最新勾股定理教案教学反思(11篇)
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。
勾股定理教案教学反思篇一
基础题中是一些由正方形和直角三角形拼合而成的图形(与希腊邮票设计原理相同),其中两个正方形的面积分别是14和18,求最大的正方形的面积。
分析:由勾股定理结论:直角三角形中两直角边的平方和等于斜边的平方。
其实质即以直角三角形两直角边为边长的两个正方形面积之和等于以斜边为边长的正方形的面积。但学生竟然不知道。其二是课件准备不充分,其中有一道例题的答案是跟着例题同时出现的,再去修改,又浪费了一点时间。其三,用面积法求直角三角形的高,我认为是一个非常简单的数学问题,但在实际教学中,发现很多学生仍然很难理解,说明我在备课时备学生不充分,没有站在学生的角度去考虑问题。
这是我上课的最大弱点,我不敢放手让学生去独立思考问题,会去重复题目意思,实际上不需要的,可以留时间让学生去独立思考。教师是无法代替学生自己的思考的,更不能代替几十个有差异的学生的思维。课堂上老师放一放,学生得到的更多,老师放多少,学生就有多大的自主发展的空间。但这里的“放多少”是一门艺术,我要好好向老教师学习!
教师要鼓励学生尝试并尊重他们不完善的甚至错误的意见,经常鼓励他们大胆说出自己的想法,大胆发表自己的见解,真正体现出学生是数学学习的主人。
启发学生也是一门艺术,我的课堂上有点启而不发。课堂上应该多了解学生。
勾股定理教案教学反思篇二
1.勾股定理的逆定理是研究特殊三角形——直角三角形的一种判定方法,体现了数形结合的思想。
2.通过勾股定理与它的逆定理的学习,加深了学生对性质与判定之间辨证统一关系的认识。
3. 完善了知识结构,为后继学习打下基础。
初中生已经具备一定的独立思考和探索能力,并能在探索过程中形成自已的观点,能在倾听别人意见的过程中逐渐完善自已的想法,而且本班学生比较上进,思维活跃,愿意表达自已的见解,有一定的互动互助基础。
1.知识与技能:
(1)理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
(2)掌握勾股定理的逆定理,并能应用勾股定理的逆定理判定一个三角形是不是直角三角形。
2.过程与方法
(1)通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程。
(2)通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用。
(3)通过对勾股定理的逆定理的证明,体会数形结合方法在问题解决中的作用,并能应用勾股定理的逆定理来解决相关问题。
3.情感态度
(1)通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐与辨证统一的关系
(2)在探索勾股定理的逆定理的活动中,通过一系列的富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
教学重点:勾股定理的逆定理及起应用
教学难点:勾股定理的逆定理的证明
勾股定理教案教学反思篇三
勾股定理的探索和证明蕴含着丰富的数学思想和数学方法,是培养学生良好思维品质的最佳载体。它以简洁优美的图形结构,丰富深刻的内涵刻画了自然界的和谐统一的关系,是数形结合的完美典范。著名数学家华罗庚就曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言。为让学生通过对这节课的学习得到更好的历练,在教学时,特别注重从以下几个方面入手:
传统的教学中,教师往往喜欢压缩理论传授过程,用充足的时间做练习,以题代讲,搞题海战术。但从学生的发展来着,如果压缩数学知识的形成过程,不讲究知识的自然生发,学生获取知识的过程是被动的,形成的体系也是孤立的,长此以往,学生必将错过或失去思维发展和能力提高的机遇。在这节课上,不刻意追求所谓的进度,更没有直接给出勾股定理,而是组织学生开展画一画、看一看、想一想、猜一猜、拼一拼的活动,学生在活动思考、交流、展示中,逐渐的形成了对知识的自我认识和自我感悟。这样做不仅能帮助学生牢固掌握勾股定理,更重要的是使学生体会用自己所学的旧知识而获取新知识过程,使他们获得成功的喜悦,增强了学生主动性,同时他们的思维能力在知识自然形成的过程中不断发展。
