最新乘法分配律教学设计意图 乘法分配律教学设计吴正宪(15篇)
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
乘法分配律教学设计意图 乘法分配律教学设计吴正宪篇一
乘法分配律是人教版小学数学四年级下册的教学内容,本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课的难点。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学生在前面学习了加法和乘法的交换律、结合律,以及应用这些运算律进行简便计算,已经初步具备探索和发现运算定律并运用运算律进行简便计算的经验,为学习新知识奠定了基础。同时新知识学生在已经学习的知识中也有所体现,只是没有揭示这个规律罢了,比如学生在计算长方形的周长时,周长=长×2+宽×2,周长=(长+宽)×2。从平时我班学生的表现来看,他们的概括、归纳能力还是一个薄弱的环节 。
1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
3、会用乘法分配律进行一些简便计算
1、 指导探索乘法分配律。
2、 发现并归纳乘法分配律。
通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。
激趣导入
(约3分钟)
一、创设情境,提出问题:
1、师:老师想请大家帮一个忙,我有一个朋友开了一家小公司,有4名员工,她想给公司的员工每人买一套工作服,她去商店看中了几件衣服和几条裤子,想选一套衣服做工作服。请同学们想一想,怎样搭配?
2、学生思考:(1)有几种搭配方案
(2)选择你喜欢的一种方案,并算出总价。
(学生自己选择方案并在练习本上完成。师强调:是买4套衣服)
自主学习
(约7分钟)
(一)组内研讨,确定方案
1、组内研讨:
(1)一共有几种搭配方案?
(2)介绍自己的方案,并说一说,你推荐的理由。
(3)说说你推荐的方案,需要花多少钱?你是怎么算的?
合作交流
(约10分钟)
2、汇报交流:
师:哪一个同学想先来给老师推荐他的方案?
师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?
分别列式解答
师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)
师:这个等式怎么读呢?
生尝试读等式。
(预设学生读法:a.225加上75的和乘4等于乘225乘4加75乘4
b.225加上75的和乘4等于225和75分别与4相乘的积再相加。 )
3、研究其它方案
由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的'。计算后分别加上等号。
教师板书:
一套 ×4 = 4件上衣 + 4条裤子
(225+75)×4 = 225×4 + 75×4
(225+125) ×4 = 225×4 + 125×4
(175+75)×4 = 175×4 + 75×4
(175+125) ×4 = 175×4 + 125×4
精讲点拨
(约8分钟)
(二)、观察比较、猜测验证
1、观察比较
2、提出猜想。
师:观察上面的等式,左右两边的算式什么变了什么没变?
你们有什么发现?
3、举例验证。
让学生再举出一些这样的例子进行验证,看看是否也有这样的规律?
学生汇报,教师根据汇报板书。
(三)、总结规律,概括模型
1、总结规律:
师:刚才同学们发现了数学中的一个规律,很了不起。大家知道这是什么规律吗?(生猜测)
师:这个规律就是我们今天学习的乘法分配律。(齐读)你能说一说什么叫乘法分配律吗?
2、用字母表示:
师:用字母如何表示乘法分配律?
测评总结(约12分钟)
三、巩固应用,训练提升
1、请你根据乘法分配律填空
(12+40)×3=()×3+()×3
15×(40+8)=15×()+15×()
78×20+22×20=( + )×20
66×28+66×32+66×40=( + + ) ×40
教师结合学生回答,介绍前两道为乘法分配律的正向应用,后三道属于乘法分配律的反向应用。
2、火眼金睛辨对错
56×(19+28)=56×19+56×28
(18+15)×26=18×15+26×15
(11×25) ×4= 11×4+25×4
(45-5)×14 =45 ×14 -5 ×14
强调:两个数的差与一个数相乘,也可以把它们分别与这个数相乘,再相减。
3、用乘法分配律计算下面各题。
(40+4)×25 39×8+39×6-4×39
4、拓展提高
你能用乘法分配律解决这道题吗?
86×101
四、说一说,今天我们研究了什么?你有什么收获
板书设计
乘法分配律
一套 ×4 = 4件上衣 + 4条裤子
(225+75)×4 = 225×4 + 75×4
(225+125) ×4 = 225×4 + 125×4
(175+75)×4 = 175×4 + 75×4
(175+125) ×4 = 175×4 + 125×4
乘法分配律:两个数的和与一个数相乘,可以用这两个数分别和这个数相乘,再相加。
乘法分配律教学设计意图 乘法分配律教学设计吴正宪篇二
《义务教育课程标准实验教科书数学》(青岛版)六年制四年级下册第二单元信息窗2《乘法分配律》。
本信息窗是学生在学习乘法结合律和乘法交换律的基础上进行的,是乘法运算规律的一个完善。本节课充分利用学生熟悉的生活情境,以济青高速公路为素材,通过行驶在高速公路上的两辆汽车提供的信息,引出了对乘法分配律的探索,让学生体验数学与日常生活的密切联系,同时注重知识的内在联系,让学生利用自己已学的知识体验推动新知识的学习,从而发展了学生的迁移能力。
1.结合相遇问题的情境,在解决问题的过程中,亲历观察、猜想、验证、归纳、推理等数学活动,发现并理解乘法分配律。
2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系,学生对乘法分配律的`认识由感性上升到理性。
3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强合作学习的意识。
让学生亲历探索乘法分配律的过程,在猜想验证等自主探索活动中得出乘法分配律,使学生对分配律的认识由感性上升到理性。
清楚地表述自己发现的规律,理解及应用乘法分配律。
一、创设情境,感知规律
1.提出问题,列出算式。
出示情境图
谈话:瞧,这是济青高速公路!在这里,还藏着许多数学信息,让我们一起来找找吧!请你仔细观察,从图片和文字中你能发现什么数学信息?根据这些信息,你能提出什么数学问题?
信息预设:大巴的速度是每小时行110千米,中巴的速度是每小时行90千米,两车同时相向而行,大约2小时相遇。
问题预设:济青高速公路全长约多少千米?(板书)
谈话:请你试着用两种方法在答题纸上解答。
生独立解答。
预设:
2.结合情境,感知规律。
提出要求:结合线段图说说算式每一步的含义。
回答预设:①我先算出1小时两辆客车一共行驶多少千米,然后再求两小时行驶多少千米。也就是济青高速的全长是多少千米。
②我先求这辆大客车2小时行驶的路程;小客车2小时行驶的路程。然后把这两部分加起来就是济青高速公路的全长。
【设计意图:把相遇问题通过学生的理解转化成数学问题,这是思维的抽象,也是数学化的过程,既能激发学生研究的欲望,营造研究的氛围,又使学生探究的问题清晰明了。结合情境理解算的合理性,利用学生的学习和生活经验初步感知乘法分配律的存在。】
二、研究素材,猜测规律
教师引导学生观察算式谈发现。
预设发现:两个算式结果相等。可以用等号连接。
教师引导学生从算式结构和计算方法的特点观察算式的左边和右边有什么不同。
预设区别:①左边有3个数,右边有4个数,两个乘法算式中都有相同的因数2。
②左边有小括号,应该先算加法,再算乘法;右边先算乘法,再算加法。
谈话:根据前面运算律的学习,你有什么想法?
预设回答:这可能又是一个规律。
【设计意图:抛开情境,观察算式,使学生初步感受到两种方法的结果一样。通过观察算式结构和计算方法的不同,渗透规律特点。使学生建立“猜想是探究获得结论的前提”这样的研究意识。】
三、讨论交流,验证规律
1.举例验证规律。
谈话:这只是我们的一个猜想,你能再举一些这样的例子来进行验证吗?如果有需要,可以用计算器进行举例。
学生独立计算举例。
指生代表板演,再指一名学生举例。其余学生同位交流,并用计算器帮助同位验证。
谈话:请你先和同位交流你举的例子,并用计算器帮同位验证一下他的等式是否成立。
预设举例:(25+35)×4=25×4+35×4
(60+50)×2=60×2+50×2
(65+55)×42=65×42+55×42
……
教师引导学生发现像这样的例子举不完,可以用省略号表示。
2.观察几组等式的相同点。
教师引导学生观察这几组等式的左边和右边分别有什么相同点。
预设回答:①这几组等式的左边都是两个数的和乘一个数。
②这几组等式的右边都是把两个数分别与第三个数相乘,再把积相加。
3.总结规律。
教师引导学生用自己的话说说这个规律。
谈话小结:刚刚我们通过猜想、验证得出的结论就是乘法分配律。
教师出示乘法分配律。
谈话:请你边读边理解,并把它记在心里,比比谁记得又快又准确。
生按要求说什么是乘法分配律。
谈话:我们用这么多的算式和文字来表示它,麻不麻烦?有没有简便的方法?
预设回答:可以用字母表示。
教师要求学生在答题纸上试着用字母abc来表示乘法分配律。
学生试着在答题纸上写字母表达式。
指生板演(a+b)c=ac+bc。
谈话:对于乘法分配律用字母来表示,感觉怎么样?
预设回答:简洁、明了,把复杂的事情简单化,这就是数学的美,一种清晰而简洁的语言!
教师小结:刚刚我们经历了猜想、验证、得出结论的过程,探究出了乘法分配律,还能用字母把这么多的算式写成一个算式。
【设计意图:让学生举例说明规律的存在,鼓励学生表达这个规律,从具体的实例中抽象概括出乘法分配律,学生经历观察、描述、操作、思考、推理、概括从“非正规化”到“正规化”的学习过程。】
四、巩固拓展,应用规律
1.连一连。
2.在□里填上合适的数或字母。
3.火眼金睛辨对错。
乘法分配律教学设计意图 乘法分配律教学设计吴正宪篇三
《乘法分配律》教学设计【1】教学内容:p27:例8。
:引导学生探究和理解乘法分配律。
感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。教学重点:乘法分配律的意义和应用。
乘法分配律的反应用。
多媒体课件
一、复习引入
前几节我们学习的乘法交换律、结合律及应用它们可以使一些计算简便。
什么是乘法的交换律和结合律?
