讨,积极性也被充分调动起来。通过创设情境、动手实践,激发学生的学习兴趣,促进学生积极思考,寻找解决问题的途径和方法。
在教学中,采用学生自己动手探索的学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手动脑、动口的能力,使学生真正成为学习的主体。
首先,本节课我本着学生为主,突出重点的意图,结合课件使之得到充分的诠释。如在角平分线的画法总结中,我让学生自己动手,并让学生自行思考证明。为了解决角平分线的性质这一难点,我通过具体实践操作、猜想证明、语言转换让学生感受知识的连贯性。
其次,我在讲解过程中突出了对中考知识的点拨,并且让学生感受生活中的实例,体现了数学与生活的联系;渗透美学价值。
再次,从教学流程来说:情境创设---实践操作---交流探究---练习与小结,这样的教学环节激发了学生的学习兴趣,将想与做有机地结合起来,使学生在想与做中感受和体验,主动获取数学知识。像采用这种由易到难的手法,符合学生的思维发展,一气呵成,突破了本节课的重点和难点。
在授课过程中,我对学生的能力有些低估,表现在整个教学过程中始终大包大揽,没有放手让学生自主合作,在教学中总是以我在讲为主,没有培养学生的能力。
对课堂所用时间把握不够准确,由于在开始的尺规作图中浪费了一部分时间,以至于在后面所准备的习题没有时间去练习,给人感觉这节课不够完整。再就是课堂上安排的内容过多,也是导致前面所提问题的原因。这也使我注意到在授课内容的安排上不应死板教条,而应根据内容和学生情况进行更合理的配置。
通过这节课的反思我深刻的意识到自己在新课改的教学中还有太多的不足,以后不仅要在思想上认识到新课改的重要性,更要在实际教学中始终贯彻先学后教的模式,更好地培养学生的合作精神与探究能力。
角平分线判定定理教学反思篇五
1、本设计采取了“问题情境——建立模型——解释、应用与拓展”的基本模式,安排多种形式的实践活动,让学生经历了知识的形成与应用的过程,从而为更好地理解,掌握角平分线的性质与判定作准备,发展学生应用数学的意识与能力,增强学生学好数学的愿望和信心。
2、数学知识不是静态的结果,而是一种主动构建的过程,教学法中采用探究,讨论,演示等形式,使学生与学习内容相互作用,从而获得主动认知,主动构建,充分发展的结果,学生通过画图,类比证明来完成学习任务,学生学得有趣,符合学生认知特点。
1、本节课虽然体现了学生的主动性,孩子的上课积极性比较高,参与程度广,但教材的整合与取舍体现的不够突现,原因是所带班级的基础比较差,学习能力较弱,所以在整合与取舍方面步子迈得较小了一些,力求孩子在40分钟内扎实有效的掌握双基。
2、本设计只注重双基的训练,忽视了数学思想方法的渗透,数学知识的迁移,让学生在思考的过程中激发学习兴趣,从而训练学生的思维。
1、加强教学的钻研和学习,在学生学习能力和学习习惯上多下功夫,达到授之以渔,而是授之以鱼。
2、加强基本功的学习,因为教材的整合和取舍不是简单的二节课并为一节课,也不是刻意的不讲某一部分的内容,我个人的理解是对教材创造性的使用,面对不同的学生,教师要采取不同的方法,这就需要教师具备相当扎实的基本功,对教材烂熟于心,做到前后知识的衔接,达到课堂教学过程过渡自然,使学生在轻松的氛围中学会知识,快乐学习。