操作性学习是自主探究性学习有效途径之一,学生通过在实践活动中的感受和体验,有利于帮助学生理解和掌握抽象的数学知识。在这节课上,首先让学生动手画直角三角形,得出研究题材,然后又让学生利用四个直角三角形拼一拼,验证猜想。这样充分的调动了学生的手、口、脑等多种感官参与数学学习活动,既享受了操作的乐趣,又培养了学生的动手能力,加深了对知识的理解。
课堂教学是教师组织、引导、参与和学生自主、合作、探究学习的双边活动。这其中教师的“引导”起着关键作用。这里的“引导”,很大程度上靠设疑提问来实现。在教学实践中,问题设计要具有开放性。因为开放性问题更有利于培养学生的创造性思维、体现学生的主体意识和个性差异。本节课在设计涂鸦直角三角形时,安排学生在方格纸上任意涂鸦一个直角三角形;在设计拼图验证环节时,安排学生任意拼出一个正方形或直角梯形,有意没指定画一个具体边长的直角三角形和正方形,就是不想对学生的思维给出太多的限制条件,给出更多的想象和创造空间。虽然探究的时间会更长,但这更符合实际知识的产生环境,学生只有在这样的环境下进行创造、发现和磨练,能力素养才会得到更有效的历练。
新《数学课程标准》在关于课程目标的阐述中,首次大量使用了"经历(感受)、体验(体会)、探索"等刻画数学活动水平的过程性目标动词,就是要求在数学学习的过程中,让学生经历知识与技能形成与巩固过程,经历数学思维的发展过程,经历应用数学能力解决问题的过程,从而形成积极的数学情感与态度。教学从学生感兴趣的涂鸦开始,再经历观察、分析、猜想、验证的全过程,让学生充分的经历了完整的数学知识的发现过程,使学生获得对数学理解的同时,在知识技能、思维能力以及情感态度等多方面都得到了进步和发展。
如果有机会再上这节课,我想我会投入更多的精力对学生可能会给出的答案进行预想,以便在课堂上给予学生更多的启迪,让他们走的更远。一堂课,虽已结束,但对于生命课堂的领悟这条路,还有很长的路要走,我将继续上下求索,做学生更好的支点。
勾股定理教案教学反思篇四
“教师教,学生听,教师问,学生答,教师出题,学生做”的传统教学摸模式,已严重阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1平方米到底有多大?因此,《新课标》要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。上这节课前教师可以给学生布置任务:查阅有关勾股定理的资料(可上网查,也可查阅报刊、书籍),提前两三天由几位学生汇总(教师可适当指导)。这样可使学生在上这节课前就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,对学生也是一次爱国主义教育,培养民族自豪感,激励他们奋发向上,同时培养学生的自学能及归类总结能力。
学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于学生实践能力的培养非常不利的。现在的数学教学到处充斥着过量的、重复的题目训练。我认为真正的教学方式的转变要体现在这两个方面:一是要关注学生学习的过程。首先要关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;同时要关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理。二是要关注学生学习的知识性及其实际应用。本节课的主要目的是掌握勾股定理,体会数形结合的思想。现在往往是学生知道了勾股定理而不知道在实际生活中如何运用勾股定理,我们在学生了解勾股定理以后可以出一个类似于《九章算术》中的应用题:在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖与水面平齐,已知水草移动的水平距离为6分米,问这里的水深是多少?