今天这节课我们再来学习乘法的另一个运算定律。
二、新课探究
出示主题图:还记得我们提出的第三个问题吗?
参加植树的一共有多少人?
1、你怎样解决这个问题?列式计算
2、汇报:
第一种算法:先算每个小组里有多少人?
(4+2)×25
=6×25
=150(人)
第二种算法:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数。
4×25+2×25
=100+50
=150(人)
3、观察这两个算是有什么特点?
4、讨论,你得到什么结论?
5、汇报:两个数的和于一个数相乘,可以先把它们与这个数分别相乘再相加。
6、小结:这个规律就是乘法分配律。
7、用字母怎样表示这个规律?
三、巩固练习
1、p27做一做
2、拓展:乘法分配律是否也适用于减法?
验证:18x5-5x8(18-8)x5
265×105-265×5265×(105-5)
结论:适用【2】教材分析:本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析:学生具有很好的自主探究、团队合作、与人交流的习惯,在学习了乘法交换律和乘法结合律知识后,掌握了一些算式的规律,有了一些探究规律的方法和经验,只要教师注意指导和点拨,就一定会获得很好的教学效果。
教学目标:
知识与能力:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:
在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点和难点:
教学重点:理解并掌握乘法分配律,发现问题、提出假设、举例验证、探索出乘法分配律。
教学难点:乘法分配律的推理及应用。
教学过程:
一、复习引入,质疑猜想
1、出示口算题:
师:前段时间,我们发现了四则运算中的`加法交换律、乘法交换律、加法结合律和乘法结合律,我们知道利用这些运算定律可以使一些计算更简便。下面各题看谁算得又对又快。
358+25+7572+493+2825×19×4
12×125×8168×5×214×2=
交流:你是怎样想的?
2、分组计算比赛
师:下面我们再来一场分组计算比赛,好不好?
出示:脱式计算
第二组题目:45×12+55×1234×72+34×28
第一、三组:(45+55)×12(72+28)×34
师:你们觉得这场比赛公平吗?仔细观察两组算式,大家有什么发现?两个算式的结果是相等的,结果为什么相等呢?接下来,我们一起去进一步探究。
二、探究新知,验证猜想
1、出示:用两种方法计算这两个长方形中一共有多少个小方格?
8×4+5×4(8+5)×4
思考:为什么两个算式的结果相同呢?
左边算式表示8个4加5个4,(一共13个4),右边也是求13个4,所以结果相等。
2、出示:淘气打一份稿件,平均每分钟打字178个,他先打了6分钟,后又打了4分钟完成这份稿件。
(1)请提一个数学问题(淘气一共打了多少个字?)
(2)用两种方法解答问题
(3)思考:为什么两次计算的结果相同呢?
3、师:仔细观察,像上面这样的等式,你能再列出一组吗?在自己练习本上列一列,算一算,验证一下。这样的等式列得完吗?用a、b、c代表三个数,你能写出上面发现的规律吗?(a+b)×c=a×c+b×c大家发现的这个规律其实就是乘法分配律(板书课题)。
能用自己的话说说什么叫乘法分配律吗?(两个加数的和与一个数相乘就等于把两个加数分别与这个数相乘,然后把乘积相加)
想一想:这里的分配,表示什么意思?(表示分别配对的意思。)
师:这道等式反过来写,依然成立吗?
三、巩固新知,应用定律
1、填一填:
4×(25+8)=__×___+___×__
38×37+62×37=___×(___+___)
502×19+11×502=___×(___+___)
48×99+48×1=___×(___+___)
a×b+a×c=___×(___+___)
2、判断对错:
8×(125+9)=8×125+9()
27×8+73×8=27+73×8()
(12+6)×5=(12×5)×(6×5)()
(25+9)×4=25×4+9×4()
3、试一试
(1)观察(40+4)×25的特点并计算
(2)观察34×72+34×28的特点并计算
4、分组计算比赛
85×16+15×16(40+8)×25
68×128-68×2834×(100+20)
四、总结全课
今天,我们又发现了什么?
五、课外思考
其实,乘法分配律我们并不陌生,大家想一想,以前在什么时候我们用过乘法分配律?
板书设计:
乘法分配律教学设计意图 乘法分配律教学设计吴正宪篇四
设计思路:
本节课从学生的生活经验出发,让学生在真实的情境中认识乘法分配律感受到数学知识的真实,数学知识就在自己的身边,有助于培养学生用数学的思维方法观察周围事物,思考问题的良好习惯。本节课,在整个探究发现乘法分配律的过程中,我没有把知识规律直接展示给学生,而是让学生积极地动手实践、自主探索及与同伴进行交流,亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅发现乘法分配律的知识,而且学习科学探究的方法,数学思维的能力得到了发展。
义务教育教科书(人教版新教材)小学数学四年级下册第三单元第二节内容乘法运算定律之乘法分配律(第26-28页内容)。
《乘法分配律》是新人教版小学数学四年级下册,第26-28页内容。本课的教学内容是在学生已经掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的乘法分配律,是本单元的教学重点,也是本节课内容的难点。乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要
今天我们学习的乘法分配律是在已经掌握了乘法交换律、结合律的基础上进行教学,运用这些定律使一些运算得到简便。四年级学生已有一定的观察、比较、分析、理解的能力,但运用能力不够,抽象概括能力不强,形象思维占主导,个人思维常受一些定势思维的干扰。对于复杂些的计算题,其理解、掌握还不够,有一定的难度。
针对教材的特点和学生情况,分别从知识与技能、过程与方法、情感态度与价值观三维目标来确定本节课的教学目标.
知识与能力目标:理解和掌握乘法分配律的意义,培养学生分析、归纳的能力;学会用字母表示乘法分配律;掌握乘法分配律的特点,区分乘法分配律与结合律的不同点。
过程与方法目标:经历乘法分配律的推导、发现过程,体验比较分析、归纳发现的学习方法。。
情感、态度与价值观目标:感受数学知识之间的逻辑之美,提高学生的审美能力,培养学生独立思考的良好学习习惯。
重点:本节课的教学重点是理解乘法分配律的意义,并归纳出定律。
难点:难点是理解乘法分配律的意义及应用。
(1)、教法:由于学生已初步具有探索、发现运算定律并应用运算定律简便计算的经验,本节课遵循“解决问题—发现规律—交流规律—表达规律”的顺序来呈现内容,这样的安排易引起学生对学过的方法的回顾,也有利于他们顺利学习和掌握本节课内容。
(2)学法:在实际教学时,我强调依例题情境引导观察、比较、分析、理解、概括出乘法分配律,以亲身经历贯穿学习全过程,重视学生的成功体验,引领他们在合作、交流的和谐氛围中理解算理,一步步发现与成功、探索与理解。
本节课以学生自主学习、自主探索为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性。让学生多思、多说、多练,积极主动参与教学的整个过程。
(一)、谈话导入、激发兴趣。(课件出示图片ppt4)
1.谈话:不知道同学们注意过没有,我们说的话中存在着一种有趣的分配现象。比如说:“我爱爸爸和妈妈。”可以把它分成两句来说:“我爱爸爸,我也爱妈妈。”照这样“我爱吃苹果和西瓜”可以怎样说(我爱吃苹果,我也爱吃西瓜。)当然,也可以反过来,将两句话合成一句话来表述。“我爱看漫画书,我也爱看故事书。”可以这样说“我爱看漫画书和故事书。”今天中午我吃了米饭、青菜和鱼可以怎样说是不是挺有趣的其实在我们的数学中,也存在着这种有趣的分配现象,想不想一起去研究(见课件)
设计意图:看我们中国的语言很神奇、美妙。在数学上是否也有这样神奇、美妙的现象呢那么,我们数学上有没有可能把一个算式变成两个算式,两个算式合成一个算式呢
使学生带着问题,带着对算式的好奇心进入本科的学习。激发学生的求知欲,体现数学知识源于生活以及数学的现实意义
(二)、创设生活情境,引入新课。
谈话:通过上节课的探索,我们已经发现了乘法交换律和乘法结合律,你们还记得吗老师记得在上节课的学习中有一个问题没有解决,对吗咱们今天再继续探索,看看又会发现什么新的规律。
(课件出示主题图)(课件出示图片ppt5)
3.提问:(出示ppt6)
(1)你从图中获得了哪些信息
(2)今天我们要解决的问题是什么
预设:一共有25个小组,每组里4人负责挖坑和种树,2人负责抬水、浇树。问题是“一共有多少名同学参加了这次植树活动”
设计意图:课件设计是为了让学生想说、敢说、抢着说,激发他们早点进入最佳学习状态,为探究新知识聚集动力。
(三)、自主探索、合作交流。(课件出示ppt7)
一)初步感知
1.提问:要解决一共有多少名同学参加了这次植树活动先求什么再求什么你是怎么列式计算的
2.学生解答后汇报。
追问:还有不同的想法吗
板书:(4+2)×25 4×25+2×25
3.组织交流
(1)说说每道算式的意思
预设:(4+2)×25是先求出每组有多少人,再计算出25组有多少人。4×25+2×25是先求才挖坑和种树的人数,再求出抬水和浇水的人数,最后求出一个的人数。
(2)比较最后的计算结果。(相同)
追问:可用等号连接吗写成一个算式。
