2023年高中数学教学设计案例(十篇)
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
高中数学教学设计案例篇一
(1)理解四种命题的概念;
(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;
(3)理解一个命题的真假与其他三个命题真假间的关系;
(4)初步掌握反证法的概念及反证法证题的基本步骤;
(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;
(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;
(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力.
教学重点和难点
重点:四种命题之间的关系;难点:反证法的运用.
教学过程设计
第一课时:四种命题
一、导入新课
【练习】1.把下列命题改写成“若p则q”的形式:
(l)同位角相等,两直线平行;
(2)正方形的四条边相等.
2.什么叫互逆命题?上述命题的逆命题是什么?
将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论.
如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题.
上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”.
值得指出的是原命题和逆命题是相对的..我们也可以把逆命题当成原命题,去求它的逆命题.
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:
口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.
设计意图:
通过复习旧知识,打下学习否命题、逆否命题的基础.
二、新课
【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?
【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题.
【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?
学生活动:
口答:若一个四边形不是正方形,则它的四条边不相等.
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.把其中一个命题叫做原命题,另一个命题叫做原命题的否命题.
若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定.
【板书】原命题:若p则q;
否命题:若┐p则q┐.
【提问】原命题真,否命题一定真吗?举例说明?
学生活动:
讲论后回答:
原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真.
原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真.
由此可以得原命题真,它的否命题不一定真.
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性.
教师活动:
【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?
学生活动:
讨论后回答
【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题.
教师活动:
【提问】原命题“正方形的四条边相等”的逆否命题是什么?
学生活动:
口答:若一个四边形的四条边不相等,则不是正方形.
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题.
原命题是“若p则q”,则逆否命题为“若┐q则┐p.
【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:
讨论后回答
这两个逆否命题都真.
原命题真,逆否命题也真.
教师活动:
【提问】原命题的真假与其他三种命题的真
假有什么关系?举例加以说明?
【总结】1.原命题为真,它的逆命题不一定为真.
2.原命题为真,它的否命题不一定为真.
3.原命题为真,它的逆否命题一定为真.
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性.
教师活动:
三、课堂练习
1.若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内?
学生活动:笔答
教师活动:
2.根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?
学生活动:讨论后回答
设计意图:
通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系.
教师活动:
高中数学教学设计案例篇二
一、教学目标
1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。
2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。
3、通过对四种命题之间关系的学习,培养学生逻辑推理能力
4、初步培养学生反证法的数学思维。
二、教学分析
重点:四种命题;难点:四种命题的关系
1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。
2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,
3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。
三、教学手段和方法(演示教学法和循序渐进导入法)
1、以故事形式入题
2、多媒体演示
四、教学过程
(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!
设计意图:创设情景,激发学生学习兴趣
(二)复习提问:
1.命题“同位角相等,两直线平行”的条件与结论各是什么?
2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:
口答:(1)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.
设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.
(三)新课讲解:
1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。
2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。
3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。
(四)组织讨论:
让学生归纳什么是否命题,什么是逆否命题。
例1及例2
(五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:
讨论后回答
这两个逆否命题都真.
原命题真,逆否命题也真
引导学生讨论原命题的真假与其他三种命题的真
假有什么关系?举例加以说明,同学们踊跃发言。
(六)课堂小结:
1、一般地,用p和q分别表示原命题的条件和结论,用vp和vq分别表示p和q否定时,四种命题的形式就是:
原命题若p则q;
逆命题若q则p;(交换原命题的条件和结论)
否命题,若vp则vq;(同时否定原命题的条件和结论)
逆否命题若vq则vp。(交换原命题的条件和结论,并且同时否定)
2、四种命题的关系
(1).原命题为真,它的逆命题不一定为真.
(2).原命题为真,它的否命题不一定为真.
(3).原命题为真,它的逆否命题一定为真
(七)回扣引入
分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:
第一句:“该来的没来”
其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。
第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。
第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。
同学们,生活中处处是数学,期待我们善于发现的眼睛
五、作业
1.设原命题是“若
断它们的真假.,则”,写出它的逆命题、否命题与逆否命题,并分别判
2.设原命题是“当时,若,则”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假.
