最新小数的意义的教学设计(九篇)
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
小数的意义的教学设计篇一
课堂教学过程描述
(一):展示信息、交流信息。
师:课前大家已经收集了许多关于小数的资料,各组也把自己认为最有价值的一条推荐了出来。现在,老师想组织大家开一次生活中小数的信息发布会,大家可以先把这些资料读一读,然后挑选你最感兴趣的一条,谈谈你了解到了什么?又想到些什么?
(1)、一枝铅笔0.35元,一把直尺0.9元。
(2)、雷声在空气中传播的速度是每秒0.3千米。
(3)、篮球运动员姚明的身高是2.24米。我们组成员的平均身高是1.38米。
(4)、人体正常体温是36.5℃~37.5℃。
(5)、88层的上海金茂大厦高420.5米,是目前我国第一、世界第三的高楼。
(6)、在区英语朗诵比赛中,王宁的平均得分是9.106分,李红的平均得分是9.008分。
生1、我谈第二条,雷声在空气中传播的速度是每秒0.3千米就是每秒300米。
生2、我谈第四条,医生就是根据这个体温标准来诊断你是否生病。超过37.5就是发热了,低于36.5度是发低热。
生3、我谈第六条,这里一看就知道王宁的分数略高一些,不过李红稍加努力就能超过王宁。
生4、我知道第六条中的数都是三位小数。
……
师:这些信息都是用小数来描述了一些事情,反映一些现象。看来,同学们对小数已经有了一些认识,可能也会产生一些新的想法或者问题,现在把你们的想法和问题提出来,我们一起来研究。
(二)、提出问题、解决问题
(一)提出问题
生1、我想知道小数的来源?小数有什么用?
生2、小数怎么读?
生3、小数的意义是什么?
……
(二)研究问题
1、 师:小数怎么读谁能解决?(简单问题直接解决)
生1:小数点前面的数和我们学过的整数一样读,是几十几就读几十几,小数点后面的数只要看到一个读一个。
生2、像第六条信息中的9.008,小数点后面有两个0,要连读两次。
……
师:同学们说得很对,我们挑几个小数一起来读一读。
2、 师:小数有什么用呢?为什么会有小数?同桌两人商量商量。(一般问题共同讨论)
生1:商场里大部分物品的价格不是整元数,就用小数来表示。
生2:像第六条信息中,用小数表示选手的成绩既精确又公平。
生3:我国的高科技技术,比如神州五号飞上太空,科学家必须经过精确的计算,才能保证成功,因此就回用到小数。
生4:上海金茂大厦高420.5米,这个高度超过420米,但又不满421米,所以就用小数表示。
3、 小数的.意义是什么?(学生主动探究)
(1)、师:上海金茂大厦高420.5米,0.5米是怎么产生的?(拿出一把米尺)把一米平均分成10分,一份是多少?怎么表示?
生:是1/10米,还可以是0.1米。
师:在这把米尺上还能找到零点几这样的小数来吗?他们又表示什么?
(学生上台在直尺上找)
(2)、师:这把米尺除了平均分成10份,还可以怎样分?
(学生自然回答:100份、1000份)
师:以小组为单位,在直尺上找出3个百分之几的数,想一想,这三个百分之几的数还可以怎么表示?
(3)、师:从刚才的学习中,你觉得小数与分数有怎样的一种联系?表示什么?
生:零点几表示十分之几的数,零点零几表示百分之几的数。
(4)师:0.001、0.005、0.951像这样的小数又与怎样的分数有关?表示什么?
生:(学生自发讨论)
(5)师:学到这里,你对小数又有哪些新的认识?
生:分数和小数可以互相转化,小数可以把一件事描述得更精确……
三:展开练习,拓展延伸。
师:通过刚才大家的努力,同学们提出了自己的问题,也解决了这些问题。现在我们一起来进行比赛好吗?比赛分三组进行,分别设有0.2.分题、0.3分题、0.5分题,0.2、0.3、0.5分别表示这三组题的难度系数,0.2分题是必答题,全部答对就可得0.2分,0.3分题和0.5分题是选做题或者是抢答题,全部做对可得0.3或0.5分。
(一)0.2题 (快速记数)要求,把听到的小数记录下来。
一只青蛙跳过0.3米宽的田埂,来到宽11.58米的河面上,踏上了0.2平方米的荷叶,狂叫三声,扑通一下掉进了深0.96米的小河里。
(二)0.3分题 (快速口答)
a、 74/100=( ) 13/1000=( ) 58元零9分=( )(用小数表示)
b、 一大包薯条,最低7元、最高8元,请估价。
(三)0.5分题 (现象分析)
李红身高变化情况统计表。(略)
仔细观察图表中的数据,请你预测,当李红25岁是大约能长多高?为什么?