板书:(4+2)×25 = 4×25+2×25
读:谁能把这道等式读一遍。多读从语言上感悟乘法分配律。
观察,这道等式左边和右边有什么相同的地方和不同的地方
请跟你的同桌说说。全班汇报。
相同的地方:结果相同,每个算式都有3个数。
不同的地方:运算顺序不同。
设计意图:合理利用并依据现实生活实际改造现有的主题图情境,更贴近生活实际的生活情境创设,使学生更易在具体情境中发现问题、提出问题、解决问题,得出不同的解题思路,列出不同的算式,在计算结果相等的情况下组成等式,这为学生感受乘法分配律提供了现实背景,学生从中也体会到乘法分配律的合理性
(二)、猜想验证。(课件出示ppt9)
1.小组内写一写,算一算,举出这样的例子。
2.汇报交流。
3.引导学生总结概括。(提示:等式左右两边是怎样计算的)
预设:等号左边的式子是先算括号里两个加数的和,再和括号外面的数相乘;
而等号右边的式子是把括号里的两个加数分别去乘括号外面的数。
(三)、同类推广,总结归纳。(出示ppt10、11)
1.有这样特征的例子多不多,你能写一个这样的等式吗(要求数字用得简单些)。请你在你的本子上写一写。
2.你是怎样验证的。
3.同桌互相验证。
4.用符号表示:这样的式子很多,你能用自己喜欢的办法把具有这种特征的等式表示出来吗(用彩笔)
5.揭示课题(小结:出示ppt12)
我们已经用自己喜欢的方法把这种规律表示出来,其实,这就是我们今天要学的—《乘法分配律》,一起读一遍。
6.统一用字母表示:(课件出示ppt13)
如果用字母a、b、c表示这三个数,你能用它们表示具有这种特征的式子吗
(a+b) ×c=a×c+b×c
总结规律:
(a+b) ×c=a×c+b×c
a×(b+c)=a×b+a×c
两个数的`和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配率。
设计意图:新课程标准指出,学生学习数学的过程是充满了观察、实验、猜想、验证、推理与交流等丰富多彩的数学学习活动,因而在设计这一环节时让学生写出一个算式的另一种形式,并说说这样写的理由,让学生借助已有的生活经验来叙述自己写的算式,增加学生对乘法分配律的理解,同时让学生写一写这样的算式,说说自己是怎样写的,从而让学生自己从中发现乘法分配律,培养了学生的探究能力。]四)学习乘法分配律的逆用。
1、既然左边=右边,那右边等于左边,谁来读一读。
2、从右往左看,这个式子有什么特征
3、乘法分配律可以从左边用到右边,也可以从右边用到左边。
设计意图:让学生明白:乘法分配律左右两边可以相互逆用。
(四)、巩固应用,拓展延伸。(出示课件ppt16)
1.判断正误,下面哪些算式是正确的正确的画“√”,错误的画“×”。
56×(19+28)=56×19+28 ( )
32×(7×3)=32×7+32×3 ( )
64×64+36×64=(64+36)×64 ( )
问题:说一说你的判断理由。
2.下面哪些算式运用了乘法分配律(出示课件ppt17)
117×3+117×7=117×(3+7) ( )
4×a+a×5=(4+5)×a ( )
24×(5+12)=24×17 ( )
36×(4×6)=36×6×4 ( )
3.李阿姨购进了60套这种运动服,花了多少钱(出示课件ppt18)
4.观察下面的竖式,说一说在计算的过程中运用了
什么运算定律。出示课件ppt19
25×12=25×2+25×10
5,做一做,用乘法分配律计算下面各题。(出示课件ppt19)
103×12 20×55
6、回顾、拓展
1、老师想知道“挖坑和种树的人数”比“抬水和浇树的人数”多多少人你会列式吗
学生回答,师板书。(在原有算式上添上减号即可)
(4-2)×25 = 4×25-2×25
2、说说算式所表达的意思。
3、进一步完善乘法分配律。字母表示为:(a-b) ×c=a×c-b×c
[设计意图:练习设计上,我深入解读教材练习设计的同时,对练习进行了适当的加工改造,力求体现现实性、趣味性、层次性、思考性、发展性。多形式、多层次的练习,深化学生对乘法分配律意义的理解,更多注重的是深层次的挖掘,比如:乘法分配律的逆应用,其在减法中的应用等,这使得乘法分配律的内涵得到延伸,让学生对乘法分配律有了更一步的理解。]
(五)、课堂小结
这节课你学会了什么请说一说。
板书设计乘法分配律
(4+2)×25 = 4×25+2×25
(a+b) ×c=a×c+b×c a×(b+c)=a×b+a×c
两个数的和乘一个数,可以把这两个加数分别与这个数相乘,再把两个积加起来,结果不变。这叫做乘法分配率。
乘法分配律的教学是在学生学习了乘法交换律、乘法结合律的我基础上教学的。乘法分配律也是学生在这几个定律中的难点。
在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。要在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中,学生涌现出的各种说法,说明学生的智力潜能是巨大的。所以我在这里花了较多的时间,让学生多说,谈谈各自不同的看法,说说自己的新发现,教师尽可能少说,为的就是要还给学生自由探索的时间和空间,从而能使学生的主动性、自主性和创造性得到充分的发挥。
乘法分配律教学设计意图 乘法分配律教学设计吴正宪篇五
教科书书第54的例题以及55页的“想想做做”。
1.让学生在解决问题的过程中发现并理解乘法分配律(含用字母表示),初步了解乘法分配律的应用。
2.让学生参与知识的形成过程,培养学生比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.让学生感受数学规律的确定性和普遍适用性,获得发展数学规律的愉悦感和成功感,增强学习的兴趣和自信。
发现并理解乘法分配律。
多媒体课件。
一、复习旧知,作好铺垫
同学们,上学期,我们已经学习了乘法的两个运算定律,那谁来说说它们的名称和字母公式呢?(随学生回答出示小卡片:乘法交换律和乘法结合律。)
今天这节课,我们要来研究乘法的另外一个运算定律。
二、联系实际,探究规律
1.谈话:五一快要来了,商场正在开展服装促销活动呢!一其去看看吧!
2.课件例题情景图。
(1)问:仔细观察,从图中你获得了哪些信息?(短袖衫:每件32元;裤子:每条45元;夹克衫:每件65元。买5件夹克衫和5条裤子。)
(2)问:李阿姨一共要付多少钱呢?谁能口头列出综合算式?
指名说出算式,教师随学生回答板书:
(65+45)×5 65×5+45×5
让回答的两名学生说说自己的想法。(即先算的是什么。)
第一个算式:先算买一套衣服用多少元。
第二个算式:先算买5件夹克衫和5条裤子各用多少元。
(3)猜一猜:这两个算式结果会怎样?(相等)
(4)计算验证。
师:真相等吗?让我们动笔来算一算,男生算第一道,女生算第二道,做在自备本上。
集体交流,指名汇报计算过程。
(5)师:通过计算,我们发现这两个算式的结果的确是相同的,可以给它们画上等号。(板书:=)我们把这个等式轻声读一读。(学生轻声读读这个等式。)
3.探索、发现规律。
(1)师:仔细观察等号左右两边的算式,这两个算式有什么相同的地方和不同的地方?把你的想法与同桌交流一下。
同桌讨论交流,指名汇报,鼓励学生自由发表意见。
(学生可能说:等号左边有65、45和5这三个数,右边也有这三个数;都有乘法与加法;等号左边是65加45的和乘5,右边是65乘5的积加45乘5的积。……)
(2)在学生发言的基础上,教师相机引导学生初步得出:65加45的和与5相乘,等于把65和45分别与5相乘,再把两个积相加。
(3)师:是不是所有这样的两道算式之间都有这样的联系呢?谁再来举个例子?
指名举例,计算算式结果,得出等式,教师板书。
师:会不会是巧合呢?请你在本子上再举些例子验证一下。(学生独立举例验证。)
学生汇报验证的结果。 教师结合学生回答板书三个等式。
问:还有许多同学要发言,说明这样的例子还有很多很多,举得完吗?(板书:……)师:这么多等式,看来这不是巧合了,而是藏着一定的秘密在里面。你有什么发现呢?再与你的同桌轻声说一说。
(4)指名2到3人说说发现,教师随机小结:同学们,刚才我们通过观察发现:两个数的和乘第三个数,可以把这两个加数分别和第三个数相乘,再把两个积相加,结果不变。(课件出示)这就是我们今天要学习的乘法分配律。(板书课题)
(5)刚才几位同学在用语言叙述这个规律时感觉有些困难,你会用比较简洁的方法表示出乘法分配律吗?你可以用文字、图形、字母等表示它。
展示各种表达方法,集体交流,估计会有学生想到用字母或图形等来表达。
表扬写对的同学,并指出:刚才的.这些表达方法都是可以的。特别是写出(a+b)×c=a×c+b×c的同学,你们和数学家想到一起了。在数学上,我们就用字母a、b、c表示三个数,这个规律可以写成(a+b)×c=a×c+b×c。(板书,顺着读,逆着读)
师:用字母公式来表示乘法分配律,你又有什么感觉?(简洁、明了)这就是数学的简洁美。
三、应用规律,巩固练习
1. 对于今天学的乘法分配律会了吗?真的会了吗?好,那就考考你自己!(出示“想想做做”第2题) 横着看,在得数相同的两个算式后面画“√”。
学生自己判断。集体交流时指名说说是怎么判断的?
第3小题汇报时要问:为什么是对的呢?提醒学生注意74×1可直接写成74。
问:为什么你认为第4题不对呢?说说你的理由。怎样改就对了呢?
2.掌握得真不错!下面打开书看55页“想想做做”第1题。
学生独立填写后,指名汇报。
讨论第2小题时问:两个乘法中相同的乘数是几?应该把相同的乘数放在括号外面,而且这是乘法分配律的逆向运用!
3.完成“想想做做”第3题。(课件出示长方形菜地:长64米,宽26米)
问:图上给我们提供了长方形菜地的什么信息?