角平分线判定定理教学反思篇六
如何能够上一节“形神兼备”的数学复习课呢?接到任务后,我正在州学院学习,就此也与一些老师进行了探讨,但都没有较好的思路。若上简单的单元复习课,很容易造成概念的累积和习题的罗列。我个人认为,既有数学的思想和味道,又有我校差异—适应性教学模式下的“独学、对学、和群学”的特点才是一节好课。
为了突出几何教学的特点,我首先从平行线的判定与性质结构特点进行比较,让学生真正认清“数量关系”和“位置关系”相互转化的几何思想,平行线的判定与性质它们之间是“条件”、“结论”的“变位”。在前置性作业中我设计了几道基础题,并重点考查4~6号同学。让学生在讲解中注重数学的根据,在使用判定时关键要找到截线和被截线。实现了数与形的说理,也进一步让学生理清了判定与性质的关系,为下面的学习打下了良好的基础。
在教学的第二个环节,我结合典例通过识图,让学生观察、交流找到解决问题的突破口,恰当的使用了角平分线性质的三种等量关系再与平行线所得角的有机结合充分的进行分析让学生进一步体会到了数形结合的思想。
在变式训练中我采取了对学的方式,注重思想方法和几何的推理过程,要求学生中师傅给徒弟点拨和纠错,但效果不是很好。
最后的综合训练没有完成,说明学生能力不是很强,平时的训练不到位。
本堂课在其他方面还有不足如:学生对推理过程的完成方面还不够熟练,角平分线性质的三种等量关系的恰当使用与平行线的综合问题应用还不熟练。另外本堂课依然受框架的影响,“形”到位,但课堂教学数学思想和解题方法渗透的还不是很到位。“神”方面差点火候。
角平分线判定定理教学反思篇七
1知识与技能
能应用角的平分线的性质定理解决一些实际问题
2过程与方法
经历探索角的平分线性质的应用过程,领会几何分析的内涵,掌握综合法的表达思想。 3情感态度与价值观
使学生在比较中获取知识,感悟几何的'简练思维
1重点:应用角的平分线的性质定理。
2难点:应用综合法进行表达。
3关键:抓住问题的因果关系进行推理。
1回顾旧知识
师:请同学们在草稿纸上任意画一个∠aob,并且画出∠aob的角平分线。
(让学生回忆角平分线的尺规作图,为今天所学作铺垫)
2活动一
让学生在白纸上任意画一个∠aob,并且用剪刀剪下∠aob,将∠aob对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠的三条折痕。
(教师边叙述边操作,学生操作并把平面图画在草稿纸上,教师巡逻,指出其中有差错的地方)
师:第一次折叠有什么作用?
生1:把角平均分成两份。
生2:折痕实际就是这个角的平分线。
师:很好。第二次折叠形成的两条折痕与角的边有什么位置关系?
生:垂直。
师:我们可以换一种说法吗?
(学生思考片刻)
生1:垂线段
生2:距离
生3:点到直线的距离。
师:点在哪里?
生4:第一条折痕上。
生5:角的平分线上
生6:角的平分线上的点到直线的距离
师:到任意一条直线吗?
生7:到角的两边
生8:角平分线上的点到角两边的距离。
师:这两个距离又有什么关系呢?