实践反思:
下课铃声悠然响起,师生依然沉浸欢乐、充满激情的情感世界里,教师与学生、学生与学生交往的过程,形成了认知、生活、情感等协调互动、共同融合的多层次、立体型生活大课堂,这正是我所期盼的教学效果。反思课堂,以下几点便是我成功实施互动对话式教学的具体表现:
牐犚弧⒄嬲把握互动对话教学的实质,释放教师的教学艺术。互动对话教学的真正落实,很大程度上取决于教师对这种教学观念的理解和掌握,如果只是简单的理解为一问一答,那么课堂上热热闹闹的师生"互动",只是表面形式,学生的数学思维并没有真正展开,也就无真正意义的"对话"。因此,互动对话式教学向教师的教学智慧提出了新的挑战。需要教师根据教学内容,创设恰当的教学情境、在最恰当的时机,选择并灵活采用恰当的教学手段。例如,“生活中小数信息发布会”,笔者把小数的意义放置了一种生活化、需求化、个性化的大背景中,让学生用个性化的理解方式表达对小数的理解。再如笔者充分利用个别学生会读小数这一资源,让这部分学生大胆释放自己的学习能力和已有经验,谈谈小数是怎样读出来的?,把个人的学习成果让大家共同体会、共同分享。又如:当学生已获得小数的初步意义后,教师提出了挑战性的问题:“小数小数,小数比小数小吗?”,使学生思维中的矛盾激化,以问题答辩的形式引导学生在集体智慧的碰撞中相互争辩、重新修正、完善个体的思维。
牰、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。许多教师认为,小数的意就这一内容用传统的接受式教学方法比较恰当,因为小数的意义是约定术成的,新型的学习方式(动手实践、自主探究与合作交流)也只能是一种课堂的装饰。这种思想,是我在设计教学时考虑得最多,也是我最难突破的瓶颈。因此在本课的设计上,笔者以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。例如,在“提出问题、解决问题”设计时,笔者分三个层次进行不同方式的教学设计:
第一层次:小数该怎么读?这类比较简单的问题,让学生用自己的经验、以及个别与集体的练读直接解决。
第二层次:小数有什么用呢?为什么会有小数?这类一般问题,通过学生的相互讨论、客观分析,在互动中自我感悟、自我体会。
第三层次:小数的意义是什么?一位小数、两位小数是怎么来的?这是本课中重点要解决的概念问题,笔者采用学生自主探究、合作交流的方式。把学生引入研究性学习的氛围,主动建构知识。
这三种不同的教学方式其实有着本质联系,那就是,从学生的已有经验出发,让学生主动学习。这既是平等意识、人格尊重在教学中的体现,也是实现对话教学的前提。只有这样,才能唤醒学生的主体意识,让学生根据自己的能力水平提出问题,阐述问题,发表见解,由此在交流中获得知识,锻炼互相交往的能力。而教师只是学习的组织着、欣赏者,引导者,适时点拨、恰如其分的调控。
三、尊重每一位学生的学习成果,建立平等、民主、愉悦的学习氛围。教师与学生,学生与学生在各方面都存在着差异,要达成真正的对话,在思想上形成真正的相互回应和碰撞,就必须以尊重为准则:对学生的创见要充分鼓励;对学生的异见要尊重理解;对学生的误见要宽容引导。这样才能使学生主动对话,质疑问难,达成共识。就拿本课最后一个学习活动“展开练习、拓展延伸”来说吧,笔者采用了比赛的练习方式。这种方式,从学生的性情、兴趣出发,彻底改变了原由的写写、做做的模式,让每位学生充分挖掘自身的内在潜能,把学习过程中积累的学习成果全部释放了出来。在这中间,教师提供的评价指标成了学生积极互动的催化剂,学生可以根据自己的比赛实绩,为自己每一轮的学习比赛打上恰当的分数(小数)。这样,既让学生切身感受到了数学的魅力,同时用小数来打分,也体现了学生学以至用的思想,让不同的学生获得不同的成功。
小数的意义的教学设计篇二
1、教材分析
教学主要内容:
一位、两位、三位小数的意义。小数的计数单位,每相邻两个计数单位之间的进率是10.
教材编写特点:
简化了小数意义的叙述重视了对小数意义的理解加强了小数与实际生活的联系在探究的过程中注重给学生创设自主研究的空间。
教学的重点、难点:
理解一位、两位、三位小数的意义,知道相邻的两个计数单位之间的进率是10。
教学关键:
理解一位、两位、三位小数的意义。
基本活动经验:
在老师引导下,重视学生实际动手操作的能力、合理安排引导给学生自主探索的空间、借助学生已有知识经验的迁移,促进学生自主学习。
2、学情分析
小数的意义是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。
学生学习该内容可能的困难:
教学时,学生必须依托分数和整数的相关知识,借助分数理解小数的意义,借助整数掌握小数的结构特征。理解每相邻两个计数单位之间的进率是10时,必须联系生活中的货币、长度或者重量等理解小数之间的关系。
学习方式:
充分的运用演示、操作、观察等直观的手段,把基本概念的本质属性和普遍意义形象地展示出来,是学生在头脑中建立起这些内容的丰富表象,再组织学生进行分析、讨论,加深这些知识概念的感性认识;最后对表象进一步加工,形成概念,从而实现对概念的深刻理解。
3、教学目标
知识与技能
1使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。借助熟悉的十进制关系的显示原型多角度的理解小数与分数之间的关系,理解计数单位0.1、0.01、0.001。
2明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几.....知道相邻两个计数单位间的进率是10。
过程与方法
充分的运用演示、操作、观察等直观的手段,引导学生经历从直观到抽象、概括的心理活动过程,实现“动作表征”、“直观表征”、“符号表征”的循序渐进发展,进而培养学生发现和构建知识的能力、迁移和类推能力。
情感态度与价值观
培养学生的抽象、概括、归纳的思维能力和应用数学的能力。
4、教学过程
1、已知导入、情境感知
师:(出示教室场景图)同学们看,这个地方熟悉吗?