你会用两种不同的方法计算它的周长吗?
(1)学生完成在自备本上,指名板演两种不同的方法。
(2)集体交流,出示:(64+26)×2 64×2+26×2
师:刚才大家用两种不同的方法计算了长方形的周长,看这两道算式,问:哪种算法比较简便?它们的结果怎样?符合什么规律?
师:看来我们早在三年级学习长方形的周长时就已经接触过乘法分配律了。
4.完成“想想做做”第4题。
出示题目,观察这两组算式,想想每组中两个算式的结果是否相同?为什么?
比一比:请你从每组中各选一道喜欢的算式进行计算,比比谁算得又对又快。
学生计算后,集体交流:你们选的哪两道?为什么喜欢这两道?
(估计大多数学生会选择(64+36)×8和25×(17+3),因为这两道计算起来比较简便。)
这两道计算起来比较麻烦的算式如果让你来计算,你有什么好方法吗?(出示2题)
指名说计算过程,教师用课件展示简算过程。
小结:看,我们学会了乘法分配律使一些计算麻烦的题目变简单了。明天我们还会更深入地来学习简便计算。
5. 谈话:开学初,学校为了丰富大家的大课间活动,购买了一批体育器材,看看是什么?(课件出示图片和信息:空竹每个17元,飞盘每个8元,铁环每个15元。)每种玩具都购买了60个,一共要花多少钱?
学生独立完成在自备本上,投影展示不同的算法。
观察这个等式,你有什么想告诉大家吗?
师小结:看来,乘法分配律不仅可以是两个加数的和乘第三个数,还可以推广到3个加数的和去乘,甚至更多的加数呢!
四、总结回顾
问:今天这节课,你有什么收获?
五、课堂作业
完成“想想做做”第5题。
教后反思:
乘法分配律是在学生学习了乘法交换律、结合律的基础上教学的,这是四年级学习的重点,也是难点之一。本节课我比较注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。首先我先创设了设计买衣服的情景,出示了例题图,让学生尝试通过不同的方法得出结果,再让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接,使之让学生从中感受了乘法分配律的模型,而后让学生作出一种猜测:是不是所有这样的两道算式之间都有这样的联系呢?是不是符合这种形式的两个算式都是相等的?此时,我不是急于告诉学生答案,而是让学生自己通过举例加以验证。学生兴趣浓厚,这里既培养了学生的猜测能力,又培养了学生验证猜测的能力,从而让学生知道乘法分配律给大家计算带来的便利,从而引出乘法分配律的概念和字母形公式。
在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。出示一些扩展型的练习:由(17+8+15)×60让学生明白乘法分配律也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为以后利用乘法分配律进行简算埋下伏笔。
当然在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还是不够,另外还有部分学困生对乘法分配律不太理解,运用时问题较多,在本节课中的一些具体的环节中也还缺乏成熟的思考,对学生的积极性没有很好的充分调动起来,这些在以后的教学中都要多加注意。
乘法分配律教学设计意图 乘法分配律教学设计吴正宪篇六
青岛版四年级下册第24-25页红点内容 信息窗2 第1课时
1.通过有步骤的观察、猜测、比较、概括,引导学生自己建构乘法分配律的全过程。
2.帮助学生理解乘法分配律的意义,掌握其数的特点和结构形式,并学会用字母表示乘法分配律。从而培养学生的分析观察能力,提高学生的抽象思维能力。
3.在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。
理解和掌握乘法分配律的推导过程。
理解和掌握乘法分配律的推导过程。
课件,卡片(课前发给学生)
(多媒体出示24页情境图)
教师引导:同学们,请认真观察情境图,你能得到哪些数学信息?能提出什么数学问题?
(学生可能提出 济青高速公路全长大约多少千米?
相遇时大巴车比中巴车多行多少千米?)
(教师把这两个问题板书在黑板上。)
教师引导:这节课,我们将通过研究一辆大巴车和一辆中巴车在济青高速上相遇的问题继续探索乘法运算的规律。
这节课的学习目标是:(多媒体出示)
(1)运用观察、猜想、验证、归纳的数学方法,通过自主解决上述问题,探索发现乘法分配律,会用自己的话表述,会用字母表示。
(2)乐于把自己学习的收获、困惑、体会与大家分享,乐于与同学合作。
教师引导:有信心达到这两个目标吗?(有!)
老师的指导会对你们的学习有很大的帮助,请看自学指导:
(1)如何求济青公路的全长,有几种解法,如何列式计算。
(2)比较两种解法的计算过程和结果,你有什么猜想?再举几个例子来验证一下,你能得出什么结论?
(3)什么叫乘法分配律,如何用字母表示?
5分钟后汇报自学成果,看谁能独立用多种方法解答黑板上的三个问题,并能发现乘法运算的规律。)
看完的同学请举手!看会的请放下。
学习中你有哪些收获、困惑和体会,请在小组内交流一下。
师指小组选代表按顺序汇报自学指导中的思考题,其余同学随机质疑、补充。
课堂生成预设:
(1)济青高速公路全长大约多少千米?
教师追问:第一种算法是先算什么,再算什么?第二种算法呢?
预设一:先算两辆车1小时共行多少千米,再算两辆车2小时共行多少千米,就是济青高速公路的全长;
预设二:先算大巴车2小时共行多少千米、中巴车2小时共行多少千米,再算两辆车2时共行多少千米。就是济青高速公路的全长。)
(2)相遇时大巴车比中巴车多行多少千米?
(110-90)×2 110×2-90×2
=20×2 =220-180
=40(千米) =40(千米)
教师追问:你能说说两种算式的意思么?
预设一:第一种算法是先求大巴车1小时比中巴车多行的路程,再求大巴车2小时比中巴车多行的路程;
预设二:第二种算法是先分别求出大巴车和中巴车2小时行的路程,再求大巴车比中巴车多行的路程。
(3)观察、比较两种算法的过程和结果,你有什么发现?
预设一:第一种算法是先加(或减)再乘;
预设二:第二种算法是先分别相乘再加(或减),但计算结果相同。
(4)据此,你有什么猜想?
预设:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
(5)怎样验证你的猜想呢?
(师用线段图帮助学生理清思路)
学生观察、汇报。重点引导学生从计算结果,算式的结构和计算方法上比较。
通过观察,有何发现?引导学生回答:
举例验证:(125+12)×8 = 125×8+12×8
(40-4)×25 = 40×25-4×25
(8+16)×125 = 8×125+16×125
(80-8)×125 = 80×125-8×125
…… ……
(6)通过验证,你能得出什么结论?
结论:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
教师总结:这是一个伟大的发现!这个规律叫做乘法分配律。
(板书课题)你会用字母表示这个规律吗?
(用字母表示:(a± b) c=ac±bc)
预设一:两个数的和乘一个数,可以把它们分别乘这个数,再把所得的积相加,结果不变。
预设二:两个数的差乘一个数,可以把它们分别乘这个数,再把所得的.积相减,结果不变。
预设三:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
预设四:这个规律叫乘法分配律,可以用字母表示为:
(a± b) c=ac±bc
课堂预设:
举例验证:(2+3+5)×4=2×4+3×4+5×4
(1000+100+10)×3=1000×3+100×3+10×3
…… ……
教师总结:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。
设计意图:将乘法分配律适当拓展
帮助学生理解、记忆乘法分配律,避免常犯的错误。
课堂预设:
预设一:括号里的每一个数都要乘括号外的数。
预设二:括号里的数必须是相加或相减,如果是相乘就不是乘法分配律。
预设三:这个规律还可以倒过来看。
教师追问:怎样倒过来看?
预设:几个数都乘同一个数,再相加或相减,可以先把它们相加或相减,所得的和或差再乘这个数,结果不变。
教师引导:怎么样?学会了吗?想不想挑战一下自己?
(1) 指4名学困生板演,其余同做在练习本上。
(2) 展示不同答案:谁的答案和板演者不同?请到黑板前展示出来。
课堂预设:(以第一题为例)
(80+70)×5 ( 80+70)×5
=80×70+70×5 =80×5+70×5
(1)你认为谁的答案对,为什么?谁的答案不对,为什么?
(2)第一种答案是把括号里的两个加数相乘了,不符合乘法分配律,所以错了;第二种答案符合乘法分配律,所以是正确的。
(3)用同样的方法评议其余3题。
(4)同桌互改
(5)统计错题情况,让小组代表说说错误原因。
(6)学生各自订正错题。
预设一:我知道了什么是乘法分配律。
预设二:我又体验了探索数学规律的一般方法——通过观察发现问题——提出猜想——举例验证——得出结论。
预设三:我感受到我们山东省的交通真是便利,作为山东人我感到自豪!
同学们,通过这节课的复习,你有什么收获?对自己的表现还满意吗?谈一谈你的感受。
板书设计
乘法的分配律
济青高速公路全长大约多少千米? 相遇时大巴车比中巴车多行多少千米?