生9:相等
师:请大家归纳角平分线的性质。
角平分线上的点到角两边的距离相等。
3证明:角平分线上的点到角两边的距离相等。
一般情况下,我们要证明几何中的命题时,会按照类似的步骤进行,即
(1)明确命题中的已知和求证
(2)根据题意,画出图形,并且用数学符号表示已知和求证
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
《角平分线性质》这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。
回顾本节课,我觉得在一些教学设计和教学过程的把握中还存在着一些问题
本节课在授课开始,让学生回顾用尺规作图画一个角的角平分线,为本节课学习角的平分线的性质作铺垫。活动一中,充分发挥学生动手操作能力,并把实图抽象成平面图形画出来,起初画图时,学生画得千奇百怪,有的把他撕的纸的大小原封不动的画了下来,有的又把直角画在角的平分线上了,并没有达到我预想的结果,通过提示,有些同学画出来了,但又忘记标直角符号。我想:出现这些问题,首先是要抽象出这个模型来确实有点困难,其次我在让学生剪下这个角的时候,没有注意到学生剪下来的形状是不一样的,下一次可能直接剪一个三角形,把其中一个角对折,可能要好些,但可能会出现更大的问题。因此在这里浪费的时间多,导致后面没有充足的时间来证明此性质。
在授课过程中,我对学生的能力有些低估,表现在整个教学过程中始终大包大揽,没有放手让学生自主合作,在教学中总是以我在讲为主,没有培养学生的能力。对课堂所用时间把握不够准确,由于在开始的尺规作图中浪费了一部分时间,当然这一环节时间的浪费与我讲授尺规作图的方式不够合理是分不开的,以至于在后面所准备的习题没有时间去练习,给人感觉这节课不够完整。再就是课堂上安排的内容过多,也是导致前面所提问题的原因。这也使我注意到在授课内容的安排上不应死板教条,而应根据内容和学生情况进行更合理的配置。
角平分线判定定理教学反思篇八
《角的平分线的性质和判定复习》是学生学习了角平分线性质和判定后,对这些知识的综合应用。本节课进一步研究角平分线性质定理——角平分线性质定理的逆定理——角的内部到角的两边距离相等的点在角的平分线上。这是全等三角形知识的运用和延续,是今后学习圆的内心的基础。这节课我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索角平分线的判定及它与角的平分线的性质在表述和作用上的不同,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。
1、清楚学生已有的数学知识
在教学过程中,我们首先要做到的就是理解学生,清楚学生学习数学的基础、潜能、需求与差异,清楚学生已有的数学知识、新的知识生长点与潜在的困难,使教学更合理,帮助学生顺利的进行知识建构。如果离开对学生现状的准确把握,教学设计就很难达到理想的效果。
2、理解学生的认知规律
本节课的复习:会用尺规作图的方法,画任意角的平分线。如何让学生理解、记住作法,从而掌握画角平分线的方法呢?
画一个角的平分线关键是找到满足条件的三个点,学生能理解到这儿,就能自己找到方法并画出角平分线。也就让学生的学习处在一种自然生成的状态。新知识的发生、形成、应用,不是教师强加于学生的,是符合他们的认知规律的。
本节内容教材在编排时构建了一个完整的探究活动,教学中应让学生充分经历这个探究过程,在明确探究目标、形成探究思路的前提下,动手操作,得出猜想,并进一步进行推理论证,感受结论的合理性,体现数学研究的严谨性。
我在设计性质探究这个环节时,充分的挖掘了教材,一步一步的引导学生深入思考,环环相扣、循序渐进,以问题为载体,逐步要求学生独立分析、形成完整的证明过程,从而训练了学生推理论证的能力。
1、重视教学活动的设计
本课教学时有一个突出的特点,设计了问题串,教师的提问一定要有针对性、启发性,这些问题环环相扣,循序渐进,让数学定理的归纳过程、命题的发现过程充分“暴露”给学生。