生:熟悉
师:是哪?
生:我们的教室
师:我们的教室,这是黑板的高度,讲台的长度,课桌的长度(课件出示)。
师:我们已经知道黑板的高度是1米(课件出示黑板的高度是1米),你有办法知道课桌和讲台的长度吗?
生:我知道了,讲台的长度、课桌的长度有1米多。
生:我知道讲台的长度跟1米差不多。
生:可以用重叠法
生:可以把黑板的高度那里,对直画一根虚线下来,再看
师:课桌的长度是1米多,具体多多少呢?你有办法吗?
2、展开,认识一位小数的意义
生:先测量出1米,多余的部分截取下来,再接着去测量。
师:谁还来说说......
生:先测量出1米,多余的部分截取下来,再拿多余部分去跟1米比较(边说边用手比划)。
师:你们看看,是这样的吗?(课件演示,将多余的部分截取下来,放在1米的下面测量)
生:是的。
师:接下来,谁有办法?
生:用多余部分去比,看看1米里面有几个那么长。
生:将1米平均分成10份,再比较。
师:比不出来啊,谁有办法?
生:1个1个去比,看看几个那么长正好是1米。就用除法解决。
师:是这样的吗?(课件演示)
生:是的
师:我们一起来数数
生:1个,2个,3个......正好10个这么长是1米。
(在出现问题的时候,想解决问题的办法:我们可以把已经知道的1米的刻度标记出来,再继续测量,先用多余部分去比较,发现正好10个那么长就是1米。所以多余部分是10份中的1份,也就是说将1米平均分成10份,这样的1份,它的长度正好是多余部分,所以多余部分可以用十分之一米表示;十分之一米用小数表示是0.1米。在测量或者计算时,我们往往不能正好得到整数的结果,这时,可以用分数或者小数表示。
师:那现在知道怎么具体表示了吗?说说我们刚才的思路。
生:因为老师在操作的时候,我们可以发现10个多余部分的长度正好是1米,也就是说每个多余部分的长度是1米的1/10,也就是1/10米。写成小数的话是0.1米。还可以用1分米表示。
生:根据观察我们发现,将1米平均分成10份,多余部分正好是10份中的1份,可以用分数1/10米表示,还可以用小数0.1米表示。
生:将1米平均分成10份,多余部分是1米的1/10,也就是1/10米,用小数表示是0.1米。
师:我们一起来说说:将1米平均分成10份,多余的部分正好是这10份中的1份,也就是1/10,1米的1/10是1/10米,也可以用小数表示为0.1米。
师:这就是我们这节课要研究的“小数的意义”(板书课题)
师:那你们知道小数0.1的意义了吗?
生:0.1表示的是十分之一。
师:你还能在1米(用手比划)中找到其他的小数吗?并说说它的意义。
生:0.3米(学生说,老师点课件,并根据课件演示,学生说意义)
师:那0.3里面有几个0.1呢?表示什么
生:0.3里面有3个0.表示十分之三。
师:还找到了其他的小数吗?
生:0.7米(老师点课件,学生说意义)0.7里面有7个0.1
师:那1米里面有多少个0.1呢?
生:1米里面有10个0.1米
师:10个0.1是1
仔细观察这些小数和分数(用手比划并引导学生观察分数),你发现了什么?
生:这些小数都表示十分之几。
生:这些分数的分母都是10,小数都是一位小数
生:分母是10的分数可以写成一起小数
生:10个0.1是1
师:说得非常好。一位小数表示十分之几。分母是10的分数可以写成一位小数,10个0.1就是1。一位小数,它的计数单位是十分之一,写作0.1。
我们一起把这句话小声齐读:分母是10的分数可以写成一位小数,一位小数的计数单位是十分之一,写作0.1。
师:我们在这个1米中找到了很多的小数,是不是只能在这里找到小数呢?
(出示数轴图)你能在这里找到小数吗?
生:能(学生上台寻找并说明理由。)
师:为什么是这里呢?
生:因为0-1之间分成了10份,每一份是0.1,表示十分之一。
生:0.1还可以表示刻度。也就是说:这里的每个刻度依次是0.1、0.2、0.3......