(110+90)×2=110×2+90×2 (110-90)×2=110×2-90×2
验证:
(125+12)×8 = 125×8+12×8 (40-4)×25 = 40×25-4×25
(8+16)×125 = 8×125+16×125 (80-8)×125 = 80×125-8×125
结论:用字母表示:(a± b) c=ac±bc)
(2+3+5)×4=2×4+3×4+5×4
(1000+100+10)×3=1000×3+100×3+10×3
多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。
乘法分配律是第二单元的教学难点也是重点。这节课的设计。我是从学生的生活问题入手,利用相遇问题展开。这节课我力图将教学生学会知识,变为指导学生会学知识。通过让学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成的过程。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:
在教学中,我为学生创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。首先我创设情景,提出问题:“一共有多少名学生参加这次植树活动?”。让学生根据提供的条件,用不同的方法解决,从而发现(125+12)×8 = 125×8+12×8这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。同时利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。
我要求学生观察得到的两个等式,提出“你有什么发现?”。此时学生对“乘法分配律”已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较“模糊”的认识。
为了让“改变学生的学习方式,让学生进行探索性的学习”不是一句空话。在这节课上,我抓住学生的已有感知,立刻提出“观察这一组等式,你能发现其中的奥秘吗?”。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。
(1)本课堂我的教学程序是:先出示情景图,根据情景图上所给的信息列出算式:并且让学生说说这两个算式的含义,然后让学生读读这个算式(意图是让学生去感知乘法分配律),然后再让学生去写出两个类似的算式(意图是让学生体验乘法分配律)写完之后再板书几个同学所写的算式并选取期中一个同学的算式让他说说算式的左边为什么等于右边(110+90)×2=110×2+90×2);而且我还要求同学们用不同的方法来说(意图是让不同层次的同学们都能反复去感知乘法分配律),通过刚才的几道程序,然后再让同学们去总结这类算式左边和右边的特点,得出乘法分配律,最后通过练习巩固和加深同学们对乘法分配律的认识。原以为这样上会有一个比较好的效果,但是事与愿违,在要同学们独立写出两个类似的算式时,发现有小部分同学并不会写,所以本堂课后面部分上得就不怎么顺畅了。课后向老师请教得知,原来我的教学程序上出现问题了----违背了学生的认知规律,应该是先由老师引导学生总结出乘法分配律,再让学生写出类似的算式,体验乘法分配律,最后再通过练习巩固和加深学生对乘法分配律的认识。
(2)在要求同学们去总结出乘法分配律的概念时老师没有很好的引导,导致同学对乘法分配律特点的认识比较模糊。
(3)在学生总结出乘法分配律的概念时,我只是一笔带过的把乘法分配律通过课件再展示给学生们看了一遍,没有反复强调乘法分配律的特点,导致学生没有较好的掌握乘法分配律。
(1)教师在创设情境时一定要激发学生探索的愿望。学生在情境的引导下,主动实现对数学知识的认识和理解。
(2)在练习时采用小组活动是必须的,这样学生之间可以互帮互助,共同进步。激发学生的学习热情。练习时一定要给学生足够的讨论时间。
(3)订正汇报时,让学生之间相互评价。
如何使课堂更加实用高效?如何解决学生运用乘法分配律进行简便计算的“漏乘”问题?
乘法分配律教学设计意图 乘法分配律教学设计吴正宪篇七
人教版小学四年级下册第三单元乘法分配律
1、结合具体的情境,尝试计算,初步认识和理解乘法分配律的含义。
2、通过观察交流、举例验证,概括规律,并能用字母式子表示乘法分配律。
3、通过解决生活中的实际问题,借助乘法的意义进一步理解乘法分配律的内涵。
学习重难点
借助乘法的意义理解乘法分配律的意义和内涵。
配套资源
实施资源:
《乘法分配律》教学课件
学习过程:
师:之前我们已经学习了乘法交换律、结合律,今天这节课我们继续学习乘法的另一个运算定律。
请同学们认真看下面的题目:有一个长方形的果园,原来宽20米,长80米,扩大规模后,长增加了30米。问:现在这个果园的面积有多大
①自主探索,独立解决问题
请大家闭上眼睛想象一下,如果用一幅图来表示题目的意思,这幅图会是怎样的呢
把你想到的图形画在练习本上。并试着去解决这个问题。
②汇报交流,明确算法
谁愿意把自己解决问题的方法展示给大家,并说明解决问题的步骤。
③全班反馈(课件动态演示)
先来看第一种方法:
可以先算出扩大规模后果园的长,再算出扩大规模后果园的面积,即(80+30)×20=2200(平方米)
(设计意图:借助于课件,展示出这道题目的示意图,进行动态演示,可以让学生清楚地看到每一步的计算表示的实际意义是什么,对理解另一种方法打下基础。)
再来看第二种方法,可以先算出果园原来的面积,再算出后来增加的面积,最后把原来的面积和增加的面积全起来就是果园现在的面积。即80×20+30×20=2200(平方米)
(设计意图:借助于课件,进行动态演示,让学生从中清楚地看到这种方法和第一种方法的不同之处,同时又真正的明白,虽然方法不同,但所要求的结果完全一样)
同学们,你们有什么发现呢大家是不是已经发现了尽管这方法不一样,但这两种方法的结果都是一样的.。那就说明(80+30)×20=80×20+30×20(这两个式子是相等的)
(设计意图:借助于课件的动态演示,使学生更清楚地看到,两种方法求出的是同一个结果,同时,更能给学生初步感悟乘法分配律提供一定的帮助。)
②师:刚才扩大规模后的长是增加了30米,现在给大家一次机会,你来决定让长增加几米同时请你用两种方法算一算,看用两种方法计算出的结果是否一样
如果我们把果园的宽的米数用圆形来表示,原来的米数用三角来表示,长增加的米数用五角星来表示,上面的式子我们是不是就可以这样表示了呢
( +▲)×★=×★+▲×★
(设计意图:利用课件的方便性,在很短的时间给学生展示了不同的数据所计算出的结果都是一样的,让课堂节奏更稳,更快,解决问题更高效,同时在一定程度上让学生的注意力更加集中了。)
③接下来,我们共同来验证一下,看我们想到的这个式子是不是正确的呢现在这里面原来的长和宽及扩大规模后增加的长的数量都由你来决定填写,填写完后,进行计算,验证,来证明这个等式不仅适用上面的两个例子,同样适用于你所举的例子。
验证;(100+50)×40=100×40+50×40
结论:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再把积相加。
同学们,你们真厉害,你们所发现的规律在数学上就叫做乘法分配律。用字母表示为a+b)×c=a×c+b×c
1、请看下面这个算式,(40+8)×25
结合刚才的长方形的面积,你想到了什么
我们可以想象成宽是25米,原来的长是40米,扩大规模后增加的长是8米,因此我们可以先求出原来的面积40×25和增加的面积8×25,合起来就是现在的面积。
2、计算59×20+41×20
师:除了把它们想象成刚才的长方形的面积,还可以想象成什么呢实际上生活中有很多这样的情况,我们可以把它想象这样的场景:学校要举行歌唱比赛,参加的20名同学要统一着装,老师们先买了20件上衣,每件59元,又买了20条裤子,每条裤子41元,老师买这些衣服一共花费了多少元钱呢
59×20+41×20
=(59+41)×20我们可以先求出一套衣服多少元再乘以
=100×20它的套数,是不是计算更简单呢
=20xx
亲爱的同学们,相信你们通过今天的学习,对乘法分配律已经有了一个初步的认识,今天的课快要结束了,老师留给大家一个问题:如果这道题目问的是原来的面积比增加的面积多多少平方米你认为应该怎样做呢如果有两种方法可以解答,你认为这两种方法之间有联系吗请大家认真思考,下节课我们再见!
乘法分配律教学设计意图 乘法分配律教学设计吴正宪篇八
1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。
2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
发现并理解乘法分配律。
挂图、小黑板。
一、创设情境,导入新课。
师生谈话,引入主题图:老师准备为参加学校排球操比赛的`五位同学去购买衣服。
看看买什么衣服好看呢。
二、自主探索,合作交流。
1.出示:买5件夹克衫和5条裤子,一共要付多少元?
师问你打算怎样算?
生口答师板书:
(65+45)×565×5+45×5
请学生分别说清两道算式的含义。
2.师问猜想一下,这两道算式的结果会怎样?
要验证我们的算式是否正确,应该用什么方法?
生计算,个别板演。
证明这两道算式的结果是相等的。
中间应用“=”接连。
3.生读算式(65+45)×5=65×5+45×5
师问等号两边的算式有什么相同和不同?
生同桌说一说,并汇报。
4.这两道算式相等是一种巧合还是有规律的呢?
出示:(2+10)×6=2×6+10×6
(5+6)×3=5×3+6×3
师问中间可以用“=”来连接吗?
5.小组讨论:这三组等式左边有什么特点?
右边有什么特点?
生汇报。
6.师问你能写出具有这样规律的等式吗?
生独立写一写,个别板书。
7.师问你能想出一道等式,可以把我们今天学习的所有具有这种规律的等式都包括在内吗?
生写一写,个别板演。
8.揭题:乘法分配律
(a+b)×c=a×c+b×c
9.师总结两个数的和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。
三、巩固练习,拓展应用。
想想做做:
1.在口里填上合适的数,在○里填上运算符号。
(42+35)×2=42×口+35×口
27×12+43×12=(27+口)×口
15×26+15×14=口○(口○口)
72×(30+6)=口○口○口○口
强调:乘法分配律,可以正着用,也可以反着用。
2.横着看,在得数相同的两个算式后面画“√”
(28+16)×728×7+16×7
15×39+45×39(15+45)×39
74×(20+1)74×20+74
40×50+50×9040×(50+90)
3.算一算,比一比,每组中哪一道题的计算比较简便。
(1)64×8+36×825×17+25×3
(64+36)×825×(17+3)
让学生体会乘法分配律可以使计算简便。
4.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。
生独立完成并汇报。
5.你能根据下图列出两
道综合算式吗?
上面的两道算式能组成一个等式吗?
四、全课小结
师问今天你有什么收获?和你的小伙伴说一说。
五、课堂作业
《补充习题》第26页。
乘法分配律教学设计意图 乘法分配律教学设计吴正宪篇九
《乘法分配律的运用》教学设计及反思
教学目标
(一)使学生学会用乘法分配律进行简算,提高计算能力.
(二)培养学生灵活运用乘法运算定律进行计算的习惯.