教学方式的转变在关注知识的形成同时,更加关注知识的应用,特别是所学知识在生活中的应用,真正起到学有所用而不是枯燥的理论知识。这一点上在新课标中体现的尤为明显。
课堂教学中要正确地、充分地引导学生探究知识的形成过程,应创造让学生主动参与学习过程的条件,培养学生的观察能力、合作能力、探究能力,从而达到提高学生数学素质的目的。多媒体教学的优化组合,在帮助学生形成知识的过程中扮演着重要的角色。通过面积计算来猜想勾股定理或是通过面积割补来验证勾股定理并不是所有的学生都是很清楚,教者可通过多媒体来演示其过程不仅使知识的形成更加的直观化,而且可以提高学生的学习兴趣。
评价对于学生来说有两种评价的方式。一种是以他人评价为基础的,另一种是以自我评价为基础的。每个人素质生成都经历着这两种评价方式的发展过程,经历着一个从学会评价他人到学会评价自己的发展过程。实施他人评价,完善素质发展的他人监控机制很有必要。每个人都要以他人为镜,从他人这面镜子中照见自我。但发展的成熟、素质的完善主要建立在自我评价的基础上,是以素质的自我评价、自我调节、自我教育为标志的。因此要改变单纯由教师评价的现状,提倡评价主体的多元化,把教师评价、同学评价、家长评价及学生的自评相结合。
在本节课的教学中,老师可以从多方面对学生进行合适的评价。如以学生的课前知识准备是一种态度的评价,上课的拼图能力是一种动手能力的评价,对所结论的分析是对猜想能力的一种评价,对实际问题的分析是转化能力的一种评价等等。
勾股定理教案教学反思篇五
勾股定理是我们这学期教学中一个非常重要的定理,它揭示了直角三角形的三边之间的数量关系,是典型的数形结合思想的运用,拿着我们初二数学备课组全体老师的精心设计的讲学稿,上完课后,反思不少。本节课的设计主要是根据学生的认知结构,“以画一画、量一量、算一算、证一证、用一用”为主线轴展开教学的,着实体现了知识的发生、形成和发展的过程,真正地让学生体会到观察、归纳、验证的思想和数形结合的思想,探究出勾股定理的内容,并能做到简单地应用,主要成功的地方有:
引入20xx年在北京召开的国际数学家大会会标,展示“弦图”并设疑,迅速集中了学生的注意力,把学生的思绪带进了特定的学习环境中,激发了全班同学的浓厚兴趣和强烈的求知欲,为本节课的成功创造了有利条件。
让学生动手画直角三角形,观察、分析,引导学生自己得出结论,再对结论进行科学的论证,用所得的结论解决数学问题。在课堂上,探索目标明确,体现了教学的重点和难点,充分发挥了学生的主体作用,调动了学生的积极性,培养了学生动手操作的能力,体现了以学生为主体的意识,各环节衔接紧密,学生课堂反应好。
本节课在教学探讨的过程中,还渗透着勾股定理的历史方化背景,激发学生的民族自豪感,促使探索新知识的热情,整个课堂师生和谐,气氛好;师生共同探讨并验证定理,鼓励学生再用其他方法来验证所得的勾股定理结论。
例:在引入拼图验证定理时,学生以前从未接触过,故在教学中我就多给学生适当指导和鼓励,尽量做学生的组织者、合作者。
通过这节课,备课、上课之后,感悟点点滴滴,确实还存在着一些遗憾。
①感觉今天这堂课没有平时上课的气氛那么浓,部分同学认为是录像课,不敢抛头露面,甚至连回答问题的声音都小了很多,故主动提问的人较少。
②讲学稿编设的内容较多,有点欲速则不达的感觉。
勾股定理教案教学反思篇六
勾股定理的探索和证明蕴含丰富的数学思想和研究方法,是培养学生思维品质的载体。它对数学发展具有重要作用。勾股定理是一坛陈年佳酿,品之芬芳,余味无穷,以简洁优美的形式,丰富深刻的内涵刻画了自然界和谐统一关系,是数形结合的优美典范。
教学中我以教师为主导,以学生为主体,以知识为载体,以培养能力为重点。为学生创设“做数学、玩数学”的教学情境,让学生从“学会”到“会学”,从“会学”到“乐学”。
我让学生课前查阅有关勾股定理资料,学生对勾股定理历史背景有初步了解,学生充满自信迎接新知识《勾股定理》学习的挑战。
学生查得资料:世界许多科学家寻找“外星人”。1820年,德国数学家高斯提出,在西伯利亚森林伐出直角三角形空地,在空地种上麦子,以三角形三边为边种上三片正方形松树林,如果有外星人路过地球附近,看到这个巨大数学图形,便知道:这个星球上有智慧生命。我国数学家华罗庚提出:要沟通两个不同星球的信息交往,最好利用太空飞船带上这个图形,并发射到太空中去。
毕达哥拉斯是古希腊数学家。相传2500年前,毕达哥拉斯在朋友家做客,发现朋友家用地砖铺成地面反映了直角三角形三边的数量关系。
我讲毕达哥拉斯故事,提出问题。学生独立思考,提出猜想。我配合演示,使问题形象、具体。教学活动从“数小方格”开始,起点低、趣味性浓。学生在伟人故事中进行数学问题的讨论和探索。平淡无奇现象中隐藏深刻道理。
“问题是思维的起点”,一段生动有趣的动画,点燃学生求知欲,以景激情,以情激思,引领学生进入学习情境,学生带着问题进课堂。
例如:一架长为10m的梯子ab斜靠在墙上,若梯子的顶端距地面的垂直距离为8m。如果梯子的顶端下滑2m ,那么它的底端是否也滑动2m ?