师:我们在学习数轴的时候知道数是按照从小到大的顺序依次排列的,所以0.1在这里。
师:那你能找到0.8吗?
生:某一个点,某一个范围(指出0.8的具体位置)
师:你是怎么找到0.8的?
生:数8个0.1(10份中数出其中的8份)
生:从1开始往左边数2个0.1(10-2=8)
师:那数轴上还有其他的小数吗?
生:有,学生说小数
师:如果将数轴无限的延长,这样的小数说得完吗?
生:说不完。
师:回归到米尺中,理清我们刚刚的思路:我们知道多余的这个部分—可以用分数十分之一米表示,用小数0.1米表示。所以课桌的长度是1.1米。
3、推进,认识两位小数的意义
师:课桌的长度已经具体的表示出来了,黑板的高度呢?
生:还是拿红色部分进行重叠,多余的部分截取下来。继续用红色部分测量(课件演示)。
师:遇到了什么问题?
生:测量时,多余的部分不够1米,
生:那就用蓝色部分比较。(学生边说,课件演示)也不够1分米。
师:那怎么办?
生:用刚刚的方法去比,看多少个紫色部分有是一个蓝色部分。用分米的下一个单位厘米表示。
师:(课件演示)我们发现......
生:我们发现10个紫色部分的长度就是蓝色部分
生:把蓝色部分平均分成10份,紫色部分是其中的1份
生:是1厘米
师:把蓝色部分平均分成了10份,那1米里面会有多少个这样的紫色部分呢?
生:有100个这样的紫色部分。
师:那就是说:将1米平均分成100份,其中的1份表示的长度就是紫色部分,可以用分数1/100米表示
生:还可以用0.01米表示。
师:对的,1/100米写成小数是0.01米。
师:那红色部分有多少个0.01米蓝色部分呢?
生:1米里面有100个0.01米。1分米里面有10个0.01米
师:那这样的4份呢?可以怎么表示?
生:4/100米,写成小数0.04米
师:请同学们拿出抽屉中的软尺。
师:这根软尺长度是多少?
生:1米、10分米、100厘米、1000毫米。
师:看来长度单位的换算学的很好哦。
操作:拿出软尺,在软尺上找到1米,1分米,1厘米,1毫米。以米为单位,找出一个可以用小数表示的地方,跟同桌说一说,并将它写在练习纸上)。
学生汇报
生1:我找到的是0-99厘米。是99厘米,用分数表示是99/100米,用小数表示是0.99米。
生2:我找到的是0-20厘米。是20厘米,用分数表示是20/100米,用小数表示是0.20米。
生:老师对于生2找的还有表示方法,我可以用分数2/10米,用小数表示是0.2米。
师:(副板书20/100米=0.20米,2/10米=0.2米。)对于这两种表示方式,谁来说说他们的意义?
生:一个是表示把1米平均分成100份,取其中的20份,是20/100米=0.20米;一个是表示把1米平均分成10份,取其中的2份,是2/10米=0.2米。
生:它们表示的长度是一样的,但是它们表示的意义是不同的。
师:仔细观察这些小数,你又有什么发现呢?
生:这些分数的分母都是100,小数都是两位小数
生:分母是100的分数可以写成两位小数
生:100个0.01是1
师:说得非常好。两位小数表示百分之几,它的计数单位是百分之一,写作0.01。
(课件出示:分母是100的分数可以写成两位小数,两位小数的计数单位是百分之一,写作0.01。)
师:通过我们刚才的探究,我们知道黑板高度中1米之外多余的这个部分—1厘米,可以用分数百分之一米表示,用小数0.01米表示。所以讲台的长度是1.01米。
4、拓展,认识三位小数、四位小数的意义
师:(出示课件显示1毫米)这是多长?
生:1毫米
师:你是怎么知道的?
生:.因为把1厘米平均分成了10份,其中的1份就是1毫米.....
师:1米里面有多少个这样的1毫米呢?
生:1000个(1米里面有1000个1毫米),因为1米=1000毫米
出示课件
师:将1米平均分成1000份,这样的1份是1毫米,这样的1份还可以怎么表示?
生:1/1000米,0.001米。
师:对的,把1米平均分成1000份,其中的1份是1/1000米,用小数表示为0.001米。
师:那这里的7份可以怎么表示?米尺中的1厘米可以怎么表示呢?
生:这里的7份可以用分数7/1000米表示,用小数表示为0.007米
生:米尺中的1厘米是1000份中的10份,用分数千分之十米表示,用小数0.010米表示。
生:1厘米也可以用分数百分之一米表示,用小数0.01表示。
师:也就是说10个0.001等于1个0.01。
师:观察这些小数,你发现了什么
生:还可以知道,分母是1000的分数可以写成三位小数,三位小数的计数单位是千分分之一,写作0.001。1厘米中有10个1毫米,所以0.01里面有10个0.001;1米里面有1000个1毫米,所以1里面有1000个0.001。
5、总结及应用
(观察板书可以知道)
分母是10.100.1000......的分数可以用小数表示。
小数的计数单位是十分之一、百分之一、千分之一......写作0.1、0.01、0.001......