教学重点和难点
能比较熟练地应用运算定律进行简算是教学的重点;反向应用乘法分配律是学习的难点. 教学过程设计
1.口算:
我们已经学过乘法分配律,今天继续研究怎样应用乘法分配律使计算简便.(板书:乘法分配律的应用)
1.创设情境,激发学生学习积极性.
出示102×( ).
请同学任意填上一个两位数,老师可以迅速说出它的得数,而不用笔算.
2.教学例6:用简便方法计算.
(1)计算102×43.
这是一道两位数乘三位数的乘法,用笔算比较麻烦.想一想,能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
经过讨论后,可能出现两种情况:一种是把原式改写为(100+2)×43,然后按乘法分配律进行计算;一种是把原式改写成102×(40+3).不要简单的否定,可以让学生用两种方法都做一
做,对比一下,找出哪种方法简便.
在此基础上引导学生观察这类题目的特点,以及怎样应用乘法分配律,从而使学生明确:“两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.
(2)计算102×24.
订正时说明怎样简算的?根据是什么.
(3)计算9×37+9×63.
启发提问:
①这类题目的结构形式是怎样的?有什么特点?
②根据乘法分配律,可以把原式改写成什么形式?这样算为什么简便?
在学生充分讨论的.基础上,师板书:
提问:这题能简算吗?什么地方错了?应怎样改?
启发学生明确:题里两个乘式没有相同的因数.应该有一个相同的因数,另外两个因数加起来应是能凑成整十、整百、整千的数.
2.根据乘法分配律把相等的式子用“=”连接起来.
讨论:2,3两题为什么不相等?要使等号两边式子相等、符合乘法分配律的形式,应该改哪个地方?
在讨论基础上得出:
第2题,如果左边算式不变,右边算式应改为35×12+45×12,使两个加数分别与同一个数相乘;如果右边算式不变,两个积里有相同的因数45,把相同的因数提到括号外面,两个不同的因数就是两个加数,改为(35+12)×45.
第3题右边两个积里相同的因数是4,不同的因数是11和25,应改为(11+25)×4.因此
要特别注意:括号里的每一个加数都要同括号外面的数相乘;反过来,必须是两个积里有相同的因数,才能把相同的因数提到括号外面.而三个数连乘则是可以改变运算顺序,它是乘法结合律.必须要掌握这两个运算定律的区别.
练习十四第5~10题.
教学反思:本节课从学生实际出发,创设了具体的生活情境,引导学生开展观察、猜想、举例验证、交流等活动,从激活学生已有的知识经验和探究欲望入手,引导学生主动参与数学的学习过程,从而发展学生数学思维数学能力,在学习过程中学会学习,学会与人交流合作。新理念还体现不够,学生的积极性没有充分调动起来。
乘法分配律教学设计意图 乘法分配律教学设计吴正宪篇十
—乘法分配律教学设计与反思
设计说明
当我给学生讲到练习四第七题的时候,觉得这道题目可以开发一下用来上乘法分配律,让学生自己制作两个长不一样,宽一样的长方形,通过动手操作来获得求面积和的方法,自然的引出乘法分配律。然后看了下这节课的课后练习,里面有乘法分配律的逆向运用的题目,在其后56页的简便运算中也能用到逆向运用的知识,于是就把这个运用单独列出来作为一个知识层次,联想到我们以前还学习过两数之和乘另一个数等于这两个数分别去乘第三个数再想减的知识,于是就去习题中找有没有类似的题目,在55页第五题中求四年级比五年级多多少人时,如果用乘法分配律的延伸知识可以使计算简便,又看到练习五的三、四两题,就必须要知道这个知识才好解决,于是就把乘法分配律的延伸作为第三个层次的教学了,按照这个思路设计了这节课,实际上下来的效果不错,既调动了学生的学习热情和主动性,又培养了学生自主探索,发现并总结规律的能力。 教学设计
教学内容
苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。 教学目标
1、学生在解决实际问题的过程中发现并理解乘法分配律,并能运用乘法分配律使一些运算简便。
2、学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表
达数学规律的意识,进一步体会数学与生活的联系。
3、学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学过程
提问:长方形的面积怎样求?
指明回答
这里有长分别是10厘米和6厘米,宽都是4厘米的两个长方形纸片,请同学们自己动手把它们组成一个新的长方形。(课件出示题目)
学生动手操作
(课件出示两个长方形组合的动画)
1、交流算法,初步感知
提问:请同学们自己求一下新长方形的面积。
教师巡视,观察学生不同的解法
反馈:请学生说一说自己的解法,应当有两种解法,如果学生说不出来应加以引导
(课件出示两种解法)
谈话:两个算式解决的都是同一个问题,它们计算的结果也相同,能把它们写成一个算式吗?
学生自己写一写,请学生说一说,教师相机板书。
2、比较分析,深入体会
提问:算式左右两边有什么相同和不同之处呢?小组内交流。
反馈交流,在学生发言的基础上,教师根据情况相机引导:等号左边先算什么,再算什么,右边先算什么,再算什么呢?使学生明确:等号左边是10加6的和乘4,等号右边是10乘4的积加6乘4的积。
设疑:是不是类似这样的算式都具有这样的性质呢?学生举例验证。
组织交流反馈。可适当的选取一些数字很大的和很小的例子以及有乘数是0的例子等特殊情况。
3、规律符号化,揭示规律
提问:像这样的算式,写的完吗?
我们可以尝试用自己的方法去表达这个规律,同学们自己试着在小组内写一写,说一说。
反馈引导学生用不同的方式来表达规律。
小结揭示:两个数的和乘另一个数等于这两个数分别乘另外的数再相加。用字母表示:(a+b)×c=a×c+b×c,(板书并课件出示)这就是我们今天要学的乘法分配律。(板书课题)
1、想想做做1
学生自主完成,组织交流。
第二小题教师板书,并启发学生从算式所表示的意义角度说一说对这个算式的 理解。并在板书上用箭头标明左边12出现了2次,右边在括号外面的数字就是
12.并向学生介绍这可以称作是乘法分配律的逆向运用(板书)
2、想想做做2
自主完成,组织交流。
第三小题引导学生从乘法意义角度去理解。并使学生明白74×1可以看做1个
74,也就是74.
第四小题要和想想做做题1的.第二小题做对比。
四:拓展延伸,内化新知
再次出示两个长方形纸片,提问:如何比较这两个长方形的大小
学生反馈,引导说出可以重叠比较。学生动手实践
再问:那么大长方形比小长方形大的面积是那一块?
让学生自己动手摸一摸,课件出示重叠动画,并把多余部分突出显示。 提问:如何求多出来的面积呢?请同学们自己列式解答。
学生若想不到可以用大长方形面积减去小长方形的面积,教师可以适当的提 示。
学生反馈,交流。课件出示两种解法。
谈话:这两个算式结果相同,解决的也是同一个问题,可以把它们写成一个算 式,课件出示并板书。
再问:这个算式左右两边有什么联系,引导学生说出:两个数的差乘另一个数 等于这两个数分别与第三个数乘,再相减。
谈话:这个规律用字母如何表示呢?自己试着写写看。
学生反馈,教师板书并课件出示。说明这个可以看做是乘法分配律的延伸。 五:解决实际问题,内化重点难点。
想想做做题5
课件出示,学生读题。
问题一,要求学生列出不同的算式解答,并通过讨论引导学生适当的解释两个 算式之间的联系。
问题二,鼓励学生列出不同的算式解答,并引导学生适当的解释两个算式之间 的联系,加强学生对
乘法分配律延伸的理解与内化。
反思:
这节课我是分三个层次来教学。
第一个层次是乘法分配律的教学,学生通过运用不同的方法求新长方形的面积来体会规律,感知规律的合理性。这个环节强调学生的自主探索和动手观察能力。 第二个层次是乘法分配律的逆向运用,通过想想做做题1的第二小题的教学,引导学生明确可以从乘法的意义角度来理解算式,并体会乘法分配律的逆向运用。
第三个层次是乘法分配律的延伸,通过让学生动手操作,知道如何比较两个长方形的大小,并通过动手指一指,知道多出的面积就是两者相差的面积。在学生自己动手求解的过程中,初步的体会到诸如:(10-6)×4=10×4-6×4也有类似的规律,并尝试写出用字母如何表达。
最后通过解决实际问题的形式,把发现的规律加以运用,从2个小题的解答中初步体会乘法分配律和乘法分配律延伸的应用。
乘法分配律教学设计意图 乘法分配律教学设计吴正宪篇十一
乘法分配律这个知识点在本节课以前学生已经有一些潜移默化的理解,在实际计算中也有应用,如:本单元第一课时的《卫星运行时间》乘数是两位的乘法中,“114×21=” 不论是第一种“114×20=2280,114×1=114, 2280+114=2394 ”还是第四种用竖式计算,其实质都是在利用乘法分配律这一理论依据,即将21个114,分成20个114和1个114的和,只是表达形式不同罢了。因此,基于这些基础,我教学时特别注重与旧知的联系和在意义上的沟通。
1.理解并掌握乘法分配律并会用字母表示。
2.能够运用乘法分配律进行简便计算。
3.在乘法分配律的发现过程中训练学生观察、归纳、概括等能力。
4.感受“由特殊到一般,再由一般到特殊”的认识事物的方法,增强独立自主、主动探索、自己得出结论的学习意识。
理解并掌握乘法分配律。
乘法分配律的推理及运用。
1.情景
暑假中,我们谕小娃娃表演的《阳光羌娃》在比赛中获得了巨大的成功,而且,他们马上还要到香港参加演出。(出示照片)
出示资料: 他们每天都在辛苦地训练着,有时会练得吃饭的时间都没有,昨天晚上,王老师就给参加训练的18个男生和23个女生每人准备了一份8元的快餐,你知道王老师一共用了多少钱吗?