高中数学教学设计案例篇三
1、诊断学生,做到知彼。
俗话说:“知己知彼,百战百胜。”教学过程是师生互动的双边活动,教师要使课堂教学达到预期的目的,在进行教学设计时先要诊断学习的真正主人——学生。在教学过程中学生原有的知识、经验、能力水平、个性、爱好、兴趣必然影响着教学活动的展开和推进。因此,教师要尽可能多地了解学生,关注学生的年龄特征、心理特征和差异,预测学生学习时可能遇到的思维障碍,才能时机适宜地切入新知识,使新旧知识合理地衔接起来。
2、课堂小结要与三维目标相呼应
三维目标是课堂教学的出发点与归宿,课堂小结时要回应三维目标,要在教师引领下由学生合作完成小结。包括①在知识与技能方面的收获,②教学中是怎样研究学习新知识的,融合重点与难点的突破于其中,③提炼价值,升华感情。最后教师最好用知识网络的形式给以最后的总结。
3、恰当地选择教学手段
要根据教材的具体情况恰当地设计教学手段,力争做到形象生动,促使教学达到最佳的效果。例如在椭圆、双曲线和抛物线这样的课中,用教具演示来揭示它们的定义,更具有形象性。如在指数和对数函数性质的研究中,教师自制课件利用多媒体辅助教学,使学生看到随着底数a值的变化得到的函数和图像的动态变化,从而对这些函数的性质有深刻的认识和牢固的记忆。在使用计算机辅助教学盛行的今天,教师不要忘记板书,关键的知识要通过板书来呈现,使学生对知识的系统、结构在脑海中留下影像。
高中数学教学设计案例篇四
做好课堂导入设计
首先,可以联系实际生活。数学知识在生活中有着广泛的应用,与实际生活有着广泛的联系,在进行课堂导入设计时,教师可以联系学生的实际生活,激发学生的好奇心。例如在学习抛物线的知识时,可以这样导入:让学生回想一下打篮球的情景,由于场地限制,在课堂上可以用乒乓球代替篮球,做投篮动作,让学生仔细观察篮球(乒乓球)落地时的轨迹,在学生积极参讨论时,引入抛物线的知识。在导入中联系实际生活,不仅能够激发学生的兴趣,并且能够拉近学生与数学之间的距离。
其次,教师可以利用数学史进行导入。数学教材中很多知识都与数学史相关,学生对这部分知识充满兴趣,因此在教学过程中,教师设计课堂导入时可以从这一点入手,先通过提问或者介绍的方式,让学生了解数学史上的重大事件和重要人物等,引起学生的敬佩和仰慕之情,然后引入相关的数学知识。兴趣是最好的老师,在学生的期待下展开数学教学,无疑会提高课堂教学效率。课堂导入的方式有很多种,在具体的操作环节,教师要注意导入方式的多样性,才能更好地激发学生的兴趣,在高中数学教学中教师要根据实际情况进行合理选择使用。
做好课堂提问设计
首先,教师要精心设计问题。提问的目的是为了激发学生的兴趣和思维,因此,教师提问的问题不能是单调、重复的,而应该是具有启发性和针对性,能够激发学生的思考,引导学生进行步步深入。最重要的是,教师提出的问题要符合学生的知识水平和认知能力,教师不仅应该了解教材,并且要全面了解学生,这样才能使提出的问题符合学生的需要。学生的数学水平是不同的,接受能力也有差异,因此教师要注意提出问题的层次性,并针对不同水平的学生设计不同难度的问题,促进每个学生获得进步和发展。
其次,课堂提问的方式要多样化。如同教学方式需要多样化一样,提问的方式也要具有多样化的特点,这样才能更好地激发学生兴趣,达到教学目的,否则,无论教师设计的问题多么巧妙,学生也会感到厌烦。根据问题的内容和学生实际情况,提问可以是直接问答;可以是导思式;可以教师提问、学生回答;也可以是学生提问、教师回答。在教学过程中教师要注意培养学生的问题意识,鼓励学生自己提出问题,问题是思考的开端,对于学生来说提出问题比解决问题更重要,因此,教师要为学生创造机会,让学生在认真阅读教材的基础上,根据自己的理解提出不懂的问题。提出的问题教师可以进行点拨,让学生思考,也可以组织学生进行讨论,培养学生分析问题和解决问题的能力。