每相邻两个计数单位之间的进率是(10)
生:因为我们刚刚在黑板上标记了
生:进率是100
生:因为我们知道人民币1分钱是0.01元,1角钱是0.1元,10个1分钱等于1角,所以进率是10
生:进率是10.看黑板我们知道0.1米是1分米,0.01米是1厘米,0.001米是1毫米。它们之间的关系是10毫米=1厘米,10厘米=1分米。所以相邻两个计数单位之间的进率是10(学生根据小数的计数单位自己理解这句话,并且填空,说明理由。)
写出合适的分数和小数
说一说你的收获
生:我知道了“小数的意义”
生:我知道了分母是10.100.1000......这样的分数可以写成小数
生:我知道了小数的计数单位
......
是的,这些都是我们这节课的收获,希望大家在以后的生活或者学习中能够好好的运用这些知识。你们将会发现,原来数学与生活是息息相关的。
板书设计
1米1计数单位
1/10米=0.1米十分之一0.1一位小数
1/100米=0.01米百分之一0.01两位小数
1/1000米=0.001米千分之一0.001三位小数
1/10000米=0.0001米万分之一0.0001四位小数
小数的意义的教学设计篇三
教学目标:
1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。
2.经历探索小数意义的过程,培养归纳能力。
3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。
教学重难点:理解小数的意义和小数的计数单位。
教具准备:米尺、课件。
教学过程:
一、回顾导入
1.读一读信息(课件出示)想一想,这样写符合实际吗?
(1)老师的体重是565千克。
(2)小明的身高是145米。
(3)笑笑的数学测验成绩是935分。
2.这些数据都少了“一点”,那你知道小数由几部分组成吗?比如这里,51.5这个小数,里面的51是整数部分,小数点右边的这个5就是小数部分。那这两个5所在的数位一样吗?表示的意义一样吗?
3.那这小数部分的5所在的数位是什么呢?这个数位的计数单位又是多少?学了小数的意义这节课,你就能找到答案。
二、探索新知识
1.过去,我们学习长度单位时,都测量过自己的课桌高度,那么你们想知道老师的讲桌的高度是多少吗?
指名测量,其他同学观看。
2.汇报测量结果。
3.在日常生活中,测量一个物体的长或高时,往往得不到整数结果,这时,我们就要用到小数。那么,小数的意义是什么呢?这节课我们将继续来学习。
4.出示米尺图。
上图把1米平均分成了多少份?每份在尺子上是多少米?写成分数是多少?
5.请同学们看米尺:从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?
十分之几的数可以用一位小数表示,那么,请同学们猜一猜,两位小数与什么样的分数有关?
6.出示米尺。
指着板书:有什么新发现?学生汇报。
7.提问:如果我们把1米平均分成1000份,每一份是多少?从0刻度线到第一条短刻度线表示1毫米,它是几分之几米?写成小数呢?
让学生说出两个用毫米作单位的长度,并请自己的同桌把它用小数表示出来。
学生交流,并汇报结果。再次提问:从这里你们又发现了什么?汇报。
8.我们这节课学习的知识,你都发现了什么?同桌先交流,后汇报。
小结:分母是10、100、1000……的分数可以用小数表示,一位小数表示十分之几?两位小数表示百分之几?三位小数表示千分之几?……
进一步提问:在分数中,十分之几的计数单位是十分之一?百分之几的计数单位是百分之一?千分之几的计数单位是千分之一?请同学们想一想,小数的计数单位分别是多少?归纳整理。
三、巩固练习
第一层练习:分数小数互化。
第二层练习。
1.填空
(1)0.8表示,它的计数单位是(),它有()个这样的计数单位。
(2)1里面有()个0.1和()个0.01。
(3)0.52是由()个0.1和()个0.01组成的。
2.判断:
(1)0.8是把1个整体平均分成10份,表示这样的8份。()
(2)1毫米写成小数是0.01米。()
第三层练习:猜数游戏。
小明和小红的数各是多少?