尽管学生讲的不完全正确,但培养了学生运用数学语言进行抽象、概括的能力,学生经历了应用勾股定理解决问题的思考过程,学生增长了知识,学生增长了智慧。
例如:《九章算术》记载有趣问题:有一个水池,水面是边长为10尺的正方形,在水池的中央有一根新生芦苇,它高出水面1尺,若把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池深度和这根芦苇长度各是多少?
我通过“著名问题”探究,让学生了解勾股定理的古老与神奇。问题本身具有极大挑战性,激发了学生强烈求知欲,激发了学生探究知识的愿望。学生讨论交流,发现用代数观点证明几何问题的思路。我配以演示,分散了难点,培养了学生发散思维、探究数学问题的能力。
我抛砖引玉介绍赵爽弦图,赵爽用几何图形截、割、拼、补证明代数恒等关系,具有严密性,直观性,是中国古代以形证数、形数统一的典范。赵爽指出:四个全等直角三角形拼成一个中空的正方形,大正方形面积等于小正方形面积与4个三角形面积和。 “赵爽弦图”表现了我国古代人对数学的钻研精神和聪明才智,它是我国数学的骄傲。这个图案被选为20xx年北京召开的国际数学家大会会徽。
随后展示了美国总统证法。1876年4月1日,美国伽菲尔德在《新英格兰教育日志》发表勾股定理的证法。1881年,伽菲尔德就任美国总统,为了纪念他直观、简捷、易懂、明了的证明,这一证法被称为“总统”证法。
我感觉学生是小小发明家。学生在建构知识的同时,欣赏作品享受成功的喜悦。
练习设计我立足巩固,着眼发展,兼顾差异,满足学生渴望发展要求。练习有基础训练,变式训练,中考试题,引出勾股树,学生惊叹奇妙的数学美。课内知识向课外知识延伸,打开了学生思路,给学生提供了广阔空间。数学教学变得生机勃勃,学生喜欢数学,热爱数学。
我让学生讲解搜集资料,丰富了学生背景知识,体现了自主学习方式。我对学生进行爱国主义教育,激发了学生民族自豪感和奋发向上学习精神。我让学生欣赏丰富多彩的数学文化,展示五彩斑斓的文化背景,激发了学生的爱国热情。
课堂小结是对教学内容的回顾,是对数学思想、方法的总结。我强调重点内容,注重知识体系的形成,培养了学生反思习惯。
我还想对同学们说:
牛顿——从苹果落地最终确立了万有引力定律
我们——从朝夕相处的三角板发现了勾股定理
虽然两者尚不可同日而语
但探索和发现——终有价值
也许就在身边
也许就在眼前
还隐藏着无穷的“万有引力定律”和“勾股定理”……
祝愿同学们——
修得一个用数学思维思考世界的头脑
练就一双用数学视角观察世界的眼睛
开启新的探索——
发现平凡中的不平凡之谜……
勾股定理教案教学反思篇七
新课程改革要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中;将知识的获取与能力的培养置身于学生形式各异的探索经历中;关注学生探索过程中的情感体验,并发展实践能力及创新意识。为学生的终身学习及可持续发展奠定坚实的基础。
为此我在教学设计中注重了以下几点:
上这节课前一个星期教师布置给学生任务:查有关勾股定理的资料(可上网查,也可查阅报刊、书籍)。提前两三天由几位学生汇总(教师可适当指导)。这样可使学生在上这节课前就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,对学生也是一次爱国主义教育,培养民族自豪感,激励他们奋发向上。同时培养学生的自学能力及归类总结能力。
首先,创设情境,由实例引入,激发学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高。体现了学生是数学学习的主人,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
