数学教学设计案例分析 高三数学教学设计案例
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
数学教学设计案例分析 高三数学教学设计案例篇一
1.教师自我介绍,建立良好的师生关系。
首先,我在黑板上写一个“银”字,我让他们数出“银”有几画,我顺势告诉他们数数是数学常用的一种数学方法,数数要有顺序的数。 每位学生从姓名,年龄,学前班所在地3个方面做自我介绍。目的是让大家大胆介绍自己,使大家尽快的熟悉。
2.向学生介绍听说读写走坐的基本学习习惯。
听:引导学生学会倾听。
说: 清楚,完整的表达自己的想法。
坐:头正,身直,足平。 走:上下楼梯和在走廊要靠右走。在引导学生在靠右走时,学生不知道该怎么走。在举起右手提示他们时,有的同学说:“个位手”,有的同学说:“十位手”。最后同学说出了右手。我对他们说:“个位和十位、认识左右就是我们要学习的内容。
3.介绍排队的基本要求。
让学生自觉从矮到高的顺序排队。我问几个同学你为什么站在他的后面,学生都回答我比他高。我顺势说出比较也是一种数学思想。
数学教学设计案例分析 高三数学教学设计案例篇二
结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学重点:
掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学过程
一、复习
二、引入新课
1.假言推理
假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。
(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。
(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。
2.三段论
三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。
3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。
(1)对称性关系推理是根据关系的对称性进行的推理。
(2)反对称性关系推理是根据关系的反对称性进行的推理。
(3)传递性关系推理是根据关系的传递性进行的推理。
(4)反传递性关系推理是根据关系的反传递性进行的推理。
4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。
完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。
数学教学设计案例分析 高三数学教学设计案例篇三
提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。高二下学期必修3有三章(算法初步;概率;统计);选修2-3有三章(计数原理;随机变量及其分布;统计案例);选修4-5(不等式)。
必修3,主要涉及三章内容:
第一章算法初步
1、算法的含义、程序框图。通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中(如,三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。
2、基本算法语句。经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句--输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。
3、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
第二章概率
1、在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。
2、通过实例,了解两个互斥事件的概率加法公式。
3、通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
4、了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。
5、通过阅读材料,了解人类认识随机现象的过程。
第三章统计
1、随机抽样、能从现实生活或其他学科中提出具有一定价值的统计问题。结合具体的实际问题情境,理解随机抽样的必要性和重要性。在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。
2、用样本估计总体。通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会他们各自的特点。通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。形成对数据处理过程进行初步评价的意识。