四、总结
师生共同回顾本节课内容。
反思:
“小数的.产生和意义”人教版课程标准实验教材四年级下册的内容。这一内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的。本课要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识。
小数的意义是什么?一位小数、两位小数是怎么来的?这是本课中重点要解决的概念问题。本节课,教者力求在课堂上给学生充足的空间,采用学生自主探究、合作交流的方式,把学生引入研究性学习的氛围,主动建构知识。
在小数意义的教学中,教材中利用米与分米、厘米、毫米的改写,让学生理解小数的意义。设计了“把一米平均分成10份,每份是多少?如果用米做单位,每份是多少米呢?能分别用分数、小数表示吗?教者在教学中直接从米尺入手,从平均分成10份、100份、1000份入手,让学生在改动分母是10、100、1000的分数中来理解分数的意义。从而避免了教材中由于增加了米后意思上表达的不够清楚。
引导学生进行观察归纳一位小数的意义时,当黑板上形成了下面的板书:0.1=0.4=.7=后,让学生进行观察,让学生思考“通过观察发现了什么”。由于有了丰富的感性材料作为支撑,学生轻易地完成了对一位小数意义的抽象过程。然后两位,三位小数的意义的研究方法,是一个类推的过程,学生充分经历了一位小数的意义学习过程后,先猜测,两位小数、三位小数应该表示什么?再应用生活的例子加以说明,真正使学生卷入了学习过程中,学生的主体地位得到了较好的发挥。
最后,通过教师点拨和学生观察、讨论,将小数计数单位和计数单位之间的进率通过对整数计数单位的复习进行引申。使知识形成一个完整的知识结构体系。
反思这节课,也有一些地方预设的不够充分:
1.在本课的教学内容安排上要突出小数的意义,尽量做到在三年级教学内容之上进行提升。归纳小数意义是本节课的难点,由于学生数学语言的表述错误较多,所以我花了一定的时间让学生说思考过程,导致时间上较紧迫。
2.练习量较大,没有考虑学生实际。
“课堂教学中我们教学的关注点是什么?”通过本课的教学,我又有了自己的一些思考。只要教师在课堂上关注学生,关注学生的学,定能让课堂焕发师生生命的活力,带来课堂上难以预约的精彩!
小数的意义的教学设计篇四
教学要求:
1、使学生结合具体情境初步体会小数的含义,能认、读、写小数部分是一位的小数,知道小数各部分的名称。
2、使学生进一步体会数学与生活的密切联系。
教学重、难点:能认、读、写小数部分是一位的小数,知道小数各部分的名称。
教具学具准备:课件。
教学过程:
一、复习
7分米=()米3角=()元
9厘米=()分米1分=()角
二、新授
1、认识整数部分是0的小数
出示情境图:芳芳和明明在量桌面的长和宽,看看他们量的结果是多少?
(长5分米,宽4分米)
这是用分米做单位的,如果用米做单位,5分米是几分之几米?4分米呢?(板书)
师:十分之五米还可以写成0.5米,0.5读作零点五。
十分之四米还可以写成0.4米,0.4读作零点四。
(板书补充)
完整的板书:
5分米米0.5米读作:零点五米
4分米米0.4米读作:零点四米
书空:0.50.4
齐读:零点五、零点四
2、认识整数部分不是0的小数
出示情境图:
能不能像刚才那样,把几元几角写成以元做单位的数?
1元2角,想一想,2角是多少元?那么1元2角是多少元?(板书)
3元5角呢?(板书)
完整的板书:
1元2角1.2元读作:一点二元
3元5角3.5元读作:三点五元
书空,齐读。
3、认识整数、自然数、小数及小数各部分名称
师:我们以前学过的表示物体个数的1、2、3是自然数,0也是自然数,他们都是整数。像0.5、0.4、1.2、3.5都是小数。小数中间的点叫做小数点,小数点的左边是整数部分,右边是小数部分。
板书:
0、1、2、3自然数整数
05、04、12、35小数
整小小
数数数
部点部
分分
分别说一说0.4、1.2、3.5的整数部分和小数部分各是多少。
三、想想做做
1:仔细观察图意,说说题目的意思。
照样子填写。
说一说每组3个名数之间的联系和区别
2、3:独立练习。
4:先同桌互说,再全班交流。
5:为什么0右面第一个点上填0.1?1右面第二个点上1.2?
独立填写其他的小数。
教学后记:
学生说很简单,我可不敢掉以轻心,在小数这一块出问题的可多着呢。要不要说意义?
小数的意义的教学设计篇五
《小数的意义和读写》数学教学设计
教学目标
1. 使学生经历认识小数的过程,初步了解小数的含义,会读、写一位小数,知道小数各部分的名称,知道自然数和整数。
2. 使学生在解决实际问题的过程中,培养初步的自主探究、合作交流的意识,感受数学和生活的密切联系,增强学好数学的信心。
教学过程
一、 复习导入,唤起经验
出示:1/2 58 5/12 0.5 1.2 5.8
提问:同学们,知道这些数分别是什么数吗?
谈话:后面的三个数,你平时在什么地方见到过?
学生可能会想到:铅笔芯的规格、眼睛的视力、商品的价格等。
揭题:是的,在日常生活中经常接触到这样的数。它们都是小数,今天我们一起来认识小数。(板书课题:认识小数)
【评析:让学生在给出的几个整数、分数和小数中判断认识哪些数,既自然地引入了新课,又可以激活学生已有的知识经验。让学生交流日常生活中见到过的小数,可以使学生体会小数就在我们的身边,从而产生对数学的亲切感,激起进一步学习的兴趣。同时,也便于教师了解学生的认知起点,更好地开展新课的教学。】
二、 联系实际,探究发现
1. 提出问题。
提问:你想了解小数的哪些知识?