对于拼图验证,学生还没有接触过,所以在教学中教师给予学生适当指导与鼓励。充分体现了教师是学生数学学习的组织者、引导者、合作者。
课前查资料,培养学生的自学能力及归类总结能力;课上的探究培养学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力……
数学来源于实践,而又应用于实践。因此从实例引入,最后通过定理解决引例中的问题,并在定理的应用中,让学生举生活中的例子,充分体现了数学的应用价值。
整节课都是在生生互动、师生互动的和谐气氛中进行的,在教师的鼓励、引导下学生进行了自主学习。学生上讲台表达自己的思路、解法,体验了数形结合的数学思想方法,培养了细心观察、认真思考的态度。但本节课拼图验证的方法以前学生没接触过,稍嫌吃力。另在举勾股定理在生活中的例子时,学生思路不够开阔。以后要多培养学生实验操作能力及应用拓展能力,使学生思路更开阔。
勾股定理教案教学反思篇八
从内容上看勾股定理只有一句话:"两直角边的平方和等于斜边的平方",但教材安排了三个课时,从教学目标上分析总结:
1。让学经历探究、测量、拼图、发现、验证应用的过程,让学生感受数形结合、转化和从特殊到一般的数学思想。
2。通过动手操作、小组合作、共同思考探索勾股定理证明的过程,让学生掌握数学图形的割补技巧和代数恒等关系在几何中的灵活运用。
1。让学生体验探究的乐趣,培养学生解决问题能力和克服苦难的决心,感悟数与形之间的美妙结合,激发学生学习数学的自信心。
2。通过介绍勾股定理的历史小故事,增强学生的民族自豪感,激发学生努力学习的意志。
勾股定理教案教学反思篇九
星期四下午讲了《勾股定理逆定理》第一课时,现对本节课反思如下:
(1)这节课的设计思路比较合理:着重体现“探究”这一主题,从“古埃及人得到直角三角形的方法”到学生用木棒模仿操作,再到画图自己证明等一系列活动,得出“勾股定理逆定理”,而对互逆命题,原命题,逆命题等概念的讲解只是作为新课引入的命题点化了一下,没有详细讲解、把这节课的重点放在了如何让学生通过三角形三边关系判断是否是直角三角形?在经过课堂练习及课堂检测来强化学生对勾股定理逆定理的理解,分别从三角形的边和角这方面来引导学生。
(2)本课ppt的使用是想凸显“特征让学生观察,思路让学生探索,方法让学生思考,意义让学生概括,结论让学生验证,难点让学生突破,以学生为主体”的教学思路,每个环节都是紧密相接的。
(3)课堂教学环节和教学效果我感觉很满意,学生在对问题的回答很积极,在突破难点的过程中,学生通过小组合作实验交流,自己总结归纳勾股定理逆定理,及证明中我给与学生充分的思考时间让学生自己完成。整个过程中体现了以学生为主,老师为主导的作用,课堂气氛活跃,效果挺好。
本节课的不足之处及改进方法:
1、本节课我没有及时发现学生的错误。在学生上黑板做题时出现的错误没能及时发现及改正。
2、课堂检测做完后应让学生自己讲解,但时间不够导致这一环节没能让学生完成,而是在投影对了答案。
在以后教学中,我会不断地更新教育理念,结合学生的认知规律、生活经验对数教材进行再创造,选取密切联系学生现实生活和生动有趣的数学素材,为学生提供充分的数学活动和交流的空间,真正把创造还给学生,让学生动起来,让课堂焕发新的活力。
勾股定理教案教学反思篇十
义务教育课程标准实验教材八年级数学(下)《勾股定理》的第一课时,教材的重点是让学生经历勾股定理的探索和证明过程,了解勾股定理的背景知识,在学习知识的同时,感受勾股定理的丰富文化内涵,激发学生的学习兴趣,对学生进行思想品德教育。
在讲课时,由于没有认真准备,也没有让学生准备学具,所以在上课时,只是让学生利用书中的图形来进行探究。对于勾股定理的证明,只是用了四个全等的直角三角形拼了拼,运用同一图形的不同表示法得出了结论。一节课,将课堂重点放到了对勾股定理结论的记忆和运用上,淡化了教材对勾股定理的探索和证明过程,结果只有班内少数同学学到了探索和证明方法,教学效果不佳。