(设计意图:以学生熟悉的学校中的大事作为问题背景,可以让学生切实的感受到数学的'广泛应用性,也利于学生主动解决问题。)
①整理条件、问题
从这段资料中你知道了那些信息?王老师遇到了哪些问题?
②学生列式,抽生回答: (18+23)×8, 18×8+23×8
③交流算式的意义
第一个算式先算什么?再算什么?第二个算式呢?
④计算:(发现两个算式结果相等)
⑤观察、分析算式特点
咦,我发现这两个算式非常有意思。你看看,这是两个不同的算式,很多地方都不相同,仔细看看,又有相同的地方,对吧!
现在,就来仔细观察一下这两个算式,看看它们到底有哪些相同点?又有哪些不同点?
⑥全班交流,引导学生从下面几个方面进行思考
a.涉及到得运算及顺序:都包含了+、×这两种运算,左边是先算加法,合起来以后再乘;右边是分别先乘,然后再加。
b.涉及到的数:都用到了18、23和8这三个数,其中8在左边出现了一次,在右边出现了两次。
c.计算结果:结果相等。
(设计意图:对算式意义的分析让学生明白这两个算式相等的道理,而从外在特点的分析则让学生初步感知乘法分配律的特点。同时,细致的特点分析也为学生后面的举例验证打下基础)
2.提出猜想
真有趣,运算顺序不同,数据也有不一样的,结果却一样,那是不是只有这一个算式才是这样呢?还是像这样的算式都有这样的规律呢?
怎样才能知道像这样的算式都有这样的规律?
引导学生想到用举例的方法进行验证。
师小结:要想知道这是不是一个普遍的规律,那我们就举出一些这样的例子,再看看它们的结果想不想等就可以了。
(设计意图:对一个人而言,记忆一个知识、规律并不是最重要的,最重要的是他要知道从哪里去寻找知识和规律,要知道他的发现如何去获得证明。本节课就是要以乘法分配律的学习为载体,培养学生这方面的能力,这才是真正的立足于学生一生的发展而在教学。)
1.全班举例:抽生举例,全班进行判断,看所举的算式是否符合猜想的特征。
2.分组举例
两个孩子为一组,一起举一个例子,再一起计算验证,看结果是否相等。
3.交流:谁愿意把你举的例子和大家一起分享?
a.这个式子符合要求吗?
b.这些式子都有一个共同的规律,这个共同的规律是什么?
教师引导学生小结:左边都是把两个数合起来再与第三个数相乘,右边是分开乘,再把两个积相加,右边算式中这个相同的乘数,在左边算式中放在了括号的外面。
(设计意图:让学生经历举例验证的过程,经历归纳概括的过程。)
1.个性概括
这样的式子你们还能写吗?能写完吗?
强调这样的例子还有很多很多,是写不完的。
你能用一个式子将所有的像这样的式子都概括出来吗?
学生用自己的方法概括规律。(学生可能用文字概括,可能用图形符号概括,可能用字母概括)。
2.统一认识
教师指出一般用a、b、c表示式子中的三个数,这个规律可以表示成
(a+b)×c=a×c+b×c
给出规律的名称:今天,我们一起动手动脑发现了这个非常有趣的规律,这个规律是四则运算中一个非常重要的规律,叫做乘法分配律。
3.进一步认识
这个式子表示两个数合起来与第三个数相乘的结果与用这两个数分别与第三个数相乘,再把两个积相加的结果相等。反之,两个数都与同一个数相乘,再把积相加所得到的结果与先把这两个数合起来再与第三个数相乘,所得到的结果相等。
齐读式子。
(设计意图:学生通过不完全归纳法,得出规律。在这个过程中,通过不同方法的概括,培养学生的抽象能力,尤其是分析与综合的能力,归纳与概括的能力。)
1.哪些算式与72×35相等
72×30+72×5
72×35 72×30+5
70×35+2×35
70×35+2
问:为什么相等?
(设计意图:让学生理解乘法分配律的本质意义)
2.你会填吗?
(10+7)×6= ×6+ ×6
8×(125+9)=8× +8×
7×48+7×52= ×( + )
问:订正时强调第一小题为什么这样填?第三个式子中括号外面为什么要写7。
(设计意图:学生进一步深刻理解乘法分配律)
3. 7×48+7×52 7×(48+52)
这两个式子你想选择哪个进行计算?为什么?
如果只给你第一个式子,你会想办法让你的计算变得简便吗?
小结:利用乘法分配律有时候可以使计算变得更简便。
(设计意图:通过学生的观察,明白乘法分配律在计算中的意义。)
<<<1234>>>
4.先想一想,下列各题怎样计算更简便,把你的简便方法写出来。
①34×72+34×28(订正时问:为什么不直接算)
(80+4)×25
订正时问:把(80+4)×25写成80×25+4×25依据是什么?
如果不用好不好算?
(80+20)×25
问:这道题与(80+4)×25的样子一样,都是两个数的和与第三个数相乘,为什么你们又不用乘法分配律来计算了呢?
教师小结:在计算中要根据数据特点,灵活运用乘法分配律。
②21×25 75×99+75
小结:在计算中遇到不符合乘法分配律特点的式子,可以利用拆数等方法,在不改变原数大小的前提下将式子变成符合乘法分配律特点的式子,然后再进行简算。
(设计意图:通过题组练习,让学生在计算中要根据数据特点,灵活运用乘法分配律,培养学生思维的灵活性,不生搬硬套题型。)
孩子们,你们今天收获了什么?
当你们在一些具体的问题中发现某些规律,而你又不敢肯定它正确时,你可以怎么办呢?
板书设计
乘法分配律
(18+23)×8 (18+23)×8=18×8+23×8 7×48+7×52=7×(48+52)
=41×8 … … … …
=328(元) 学生举例 … … … … 34×72+34×28 (20+4)×25
18×8+23×8 … … … … (80+20)×25
=144+184 个性概括:… …
=328(元) (a+b)×c=a×c+b×c 21×25 75×99+75
乘法分配律教学设计意图 乘法分配律教学设计吴正宪篇十二
p36页例3,做一做,练习六习题。
1、知识与技能:引导学生探究和理解乘法分配律。
2、过程与方法:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
3、情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
乘法分配律的意义和应用。
乘法分配律的反应用。
一、目标导学
(一)导入新课
1、复习导入
(8+2)×1258×125+2×125
2、揭示课题:乘法分配律
(二)展示目标(见教学目标1、2)
二、自主学习
(一)出示自学提纲(自学教材p36页例3并完成自学提纲问题)
1、计算(4+2)×25的运算顺序是什么?4+2表示什么?再乘25表示什么?
2、计算4×25+2×25的运算顺序是什么?4×25表示什么?2×25表示什么?把它们的积相加表示什么?
3、计算这两道题你发现了什么?能用一句话概括吗?
4、这是乘法的什么运算律?用字母怎样表示?
5、会用简便算法计算4×25+6×25吗?
(二)学生自学(学生对照自学提纲,自学教材p36页例3并完成自学提纲问题,将不会的问题做标注)
(三)自学检测
下面哪些算式运用了乘法分配律?
117×(3+7)=117×3+117×7
24×(5+12)=24×17
(4+5)×a=4×a+5×a
三、合作探究
(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。
(二)师生互探
1、解答各小组自学中遇到不会的`问题。
2、针对自学提纲5题请不同方法同学汇报。
3、结合“自学提纲”引导学生归纳总结:(并板书)
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫乘法分配律。
四、达标训练(1、2题必做,3题选做、4题思考题)
1、下面哪个算式是正确的?正确的打√,错误的打×。
56×(19+28)=56×19+28()
32×(7+3)=32×7+32×3()
64×64+36×64=64×(64+36)()
2、下面每组算式的得数是否相等?如果相等,选择其中一个算出得数
⑴25×(200+4)⑵35×201
25×200+25×435×200+35
⑶265×105—265×5⑷25×11×4
265×(105—5)11×(25×4)
3、用乘法分配律计算。
103×20xx×5524×205
4、在()里填上适当的数。
167×2+167×3+167×5=167×()
28×225—2×225—6×225=()225
39×8+6×39—39×4=()×()
五、堂清检测
(一)出示检测题(1-2题必做,3题选做,4题思考题)
1、用简便方法计算。
24×75+24×25125×22—125×14
(25+20)×435×99+35
2、每个同学要用9本练习本,四(1)班有42人,四(2)班有38人,这两个班共需要多少本练习本?
3、计算。
89×10135×36+35×63+35
4、小马虎由于粗心大意把30×(□+3)错算成30×□+3,请你帮忙算一算,他得到的结果与正确结果相差多少?
(二)堂清反馈:
作业布置
练习册相关习题。
板书设计
乘法分配律
一共有多少名同学参加了这次植树活动?
(1)(4+2)×25(2)4×25+2×25
=6×25=100+50
=150(人)=150(人)
(4+2)×25=4×25+2×25
(a+b)×c=a×c+b×ca×(b+c)=a×b+a×c
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
乘法分配律教学设计意图 乘法分配律教学设计吴正宪篇十三
义务教育课程标准数学(人教版)四年级下册第36页例题3乘法分配律
本内容是乘法运算定律的最后一个内容,它是本单元的教学重点,也是本节课的教学难点。学生对该知识点的感性认识远远不够,且定律的叙述又比较繁琐。教材是按照提出“一共有多少名同学参加了植树”问题、列式解答、观察比较、总结规律等层次进行的。从例题3的知识点看主要是乘法分配律及用字母表示的2种情况,但从做一做中体现出了把乘法分配律从右往左运用的情况。通过课堂的学习,让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律,初步感受运用乘法分配律能进行一些简算。
本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上接着学习的,但本节内容对于学生来说是概况、归纳能力的.一个薄弱环节,而乘法分配律又是学生以后进行简便计算的前提和依据,对提高计算能力有着重要的作用,故对本节课的教学设计要求更高。
1、让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律。
2、使学生感受数学与现实生活的联系,初步感受运用乘法分配律能进行一些简便运算。
3、培养学生自主参与意识和主动探究精神,同学间通过合作交流获得成功的体验。
理解乘法分配律的意义。
发现与归纳乘法分配律。
课件习题卡
一、结合实事创设情景,引入新课
1、课件出示干旱图片,使生感受到节约用水,从我做起,从现在做起!