学生可能提出:小数是怎么来的?学了小数有什么用处?小数应该怎样读,怎样写?……
2. 教学第一个例题。
谈话:同学们想知道小数是怎样产生的吗?其实小数就来自我们的生活。先让我们来做这样一个活动:小组合作测量课桌面的长和宽,并用不同的数、不同的单位把测量结果表示出来。比一比,哪个小组想到的表示方法最多。
学生在小组内测量课桌面的长和宽,交流不同的表示方式。教师巡视,并作适当指导。
反馈:你们小组的测量结果是多少?想到几种不同的表示方法?
学生量出课桌面的长是60厘米,宽是40厘米,并用600毫米、60厘米、6/10米等表示课桌面的长,用400毫米、40厘米、4/10米等表示课桌面的宽。(根据学生回答,板书:6分米=6/10米,4分米=4/10米)
提问:除了上面几种表示形式外,你还能用其他方法来表示吗?
如果学生主动想到分别用0.6米、0.4米表示课桌面的长和宽,则让学生说一说是怎样想到的,0.6米和0.4米分别表示什么意思。
如果学生不能主动地用小数来表示,则讲述:其实,6/10米还可以用小数0.6米来表示,0.6读作零点六。(板书:= 0.6米 0.6读作零点六)也就是说把1米平均分成10份,其中的6份可以用0.6米表示。
提问:你能说一说0.6米表示的意思吗?
学生回答后,让同桌间互相说一说。
引导:那么4/10米还可以怎样用小数来表示呢?(板书:0.4米 0.4读作零点四)
提问:0.4米表示什么意思?
再问:那么你知道1分米是几分之几米吗?用小数怎么来表示呢?2分米、5分米、8分米呢?
学生交流时,分别让学生在米尺上指出0.1米、0.5米、0.8米的实际长度。
小结:十分之几米可以写成零点几米。
【评析:采用小组合作的形式,组织学生测量课桌面的长和宽,并用不同的数来表示测量结果,为学生主动用小数表示测量的结果提供了机会,有助于学生体会到测量结果不能用整数表示时,可用分数或小数表示。学生在直观操作、合作交流中,轻松地完成了从“十分之几米”到“零点几米”的认知过渡。教师的教学符合学生的认知规律。】
3. 做“想想做做”第1题。
先让学生弄懂题意,然后把答案填在书上。完成后,电脑出示答案,集体校对。
4. 教学第二个例题。
谈话:昨天三(5)班的李萍同学在育才商店里买了这样一些文具用品。我们一起来看看吧。
出示文具的图片及标价:
铅笔 圆珠笔 笔记本
3角 1元2角 3元5角
提问:一枝铅笔是3角钱,如果用元作单位,是多少元呢?(分别用3/10元和0.3元表示,并读一读、写一写。)
讨论:一枝圆珠笔的价钱是1元2角,怎样用元作单位,用小数来表示圆珠笔的价钱呢?请先在小组里讨论讨论,再说一说你是怎样想的。
反馈时,着重引导学生体会:1元2角是1元多2角,2角可以用0.2元来表示,1元和0.2元合起来就写成1.2元,1元2角可以写成1.2元。(板书:1元2角= 1.2元 1.2读作一点二)
提问:一本笔记本的价钱是3元5角,用元作单位的小数又怎么来表示呢?你是怎么想的?(板书:3元5角=3.5元 3.5读作三点五)
小结:几元几角写成小数就是几点几元。
5. 做“想想做做”第2题。
让学生在书上完成填空,并说一说是怎样想的。
6. 介绍自然数和整数。
让学生自由阅读书本第100页的最后一段,提出不懂的问题。
7. 游戏。
男同学代表整数,女同学代表小数,看到你所表示的数请你站起来。
8 0.2 3.8 0 59 95.4 1 1/4 1.6
【评析:认识几点几是本课教学的难点。为了突破这一难点,教师创设了学生熟悉的购物情境,让学生在具体的情境中经历独立思考、自主探索的过程,结合已有的生活经验体会小数的含义,并在交流中感受思考的快乐,培养了合作交流的意识。这一过程,既面向全体,又尊重学生的个性,使不同层次学生的思维能力都得到相应的发展。】
三、 竞赛激趣,拓展延伸
谈话:我们已经认识了小数。现在我们以小组为单位,一起来进行比赛好吗?
1. 听录音,把听到的小数记录下来。
一只青蛙跳过0.4米的田埂,来到宽16.8米的河面上,踏上了0.2平方米的荷叶,狂叫三声,扑通一声掉进了深3.9米的河里。
2. 做“想想做做”第3题。
出示题目,让学生抢答,并说一说每道题中分数、小数的意义。
3. 回答下面的问题。
一包上好佳,价钱在1元到2元之间,请你猜猜它的价钱是多少?