这节课讲过没多久,由于要参加优质课比赛,我又认真对这节课进行了准备。针对教材的任务要求,我对本节课的教学过程是这样设计的:
通过欣赏20xx年在我国北京召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,引入课题。
接下来,让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。
这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。
通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。
在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。
先了解赵爽的证明思路,然后让学生利用学具自己剪拼,并利用图形进行证明。
由于难度比较大,组织学生开展小组合作学习。教师要巡回辅导,给予学生必要的帮助。
一是让学生自己回顾总结本节的收获。(当然多数为具体的知识和方法)。二是教师要引导学生学习科学家敏锐的观察力和勤于思考的作风,不断提高自己的数学素养,适时对大家进行思想教育。
主要练习勾股定理的其它证明方法。
请你利用网络资源,收集有关勾股定理的证明方法来进行学习。写出有关勾股定理知识的小论文,以便用来参加全市“小小科学家”创新大赛。一个月过去了,我已忘记了这一项特殊的作业,但部分学生却写出了出乎意料的小论文。
在优质课上,对教材中的探究内容,不但制作了多媒体课件,还让每个学生都准备了探究图形和拼图纸板。在课堂上,学生通过自己尝试探究、小组交流合作、集中成果展示等多种形式参与课堂活动,虽然已是讲过的知识,但在试讲(本班学生)和比赛中(借外校学生上课),由于这次是让学生来探究获取知识,学生普遍参与,学习兴趣深厚,参与活动的积极性很高,小组分工合作任务明确,课堂效果很好。学生在掌握了知识的同时,由于真正经历了探究的整个过程,对科学家敏锐的观察力和勤于思考的作风理解颇深,并学到了一些新的探究方法,在思想上也受到了教育和启迪。课堂教学目标顺利完成,整个课堂丝毫没有那种“熟课”学生不想上的痕迹。
通过这节课的两种不同的上法,以及学生的不同表现与收获,让我更深刻地认识到:
(1)新课改理念只有全面渗透到教育教学工作中,与平时工作紧密结合,才能够促进学生的全面发展;
(2)教师要充分利用课堂内容为整体课程目标服务,不要仅限于本节课的知识目标与要求,就知识“教”知识,而要通过知识的学习获得学习这些知识的方法,同时,还要充分利用课堂对学生进行情感态度价值观的教育,真正让教材成为教育学生的素材,而不是学科教学的全部;
(3)要相信学生的能力,为学生创造自我学习和创造的机会(如布置开放性的学习任务:数学实践活动、研究学习、写小论文等)。我相信:只要坚持不懈地这样去做,不但能很好地实施新课改,实现教育的本来目标,而且也一定能让学生“考出”好的成绩;不过,这样教师一定不会轻松。
勾股定理教案教学反思篇十一
我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。中国古代的几何学家研究几何是为了实用,是唯用是尚的。在讲完《勾股定理逆定理》这节课后,我的反思如下:
本节课的教学目标是:在掌握了勾股定理的基础上,让学生如何从三边的关系来判定一个三角形是否为直角三角形.即:勾股定理的逆定理。
勾股定理的逆定理的教学设计说明:本教教学设计是围绕勾股定理的逆定理的证明与应用来展开,结合新课标的要求,根据我班学生的认知结构与教材地位为了达到本节课的教学目标,我做了以下设计(也是成功之处):