3、变量的相关性。通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
选修2-3,主要涉及三章内容:
第一章计数原理
计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具。是学习排列、组合和概率理论的基础,也是培养学生数学思维能力的良好素材。
1、重视基本概念教学,正确区分分类与分步,通过具体问题情境和实际事例,让学生不断感悟和总结两个基本计数原理,并能应用两个原理解决问题,分类要做到不重不漏,分步要做到步骤完整。
2、在分析排列、组合应用题时,应充分利用列举法和树形图进行分析,让学生从直观,感性上理解问题,辨别排列与组合问题,总结规律,探究快捷解决问题的途径。
3、通过实例,总结分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理,解决一些简单的实际问题。的含义。
第二章随机变量及其分布列
学生将在必修课程学习概率的基础上,学习某些离散型随机变量分布列及其均值、方差及内容,初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念,观察、分析问题的意识。
1、随机观念贯穿于这部分内容的始终。首先要认识离散型随机变量的分布列对刻划随机现象的重要性;其次掌握超几何分布、二项分布是两个非常重要的应用广泛的概率模型。
2、通过实例,理解所有的概念,避免过分注重形式化的倾向。教学中不应简单从抽象的定义出发,机械地模仿,得出概念。重点是理解离散型随机变量及其分布列、均值、方差、正态分布的概念。
第三章统计案例
学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。
1、教学中应该通过生活中详实事例理解回归分析的方法,其步骤为通过散点图,直观地了解两个变量的关系,然后,通过最小二乘法建立回归模型,最后通过分析残差,相关指数等,评价模型的好坏。
2、教学中应用实例分析总结得出独立性检验的意义,并且认真体会独立性检验的基本思路,类似于反证法,会用类比的思想方法得出独立性检验的基本步骤。
3、回归分析注重步骤和过程,鼓励学生经历数据处理的全过程,要尽量使用统计图直观展示两个变量的关系,培养学生对数据的直观感觉,有条件的学校要利用统计软件画散点图、进而直观判断它们是否线性相关,然后在线性相关前提下尝试用线性回归模型来拟合,最后还通过相关指数和残差分析来判断拟合效果。
选修4-5,主要涉及一章内容:
第一章不等式
在本专题教学中,教师应引导学生了解重要的不等式都有深刻的数学意义和背景,例如本专题给出的不等式大都有明确的几何背景。学生在学习中应该把握这些几何背景,理解这些不等式的实质。主要考察绝对值不等式的解法,这也是我们讲课的重点。本专题特别强调不等式及其证明的几何意义与背景,以加深学生对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析解决问题的能力。
1、回顾和复习不等式的基本性质和基本不等式。
(1);
(2);
(3)会利用绝对值的几何意义求解以下类型的不等式:
高二下学期的授课内容为必修3和选修2-3及选修4-5,必修3和选修2-3的前两章在期中考试前完成(约在5月1日前完成);选修2-3第三章及选修4-5在期末考试前完成(约在7月10日前完成)。
提高数学设计探究性课堂教学设计的能力。建立一个充满生命活力的、开放的课堂教学运行机制,使教学设计真正适合学生发展的需要。建立中学数学探究性课堂教学设计的多元化评价机制。提高教师对探究性数学教学设计的评价能力掌握科学的评价方法,推动中学数学探究性课堂教学向前发展。
告知教学目标,讲述;板书或由问题引入等引起注意,激发兴趣。复习旧知识,提问;小测验等激活原有知识。呈现新知识,设计先行组织者、图表;教师讲授;指导学生自学;提供直观教材等选择性知觉新信息。
1、学习兴趣与基础
经过一段时间的观察和调查,我发现班上有一半学生对数学学习没有兴趣,问其原因,大部分都说数学太难,学不懂,老师讲的都不明白,基础太弱,导致课堂上无所事事。这样越来越对数学没有兴趣。
2、学习习惯
依赖同学的帮助,作业抄袭等等不良现象。
1、加强基础知识教学。了解到学生目前的学习情况,大部分学生对初中的相关知识掌握不好,利用自习课或课余时间为他们补充初中知识的盲点,加强基础知识。同时在上课的时候,以基础简单题目为主,争取让大部分学生在课堂上有所收获。
2、加强合作学习。对于班级出现的两极分化情况,发动成绩好的学生带动基础薄弱的学生,促使大家共同进步。
高二下学期
算法初步(必修3)9课时
概率(必修3)10课时
统计(必修3)8课时