高中数学教学设计案例篇五
合理制定三维目标,明确重点与难点。
《普通高中数学课程标准》提出的三维教学目标是:知识与技能,过程与方法,情感态度与价值观。知识与技能目标包括学生要知道、了解、理解的基础知识、基本原理目标和学生必须达到的基本技能目标;过程与方法目标包括实现数学科学中的探究过程和探究方法、优化学生的学习过程,强调学生探索新知识的经历和获得新知识的体验;情感态度与价值观目标中包括学生的学习兴趣与热情、战胜困难的精神、认识数学之美感和塑造学生的人格。三维目标之间的关系是“在实现知识与技能的过程中有机地融合、渗透过程与方法目标、情感态度与价值观目标的达成。”三维目标是课堂教学活动的出发点与归宿。
教学设计时教师要依据教材的具体内容,结合学生的学习实际,以促进每一个学生的发展为本,合理地制订三维目标,注意体现三维目标的整体性,相辅相成。所谓重点,指一节课中最重要的新知识,即联动全局,带动全面的重要之点,是学生认知发生转折与质变的地方,是教学的重心所在,是课堂教学中需要解决的主要矛盾。所谓难点是一节课中学习起来最困难的地方,是学生的认知能力与知识要求之间存在较大矛盾、知识跨越最大的地方,是学生难于理解和掌握的内容。例如“等差数列前n项和”这节课中的重点是“等差数列前n项和公式”,难点是“等差数列前n项和公式的推导——倒序相加法”。只有合理制订三维目标和确定好重点与难点,才能围绕三维目标和重点与难点的突破,制定出出色的教学设计。
创设生活情景,使数学生活化
为学生提供充分从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学体验,将数学应用于生活,提高自主探究数学知识的能力和学生学习数学能力。
认知最牢靠和最根深蒂固的部分就是生活中经常接触和经常使用的知识,有些已经进入了他们的潜意识。如果能把新知识巧妙地溶于生活情境中,那将会是学生非常欢迎的,一旦接受也会被牢固掌握。而现代教学手段比以往更容易让现实生活中的现象再现或模拟于课堂。因此,从学生的生活经验和知识背景出发,提供学生充分进行数学实践活动和交流的机会课堂效果一定会很好。用与学生年龄特征相适应的大众化、生活化的方式呈现数学内容,也是数学课程改革的一个基本思路。教师要敢于走出教材,走出课堂,走进丰富多彩的生活。比如在引入两个平面垂直的判定定理时,教师提出:建造一座大楼,怎样才能使墙面与地面垂直呢?学生很快会联想到建筑工人常常用一端系着铅锤的细绳让其垂直地面,并以这根绳子为参照,看看所砌的墙是否经过这条细绳。然后问:为什么若墙面经过这条绳子,所砌的墙就与地面垂直呢?还可以引导学生观察教室门板与地面的位置关系,它们是否垂直?转动门扇是否还与地面保持垂直,奇怪吗?为什么?到底隐藏着数学上的什么奥秘?由这些亲切真实情景,导出两个平面垂直的判定定理就水到渠成了。
高中数学教学设计案例篇六
一、学习目标与任务
1、学习目标描述
知识目标
(a)理解和掌握圆锥曲线的第一定义和第二定义,并能应用第一定义和第二定义来解题。
(b)了解圆锥曲线与现实生活中的联系,并能初步利用圆锥曲线的知识进行知识延伸和知识创新。
能力目标
(a)通过学生的操作和协作探讨,培养学生的实践能力和分析问题、解决问题的能力。
(b)通过知识的再现培养学生的创新能力和创新意识。
(c)专题网站中提供各层次的例题和习题,解决各层次学生的学习过程中的各种的需要,从而培养学生应用知识的能力。
德育目标
让学生体会知识产生的全过程,培养学生运动变化的辩证唯物主义思想。
2、学习内容与学习任务说明
本节课的内容是圆锥曲线的第一定义和圆锥曲线的统一定义,以及利用圆锥曲线的定义来解决轨迹问题和最值问题。