学生在经历观察、猜想、验证、证明的数学活动中,发展合情推理能力,并能有条理、清晰地阐述自己的观点。这正是培养学生数学素养,发展学生能力的有效方式。只有这样,才能让学生在掌握知识的同时,经历一个主动发现问题、提出问题、分析问题、解决问题的完整过程,才能克服教学中只重数学结果的倾向,实现从“被动的接受”到“主动地建构”的转变,让课堂涌动着生命的灵性。
2、重视数学方法的渗透
数学教学不仅要让学生学会知识,更要让学生掌握解决问题的基本方法,这就是大家常说的“授人以鱼,不如授人以渔”。
如本节课的例题,可以用两步全等的方法,也可以结合本节课的新内容,这样就只需证一步全等。让学生体会证明线段等、角等,可以用全等的方法,当然也可以用角平分线的性质,将来还会有别的思路,这样的总结,能帮助学生整理做题思路,不会在解决问题时一脸茫然、无从下手。
上完这节课后,自我感觉良好,学生在课堂上也积极参与思考、大胆尝试、主动探讨、勇于创新。我回想这节课,有以下几点成功之处与不足:
1。创设情境,点燃激情。创设富有吸引力的学习情境,让每位学习者身临其中,触景生情,都有一种探究新知的渴望、奋力向前的冲动,使他们处于一种“愤悱”的状态。用鲜活的问题导入,精彩的实验,掀起学生求知的激情,引发学生的思考。
2。主体探究,体验过程。在教学的实际过程中,重视学生的亲身体验、自主探究、过程感悟。在教学中,给学生一段时间去体悟,给他们一个空间去创造,给他们一个舞台去表演;让他们动脑去思考,用眼睛去观察,用耳朵去聆听,用自己的嘴去描述,用自己的手去操作。这种探究超越知识范畴而扩展到情感、价值观领域,使课堂成为学生生命成长的乐园。
3。互动倾听,灵动升华。在课堂上允许学生充分表述自己的见解与困惑。相信“没有尝试过错误的学习是不完整的学习”,用欣赏的眼光去观察,用宽容的心态去理解,鼓励学生创新;允许学生出错,学会延迟判断,让学生学会自己在错误中改正,在跌倒处爬起。
如果说一节课的课堂设计是上好一节课的根本,那么课堂上老师的传授方式更是关键。这其中包括老师对课堂气氛和学生的把握,老师的教态是否大方得体,尤其有很多老师听课的时候,还包括语言是否精炼,知识的逻辑感是否连贯,层次是否清楚等。首先说本节课的课堂气氛,也许是摄像的缘故,学生有点紧张,平时爱回答问题的学生不太敢发言了,所以感觉课堂的气氛还是有些沉闷。当然,老师在调动学生的积极性时,要设法消除学生的紧张感,让学生在课上轻松而愉快的学习知识。这是对任何一位老师的考验。其次平时自己没有在意的细节,包括自己在讲台上的站位和站姿,自己不经意的手势和说话的口头语都暴露出来。感觉自己在语言精心锤炼上更待提升。再次发挥学生的主体性不应停留在口头上,还要在实际操作时充分体现教师是学生学习的引导者,学生是学习的真正的主人。更要在实际教学中始终贯彻先学后教的模式,更好地培养学生的合作精神与个人能力。
角平分线判定定理教学反思篇九
本节课的教学设计力图贯彻“自主参与、合作交流”的教育理念和体现“数学教学主要是数学活动的教学”的教育思想。根据对教材的分析和理解,本节课的重点我确定为:掌握角平分线性质定理,而难点确定为角平分线性质定理与判定定理的准确表述与证明。
为了体现学生在课堂上的主体地位,突出重点、突破难点,本节课我主要采用问题——启发式教学法,通过设计一系列层层递进的问题,引领学生自己自主学习、合作交流、推理验证,思维展示等操作活动,让学生亲身经历知识的发生、发展及其探求过程,在活动中理解知识、掌握知识,最终能运用知识来解决问题。总的来说,整节课的设计有理有法有据,既遵循了新课标的理念和学生的发展特点,又突出了教学中学生的主体地位,让学生在理解、掌握、运用知识的同时,培养和提高了自主思考、合作交流、解决问题的能力。
从本节课的教学设计,到教学实施,再到教学反思的过程中,我觉得本设计有以下几个方面的亮点:
1. 教学设计注重了知识的形成过程。
教学中教师应鼓励学生积极参与知识的获取过程,让学生亲历知识的发生、发展及其探求过程。
2. 在教学中以问题引领学生活动,在学生活动中突出重点,突破难点。
本节课在教学实施中,通过教师问题引领,启发诱导学生自主学习、小组互动讨论等一系列活动,突出了本节课的重点,分解、突破了难点。
3. 数学思想方法的渗透。
在实际教学中,还要注意数学思想方法的渗透,努力让学生实现从“学会”到“会学”的转化,最终实现学生的“乐学”。