一、创设情境,提出猜想达到直观性的教学要求。让几个学生要全班同学前面做一个“数学实验”,三条分别为:3,4,5的三角形是一个直角三角形。第二步骤是让学生画已知三边的一定长度的三角形,判断是不是直角三角形,并分析三边满足什么关系条件,同时,引导学生从特殊到一般提出猜想。
二、将教学内容精简化.考虑到我所教班级的学生认识水平,做了如下教学设计:⑴将教学目标定为让学生掌握勾股定理的逆定理.以及逆定理的应用,而对于本课中逆定理的证明.以及其探究都放在一下节课再进行讲解.⑵对于本课中所出现了的逆定理的定义,及其真假性的判断也简单化.本节课也不详细讲.本节课的的重点放在掌握勾股定理的逆定理,及其应用.从课堂效果来看,这样的教学设计是合理的,学生较好的掌握了勾股定理的逆定理,所以取得了良好的课堂效果。
三、应用训练,巩固新知为了巩固新知,灵活运用所学知识解决相应问题,提高学生的分析解题能力,基于对我班的学情分析,为了让学生都能动起手做,学案的设计上做了很多脚手架,目的就是让学生能够按照脚手架的步骤一步步完成,最终也形成了解题的“操作性”。此外,脚手架的设置对我们的中下水平的学生是很多帮助的.从课堂上看,他们也能在脚手架的帮助下,完成一定的题目中,而如果没有的话,这部分学生对一些基本的题都会束手无策.
四、实行分层教学,让不同水平的学生在同一课堂都能学好,为此,我设计了三个层次的问题,以达到分层教学目标:第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理基本运用;第二层次是强调已知三角形三边长或三边关系,就有意识的判断三角形是否是直角三角形,这样既巩固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理与逆定理解决图形面积的计算问题.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生的理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验.真正体现学生是学习的主人.。将目标分层后,我设计的学案里的题目也是相应的进行了分层设计,满足不同层次的学生的做题要求,达到巩固课堂知识的目的。最后,布置作业,也是分层布置的,分为三层,对应不同的学生,让他们的作业都在他们的能力范围。
诚然,这节课也存在许多不足第一、新课导入部分:存在如下值得改进的地方:①复习旧知部分,复习勾股定理的内容应用了填空的形式,这个形式不是最佳的.因为学生书写勾股定理耗时,既使书写出来,复习效果也不太好。最佳的应该是以简单的题目形式来复习勾股定理.这样快而有效;②如何从复习勾股定理中巧妙的切入本课的主题,过渡语的设置,应该将过渡语言简单明了,可设计成:怎么从边的关系来判断一个三角形是直角三角形呢?这就是本节课要学习的内容.③导入部分的课时分配估计不足,显得冗长,也一定程度上造成后面的教学时间紧张。应该对导入部分的时效再进行分析简化。
第二存在的问题是:
(1)脚手架设计的太多,本节课有一定的脚手架是合适的,太多了,反而不利于学生自己的书写规范性,过程的掌握等,
(2)练习题题量过大,本节课的练习题大部分都是重复一些基本的操作,没有必要太多简单的题目,可以适当去掉.对于数字的设计可以更加科学化一点,应该让学生方便运算和节省时间.此外,对于层次较要的同学来说,应该设计更多一点综合性的题目。适当的增加一些提高题,以满足这一层次的学生的学习练习要求.
在备每一节课中,对于课堂的每一个细节,第一刻钟,第一个教学设计的思考都无不直接影响着你的这一节课,影响着你的课堂效果。静心思考,反思整个过程是一种全新的收获,也是全新的开始,让自己能够重新起步,向前。