2、课件出示问题(一):一号井5吨/小时、二号井10吨/小时,两口井一共出水多少吨?请生用不同的方法列出综合算式(师相机板书),说出算理并计算,发现两种方法表示的意义和结果相同,得出可以用“=”连接两个算式。接着请同学感受用那种方法计算更快?
3、课件出示问题(二):共有25个小组,每组4人挖坑、种树;2人抬水、浇树,一共有几名同学参加植树?请生用不同的方法列出综合算式(师相机板书),说出算理,猜测结果,计算验证得出结果相同,同样可以用“=”连接两个算式。请同学感受用那种方法计算更快?
二、合作交流,探索发现新知
1、引出课题。通过观察得出2个等式都是由3个数组合而成的,这样的等式有什么样的规律呢?这就是我们今天要探究的新知——乘法分配律。
板书:乘法分配律
2、发现和归纳乘法分配律
(1)请同学们观察这2个等式,等号左边、右边是怎么算的?请生算一算,把你的发现和同桌说一说好吗?
(2)请同学自己任意用三个数试着组成这样的算式,验证是否都具有这样的规律呢?
(3)生举例并展示,共同验证并读一读式子。
(3)具有这样特征的式子能举得完吗?讨论是否存在不符合这样规律的式子?
(4)同桌互相试着说一说规律,请生汇报,总结得出乘法分配律,请生打开书p36读一读。
3、用字母a、b、c表示这三个数,乘法分配律可以怎么表示呢?同学们敢接受挑战吗?4人小组讨论,请生汇报,说一说算式的意义并读一读。
三、小结
同学们,今天我们通过观察探索发现了乘法分配律,并用字母简洁的表示出来。下面同学们敢接受考验吗?
四、分层练习,逐级达标
1、填一填:习题卡第一题
巩固乘法分配律并使学生初步感受运用乘法分配律能进行一些简便运算。
学了乘法分配律有什么用呢?习题卡中的例题你会选择哪种方法呢?请生选择方法,说一说理由。
2、看一看:习题卡第二题
3、应用:请生完成书p38第7题。使学生感受学习乘法分配律的用处是使计算简便。
五、回顾课程,进行总结
同学们,今天这节课我们通过观察、分析学习了新的知识,你有什么收获呢?
板书设计
乘法分配律
(5+10)×24=5×24+10×24
(a+b)×c=a×c+b×c
25×(4+2)=25×4+25×2
a×(b+c)=a×b+a×c
习题卡
填一填
1、(32+25)×4=32×( )+25×( )
2、(64+12)×5=( )×5+( )×5
3、(7+6)×8=7868
4、(43+25)×2=
5、3×6+7×6=(+)
看一看
下面哪个算式是正确的?正确的画“√”,错误的画“×”
(19+28)×56=19×56+28
(7×3)×32=7×32+3×32
64×64+36×64=(64+36)×64
乘法分配律教学设计意图 乘法分配律教学设计吴正宪篇十四
乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。
:教材第54~55页例题,完成“做一做”。
:
1、让学生在解决实际问题的过程中发现乘法分配律;通过计算说理,理解乘法分配律。
2、让学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3、培养学生联系现实问题主动参与探索、发现和概括规律的学习态度,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功
感,增强学习的兴趣和自信。
发现并理解乘法分配律。
多媒体课件一套。
一、创设问题情境
谈话:这学期,我们学校鼓号队又增加了新成员,辅导员柳老师正在为他们准备服装呢!(课件出示商店场景)
二、展开探索过程
1、初步感知。
提问:仔细观察,从图中你获得了哪些信息?
学生列式后交流反馈解题思路,并借助图形加深学生对两种解题思路的体会。
提问:猜一猜,这两种方法的计算结果会怎么样?
计算验证:算一算,来证明你的猜想是正确的。
板书等式:(30+25)x4=30x4+25x4
2、类比展开。
(1)出示图形,让学生说说你想到了什么?你能用两种方法求出6套衣服一共要付多少元吗?板书:(30+25)x6=30x6+25x6
(2)除了把长方形看成上衣,梯形看成裤子,把它们看成6套衣服,还可以看成什么?
要求6套课桌椅多少元,你准备怎么解决?
板书:(100+60)x6=100x6+60x6
3、体验感悟。
(1)类似这样的等式还有吗?你能写出第4组吗?
学生举例后,挑3组板书。
(2)提问:这3组算式相等吗?怎么证明?(计算、乘法的意义)
同桌互相检查刚才写的算式是否相等。
(3)交流:介绍你写成功的经验
引导:你是怎么根据左边的算式写出右边的算式的?
4、提示规律。
(1)提问:像这样的等式能写完吗?
(2)用自己喜欢的方式表达所发现的规律,在小组里交流。展示。
板书:(a+b)xc=axc+bxc
(3)板书:乘法分配律
让学生用自己的语言说说这个字母式子表示什么,师小结。
三、巩固内化
1、在□里填上合适的数,在○里填上运算符号。
(42+35)×2=42×□+35×□
27×12+43×12=(27+□)×□
15×26+15×14=□○(□○□)
学生独立填写,指名报答案,全班共同校对。指出后两题是乘法分配律的逆向应用。
出示:72x(30+6)= 齐说答案。
出示:(25-12)x4= 可能等于什么?怎样才能确认?你能联想到什么?小结
2、横着看,在得数相同的两个算式后面画“√”。
(48+52)×13 48×13+52×13 □
40×5+2×5 5×(40+2) □
75×(19+1) 75×19+75 □
40×50+50×90 40×(50+90) □
27×(16+30) 27×16+30 □
独立完成,小组讨论为什么有的是相同的,有的是不相同的。指名报答案,说说第三组两道算式为什么是相等的`?第四组的两道算式为什么不相等?怎样改一下能使它们相等?
出示打“√”的算式,如果让你计算的话,你更愿意计算哪边的式子呢?为什么?小结:有时应用乘法分配律可以使计算简便。
四、总结回顾
通过今天这节课的学习,你有什么收获?
五、布置作业
1、必做题:想想做做第5题。
2、选做题:如果把乘法分配律中“两个数的和”换成“3个数的和”、“4个数的和”或“更多个数的和”,结果还会不会不变?用合适的方试着进行验证。
乘法分配律教学设计意图 乘法分配律教学设计吴正宪篇十五
苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。
1、使学生在解决问题的过程中发现并理解乘法分配律,初步体会应用乘法分配律可以使一些计算简便。
2、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
一、创设情境,谈话导入
谈话:同学们,我们学校有5个同学就要去参加“无锡市少儿书法大赛”了,书法组的张老师准备为他们每人买一套漂亮的服装,我们一起去看看好吗?(课件出示例题情境图)
二、自主探究,合作交流
1、交流算法,初步感知。
提问:从图中你获得了哪些信息?
再问:买5件上衣和5条裤子,一共要付多少元呢?你能解决这样的问题吗?请同学们在自己的本子上列出算式,再算一算。
反馈:你是怎样解决这一问题的?为什么这样列式?
组织学生交流自己的解题方法,再分别说说两个算式的意义。根据学生回答,教师利用课件演示,帮助解释。
谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?
学生在自己的本子上写,教师板书,让学生读一读。
谈话:刚才我们算的买5件夹克衫和5条裤子,一共要付多少元?如果张老师不这样选择,还可以怎样选择?(买5件短袖衫和5条裤子)
提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?
根据学生回答,列出算式:32×5+45×5和(32+45)×5。
再问:这两个算式有什么关系?可以用什么符号把它们连接起来?
启发:比较这两个等式,它们有什么相同的地方?
2、深入体验,丰富感知。
引导:看表情,相信大家一定或多或少地发现了等式两边算式之间的联系。现在请每个小组拿出信封中写有算式的纸条,想一想在这几组算式中,哪些可以用等号连起来,哪些不能?
分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?两个算式的计算结果分别是多少?有办法使他们变得相等吗?
要求:你能写出一些这样的等式吗?先试一试,再算一算你写出的等式两边是不是相等。
学生举例并组织交流。
3、揭示规律。
提问:像这样的等式,写得完吗?
谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)
小结:a加b的和乘c,与a乘c的积加b乘c的积的和是相等的。这就是乘法分配律。[板书:(a+b)×c=a×c+b×c]
三、实践运用,巩固内化
1、“想想做做”第1题。
谈话:下面我们利用乘法分配律解决一些简单的问题。
出示“想想做做”第1题,让学生在书上填一填。
学生完成后,用课件反馈。
2、“想想做做”第2题。
你能运用今天所学的知识解决下面的问题吗?课件出示题目,指名口答。
回答第2小题时,让学生说一说理由。
3、“想想做做”第3题。(略)
四、梳理知识,反思总结
提问:今天这节课,你有什么收获?有什么感受想对大家说?
五、布置作业
“想想做做”第4、5题。
数学教学是数学活动的教学。本节课注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,先组织学生通过用两种不同的方法解决一些实际问题,在两个不同的'算式之间建立起联系,得到了两个等式,并比较这两个等式有什么相同的地方,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,为学生提供符合乘法分配律和不符合乘法分配律的五组算式,引导学生在小组辨析与争论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。