计数原理(选修2-3)10课时
随机变量及其分布(选修2-3)15课时
统计案例(选修2-3)3课时
不等式(选修4-5)5课时
数学教学设计案例分析 高三数学教学设计案例篇四
科学探究,是当今课堂教学改革领域中打造高效课堂的有效举措,教师要多为学生创造探究学习的机会,尤其要抓住每一个细节,把握每一次机遇,让学生不失时机地在探究中学习,在探究中收获,在探究中提高。实践证明,课堂上科学、有效的探究,是构建高效课堂、实现精细化教学的必由之路。
【教学案例】
人教版小学数学五年级下册练习六中有这么一道题:
学生自主解答后,我发现大体有两种不同的答案,其一是这样的——
涂黄色油漆的面积:
其计算结果为12800平方厘米;
涂红色油漆的面积:
65×40×2+40×3×40
其计算结果为10000平方厘米。
而另一种状况则是——
涂黄色油漆的面积:
[65×40+v65+10w×40+40×40]×2
其计算结果为14400平方厘米;
涂红色油漆的面积:
v65+10w×40×2+40×3×40
其计算结果为10800平方厘米。
学生的解题思路大致相同,而为什么会出现这样两种不同的结果呢?对此,我组织、指导学生进行了探究。在探究学习过程中,大家发现了两种解法的差别在于1号颁奖台的高的取值不同,即一种解法的取值为65厘米,另一种解法的取值为75厘米。由于题图中明确标注了40厘米、65厘米及10厘米等数值,则能够从中对三个长方体的长、宽、高分别取值,而正常状况下这几个量(已知条件)的取值在图中能够很容易得出来,为什么会有学生产生误解呢?到底哪种取值是正确的?透过讨论、探究,最后大家一致认为1号颁奖台的高为65厘米。
(下面是师生探究活动记实)
学生甲:如果2号颁奖台的高是65厘米,那么原题的图中就就应把“65厘米”字样标在2号颁奖台的左边,所以根据“65cm”字样标注在1号颁奖台的正面上,我认为65厘米是给出的1号颁奖台的高。
学生乙:我观察到1号颁奖台正面左边的这条棱被分成两条线段,上面较小的部分是10厘米,而从图中能够明显地看出下面较大的部分则为65厘米长,而这两个数字都是标注在这两条线段附近的,所以1号颁奖台的高就是10厘米与65厘米之和,即75厘米。
听了我的说法,同学们跃跃欲试,纷纷行动起来。
经过同学们的测量、计算、比较,最后证实了1号颁奖台的高为65厘米。
【课后反思】
对于一道数学题的解答,似乎大可不必如此“兴师动众”,而课后想起来,我的这种做法并非“小题大做”,而却是“大有益处”的。
1、大大地激发了学生的探究兴趣。
2、培养了学生严谨的学习态度。
3、透过“借题发挥”而把知识向未知领域延伸,不但实现了“比例尺”这项知识的渗透,而且还使学生懂得了“学无止境”的道理。
回顾此例的教学,我认为教师在教学中不能盲目地、简单地教给学生问题的答案,正如上面的这个问题,如果我只是告诉学生1号颁奖台的高为65厘米,认识不清的学生只要照做就能够了,那么仍会有学生感到不解,甚至还可能依然坚持自己的看法而一头雾水。
教会学生一个问题并不是教育的目的,教育的真正目的在于抓住教育契机,教给学生科学的、适用的、有效的学习方法,引发学生参与探究,以切实实施精细化教学,从而培养学生的潜力,培养创新精神与数学素养。
【相关阅读】
数学教学设计案例分析 高三数学教学设计案例篇五
新学期开课的第一天,备课组进行了第一次活动。该次活动的主题是制定本学期的教学工作计划及讨论如何响应学校的号召,开展主体式教学模式的教学改革活动。
一个完整完善的工作计划,能保证教学工作的顺利开展和完满完成,所以一定要加以十二分的重视,并要努力做到保质保量完成。
在以后的教学过程中,坚持每周一次的关于教学工作情况总结的备课组活动,发现情况,及时讨论及时解决。
备课组将进行每周一次的活动,内容包括有关教学进度的安排、疑难问题的分析讨论研究,数学教学的最新动态、数学教学的改革与创新等。一般每次备课组活动都有专人主要负责发言,时间为二节课。经过精心的准备,每次的备课组活动都将能解决一到几个相关的问题,各备课组成员的教学研究水平也会在不知不觉中得到提高。
按照学校的要求,积极认真地做好课前的备课资料的搜集工作,然后集体备课,制作成教学课件后共享,全备课组共用。一般要求每人轮流制作,一人一节,上课前两至三天完成。每位教师的电教课比例都要在90%以上。每周至少两次的学生作业,要求全批全改,发现问题及时解决,及时在班上评讲,及时反馈;每章至少一份的课外练习题,要求要有一定的知识覆盖面,有一定的难度和深度,每章由专人负责出题;每章一次的测验题,也由专人负责出题,并要达到一定的预期效果。
本学期学校全面推行主体式的教学模式,要使学生参与到教学的过程中来,更好地提高他们学习的兴趣和学习的积极性,使他们更自主地学习,学会学习的方法。积极响应学校教学改革的要求,充分利用网上资源,使用分组讨论式教学,充分体现以学生为主体的教学模式,不断提高自身的教学水平。