学习重点:圆锥曲线的第一定义和统一定义。
学习难点:圆锥曲线第一定义和统一定义的应用。
明确本课的重点和难点,以学习任务驱动为方式,以圆锥曲线定义和定义应用为中心,主动操作实验、大胆分析问题和解决问题。
抓住本节课的重点和难点,采取的基于学科专题网站下的三者结合的教学模式,突出重点、突破难点。
充分利用《圆锥曲线》专题网站内的内容,在着重学习内容的基础上,内延外拓,培养学生的创新精神和克服困难的信心。
二、学习者特征分析
(说明学生的学习特点、学习习惯、学习交往特点等)
l本课的学习对象为高二下学期学生,他们经过近两年的高中学习,已经有一定的学习基础和分析问题、解决问题的能力,基本的计算机操作较为熟练。
高二年下学期学生由于高考的压力,他们保持着传统教学的学习习惯,在
l课堂上的主体作用的体现不是太充分,但是如果他们还是乐于尝试、勇于探索的。
高二年的学生在学习交往上“个别化学习”和“协作讨论学习”并存,也就是说学生是具有一定的群体性小组交流能力与协同讨论学习能力的,还是能完成上课时教师布置的协作学习任务的。
三、学习环境选择与学习资源设计
1.学习环境选择(打√)
(1)web教室(√)(2)局域网(3)城域网(4)校园网(√)(5)internet(√)
(6)其它
2、学习资源类型(打√)
(1)课件(网络课件)(√)(2)工具(3)专题学习网站(√)(4)多媒体资源库
(5)案例库(6)题库(7)网络课程(8)其它
3、学习资源内容简要说明
(说明名称、网址、主要内容等)
高中数学教学设计案例篇七
创设实验情境,培养数学创新能力和实践能力
高中数学教学应鼓励学生用数学去解决问题,甚至去探索一些数学本身的问题。教学中,教师不仅要培养学生严谨的逻辑推理能力、空间想象能力和运算能力,还要培养学生数学建模能力与数据处理能力,加强在“用数学”方面的教育。最好的方式就是用多媒体电脑和诸如《几何画板》、《几何画王》、《几何专家》等工具软件,为学生创设数学实验情境。例如,在上“棱柱和异面直线”课时,我们指导学生用硬纸制作“长方体”和“正三棱柱”等模型。教师用《几何画板》设计并创作“长方体中的异面直线”课件,引导学生利用自己制作的“长方体”模型和上述课件,思考以下问题:“长方体中所有体对角线(4条)与所有面对角线(12条)共组成多少对异面直线?”、“长方体中所有体对角线(4条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有棱(12条)之间相互组成多少对异面直线?”、“长方体所有面对角线(12条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有面对角线(12条)之间相互组成多少对异面直线?”。然后由学生独立进行数学实验,探讨上述问题。
此外,教师还要根据数学思想发展脉络,充分利用实验手段尤其是运用现代教育技术,创设教学实验情景、设计系列问题、增加辅助环节,有助于引导学生通过操作、实践,探索数学定理的证明和数学问题的解决方法,让学生亲自体验数学建模过程,培养学生的数学创新能力和实践能力,提高数学素养。
巧设情境,增加学生的投入感
为了构建生动活泼富有个性的数学课堂,我把创设情境,激发学生的学习兴趣当成数学教学的重头戏,使之成为数学课的一道亮丽的风景。 《数学课程标准》强调数学课堂教学必须注意从学生熟悉的生活情境和感兴趣的事物出发,使学生有更多的机会从周围熟悉的事物中学习数学,理解数学,让学生感受到数学就在他们周围。因此,我从学生已有的生活经验出发,创设有趣的教学情境,强化学生的感性认识,丰富学生的学习过程,引导学生在情境中观察、操作、交流,感受数学与日常生活的密切联系,感受数学在生活中的作用,加深对数学的理解,并运用数学知识解决现实生活中的问题。如《课程标准》在综合实践的教学建议部分提供了这样一个案例:
要求学生统计自己家庭一周内丢弃的塑料袋个数,并依据所收集的数据展开讨论。其程序是:(1)作为家庭作业提出此问题;(2)学生自主进行统计活动;(3)请某学生在课堂上对结果做现场统计(列出统计表,老师也把自己的统计结果融入其中);(4)统计分析(引导学生根据数据对全班一周丢弃塑料袋情况用不同的算法进行描述和评价);(5)结合问题情境深入领会有关概念(如平均数、中位数、众数等)的含义,并通过问题的层层深入让学生进一步感受不同统计量来表示同一问题的必要性;(6)问题自然延伸(计算这些袋对土地造成的污染,先估计一个袋的污染,然后通过多种方式计算推及到一周呢?一年呢?全校同学的家庭呢?照此速度要多久就会污染整个学校呢?)。由此例可以看出,这种模式的一个关键点就是围绕着学生日常生活来展开的,由学生身边的事所引出的数学问题,使学生体会到数学与生活的紧密和谐关系,朴素的问题情境自然让学生产生一种情感上的亲和力和感召力,可以让他们真正应用数学,并引导他们学会做事。
高中数学教学设计案例篇八
一、问题导入,引发探究
师:我在旅游时买回来一种磁性蛇蛋玩具(如图),所谓生活处处皆学问嘛,我把它运动过程中的轴截面用图形计算器做出了以下有趣的现象:
两个全等的椭圆形卵,相互依偎旋转(动画)。你能通过所学解析几何知识,构造出这种有趣的现象吗?
二、实验探究,交流发现
探究1:卵之由来——椭圆的形成
(1)单个定椭圆的形成
椭圆的定义:平面内到两定点、的距离之和等于常数(大于)的点的轨迹叫做椭圆。(即若平面内的动点到两定点、的距离之和等于常数(大于),则点的轨迹为以、为焦点的椭圆。)
思考1:如何使为定值?
(不妨将两条线段的长度和转化为一条线段,即在线段的延长线上取点,使得,此时,为定值则可转化为为定值。)
思考2:若为定值,则点的轨迹是什么?定点与点轨迹的位置关系?
(以定点为圆心,为半径的圆。由于>,则点在圆内。)
思考3:如何确定点的位置,使得,且?
(线段的中垂线与线段的交点为点。)
揭示思路来源:(高中数学选修2-1p497)如图,圆的半径为定长,是圆内一个定点,是圆上任意一点,线段的垂直平分线l和半径相交于点,当点在圆上运动时,点的轨迹是什么?为什么?
(设圆的半径为,由椭圆定义,(常数),且,所以当点在圆周上运动时,点的轨迹是以为焦点的椭圆。)
图形计算器作图验证:以圆与定点所在直线为轴,中垂线为轴建立直角坐标系,设圆半径,,即圆,点,则点轨迹是以以为焦点的椭圆,椭圆方程为。
(2)单个动椭圆的形成
思考4:构造一种动椭圆的方式
(由于椭圆形状不变,即离心率不变,而长轴长为定值,则也要为定值,因此可将圆内点取在圆的同心圆上,当点在圆上动时,即可得到动椭圆。)
图形计算器作图验证:当圆内动点取在圆的同心圆上,运动点,即得到动椭圆。
(3)两个椭圆的形成
观察两个椭圆相互依偎旋转的几个画面,分析两椭圆的位置关系。判断两个椭圆关于对称轴对称,且直线过两椭圆公共点,所以直线为两椭圆的公切线。
因而找到公切线,作椭圆关于切线的对称椭圆即可。
探究2:卵之所依——切线的判断与证明
线段的垂直平分线与椭圆的位置关系
(1)利用图形计算器中的“图象分析”工具直观判断与椭圆的位置关系.设圆上动点,则线段的中垂线的方程为,将动点的横坐标保存为变量,纵坐标保存为变量,随着点的改变,在graphs中画出相应的动直线.用图形计算器中的“图象分析”工具找出椭圆所在区域内的直线与椭圆的交点,拖动点,动态观测交点个数的变化,发现无论点在何处,动直线与椭圆只有一个交点,因此判断直线与椭圆相切,并可求出该切点的坐标.也可以将椭圆方程与直线方程联立,用“代数”工具中的solve求出方程组的解,从而判断根的情况.
(2)证明椭圆与直线相切.
不妨设直线:,其中,,与椭圆方程联立,得,因此
,
将,,代入上式,用“代数”工具中的expand()化简式子,得,所以椭圆与直线相切,切点为.
(3)证明由任意圆上的动点和圆内一点确定的椭圆与线段中垂线均相切(反证法)
因为椭圆是点的轨迹,而点是直线与线段中垂线的交点,所以点既在椭圆上,也在直线上。因此,直线与椭圆至少有一个公共点,即直线与椭圆相切或相交。
假设直线与椭圆相交,设另一个交点为(与不重合).因为,所以;又因为,
所以为定值,而,矛盾.因此直线与椭圆相切。
探究3:两卵相依——对称旋转椭圆的形成与动画
当圆内动点取在圆的同心圆上,作椭圆关于切线的对称椭圆,运动点,隐藏相关坐标系与辅助圆等图形,呈现两卵相互依偎旋转的有趣效果。
改变一些问题条件,进行深入探究与发现。
探究4:改变点位置,探究点轨迹
(1)曲线判断:利用ti图形计算器作图分析,拖动点,当点在定圆内且不与圆心重合时,交点的轨迹是椭圆;当点在定圆外时,则,交点的轨迹是双曲线;当点与圆心重合时,点的轨迹是圆的同心圆;当点在圆周上时,点的轨迹是是一点(圆心).
(2)方程证明:圆,设点,可解得点的轨迹方程为
当或时,点的轨迹为圆心;
当且时,点的轨迹方程为
当时,点的轨迹为圆:;
当且时,点的轨迹为椭圆;
当或时,点的轨迹为双曲线。
探究5:改变切线位置,探究由切线得到的包络图形
查阅有关参考书籍,了解圆锥曲线的包络线,并利用图形计算器作出椭圆、双曲线的包络图形,自主探究抛物线的包络线(将定圆改为定直线)。
结论:所谓包络图,就是指有一条曲线按照一定运动规律运动,保留其所有瞬间位置的影像,会有一条曲线能够和该运动曲线所有位置相切,这条曲线就成为该运动曲线的包络线。
探究6:拓展延伸:椭圆切线的几个性质及其应用
性质1:是椭圆的两个焦点,若点是椭圆上异于长轴两端点的任一点,则点的切线平分的外角。
性质1′:点处的法线(过点且垂直于切线)平分。(即为椭圆的光学性质:从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线交于椭圆的另一个焦点上。)
课后探究:阅读数学选修2-1p75阅读与思考——圆锥曲线的光学性质及其应用,了解双曲线、抛物线的光学性质。
练习1:已知为椭圆的左、右焦点,点为椭圆上任一点,过焦点向作垂线,垂足为,则点的轨迹是_____________,轨迹方程是_______________。
解:(1)直观判断:作轨迹
(2)严谨证明:圆的定义
由此得到:
性质2:是椭圆的两个焦点,是长轴的两个端点,过椭圆上异于的任一点的切线,过做切线的垂线,垂足分别为,则在以长轴为直径的圆上。
练习2:已知为椭圆的左、右焦点,点为椭圆上任一点,直线与椭圆相切与点,且到的垂线长分别为,求证:为定值。
解:(1)直观判断:作图
(2)严谨证明:利用性质2及圆的相交弦性质,
由此得到:
性质3:已知椭圆为,则焦点到椭圆任一切线的垂线长乘积等于。
课后探究2:已知为椭圆的左、右焦点,点为椭圆上任一点,直线过点,且到的垂线长分别为,则
①当时,直线与椭圆的位置关系;(相交)
②当时,直线与椭圆的位置关系。(相离)
(类比直线与圆位置关系的几何法,此为直线与椭圆位置关系的几何法)
课后探究:双曲线、抛物线的切线是否有类似性质?
高中数学教学设计案例篇九
创设问题情境,精心设计,创造学生参与的机会
通过课堂教学使学生在知识与技能、过程与方法、情感态度与价值观三维目标获得协调发展,这是《大纲》中也明确了的。说得通俗一点,课堂教学是否有效的标准:在一定的时段内,学生学到了什么?学到什么程度?怎样学的?学完以后对数学的态度是更热爱?还是变得更讨厌了呢?
[案例1]在讲双曲线时,应打破以往的给一个知识点,做一道习题的做法。例如:方程x2/a2 - y2 /16=1,设问:①此方程表示双曲线吗? ②你能添加一个条件求出双曲线方程吗?这种开放性问题的设置给学生创造了较广泛的思维空间,让他们有东西可想,有内容可说。这样,整节课都是学生思考、讨论、动笔的过程,很好地调动了学生的学习积极性,达到了教学目标。
创设实验情境,培养数学创新能力和实践能力
高中数学教学应鼓励学生用数学去解决问题,甚至去探索一些数学本身的问题。教学中,教师不仅要培养学生严谨的逻辑推理能力、空间想象能力和运算能力,还要培养学生数学建模能力与数据处理能力,加强在“用数学”方面的教育。在数列一章中的实习作业中安排了对购房,购车的分期付款的消费题材,是一个非常好的培养学生数学建模能力与数据处理能力的题材,要让学生去实践,实验,写出实验报告,学生对数学知识的理解就更深了。 教学中,教师通过精心设计教学程序,创设多种教学情景来激发学生的学习情感。在教学过程中,师生之间、学生之间充分地互相交流,民主地、和谐地、理智地参与教学过程,这正是师生相互作用的最佳形式,因而也是发挥教学整体效益的可靠保证。
数学中的概念、公式、性质、定理等是解决数学问题的基础,尽管这些概念、公式、性质、定理产前人思维的成果,但是,学生对其的学习仍需一个“认知、吸收、深化”的过程,为此,教师在教学中要立足于学生的思维水平及其发展规律,提示概念、公式、性质、定理等的提出过程及其探索、抽象、概括的过程,使学生再经历一次“数学家”的思维过程。
高中数学教学设计案例篇十
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(p4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合 记作n,
(2)正整数集:非负整数集内排除0的集 记作n*或n+
(3)整数集:全体整数的集合 记作z ,
(4)有理数集:全体有理数的集合 记作q ,
(5)实数集:全体实数的集合 记作r
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集 记作n*或n+ q、z、r等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合a的元素,就说a属于a,记作a∈a
(2)不属于:如果a不是集合a的元素,就说a不属于a,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如a、b、c、p、q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈a颠倒过来写
三、练习题:
1、教材p5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数 (不确定)
(2)好心的人 (不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|, 所组成的集合,最多含( a )
(a)2个元素 (b)3个元素 (c)4个元素 (d)5个元素
5、设集合g中的元素是所有形如a+b (a∈z, b∈z)的数,求证:
(1) 当x∈n时, x∈g;
(2) 若x∈g,y∈g,则x+y∈g,而 不一定属于集合g
证明(1):在a+b (a∈z, b∈z)中,令a=x∈n,b=0, 则x= x+0* = a+b ∈g,即x∈g
证明(2):∵x∈g,y∈g,
∴x= a+b (a∈z, b∈z),y= c+d (c∈z, d∈z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈z, b∈z,c∈z, d∈z
∴(a+c) ∈z, (b+d) ∈z
∴x+y =(a+c)+(b+d) ∈g,
又∵ =且 不一定都是整数,
∴ = 不一定属于集合g