小组合作讨论后把价钱写在纸上,交流时引导学生用“几元几角”和“几点几元”两种方式表达,并在数轴上分别找出每种可能价钱所在的点。
【评析:采用比赛的形式组织学生练习,可以充分调动学生参与学习活动的积极性,提高练习的效果。】
四、 全课总结
提问:今天你学得开心吗?你有什么收获?
五、 拓展
课件介绍十进分数的发展史和古代数学家刘徽的杰出成就。
【评析:教学中有机渗透数学文化的内容,既使学生了解相关的数学史知识,又激发了学生的民族自豪感。】
小数的意义的教学设计篇六
小数的意义是一节概念课,是在学习了“分数的初步认识”的基础上进行教学的。掌握小数的意义,是这单元教学的重点。本节课是以米尺作为教学小数意义的直观教具,是以长度为单位为例说明小数实质上是十进分数的另一种表示形式。
成功之处:
抓住重点,突破难点。在小数的意义这节课中,如何让学生理解小数的意义是至关重要的。在教学中我分为三个层次进行教学:一是重点教学十进分数用一位小数表示。通过1分米=1/10米=0.1米3分米=3/10米=0.3米7分米=7/10米=0.7米组织学生进行讨论交流,观察分数与小数之间有什么关系,从而使学生初步认识到十分之几的分数可以用一位小数来表示,然后让学生举出像上面这样的例子来进一步认识小数是十进分数的另一种表现形式;二是采用放的形式让学生总结归纳百分之几的分数可以用两位小数来表示;三是采用让学生独立完成的形式总结归纳千分之几的分数可以用三位小数来表示。通过这三个层次的教学使学生认识到分母是10、100、1000的分数都可以用小数来表示。在难点上,对于小数的整数部分为什么都是0的问题,让学生通过发现、思考、交流得出因为1分米、1厘米、1毫米都不足1米,所以小数的整数部分是0,这样小数的意义教学也就达到了预期的教学效果。
不足之处:
对于小数的计数单位为什么是0.10.010.001发现部分学生不理解,在练习题中出现了问题。
再教设计:
1.每个知识点都要让学生不仅知其然,还要知其所以然,这样才不至于留下知识上的死角。
2.加强习题的练习,让学生从多种类型上进一步认识小数的意义,深化对小数意义的理解。
小数的意义的教学设计篇七
教材来源:义务教育教科书,人民教育出版社xxxx年版
教学内容来源:小学四年级数学(下册)第四单元《小数的意义和性质》
教学主题:《小数的意义》
课时:第一课时
授课对象:四年级学生
目标确定的依据:
1.课程标准相关要求
进一步认识小数,会进行小数和分数的转化(不包括将循环小数化为分数)。
2.教材分析
《小数的意义》是人教版四年级下册第四单元《小数的意义和性质》第一节的教学内容,是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。
3.学情分析
本节课探究的内容是日常生活中的实际问题,具有很强的探索性和现实意义,学生学习探究的兴趣会很浓。教学中应因势利导,组织学生在小组中合作探讨,体会抽象和推理的数学思想方法。四年级的学生具备一定的独立思考能力,教学中可组织学生先独立思考,再在小组中相互交流,培养学生的探究品质和能力。
学习目标:
1.通过结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。经历抽象、推理等活动明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2.借助熟悉的十进制关系的现实原型多角度理解小数与分数的关系,通过自学,理解计数单位0.1、0.01、0.001。通过数数的活动,知道相邻两个计数单位间的进率是10。
评价设计:
1、通过说一说,想一想,量一量,小组合作交流,探究出小数的意义,达成目标1。
2、经历自学,数数等活动,独立探究,全班交流汇报,说出小数的计数单位和相邻两个计数单位间的进率,达成目标2。
教学重点:
理解一位、两位、三位小数的意义,知道相邻的两个计数单位间的进率是10。
教学难点:
理解一位、两位、三位小数的意义。
教学准备:
米尺、课件。
小数的意义的教学设计篇八
教材分析:
本单元是在掌握了整数的概念和计数方法后,以及初步认识了分数与一位小数的关系的基础上进行教学的,主要内容是小数的意义和性质,这是系统教学小数知识的开始,结合小数的意义和性质,教学小数点的移动引起小数大小的变化、比较小数的大小、小数与单位换算、求小数的近似数等内容。
一、本单元教学内容:
1、小数的意义和读写法。
2、小数的性质和大小比较。
3、小数点移动引起小数大小的变化。
4、小数与单位换算。
5、小数的近似数。
二、重难点设置:
1、正确理解小数的意义和性质、小数点的位置移动引起小数大小变化的规律。
2、小数与单位换算。
3、小数的近似数。
学情分析:
1、小数在日常生活中有着广泛的应用,为学生的学习过程提供了现实基础,也为教学提供了方便。因此,让学生通过小组讨论等,逐步培养数感,促进学生对知识的理解。
2、教学中,应注重发现知识间的联系和区别,提高学生的知识迁移能力,通过类比和推理加强理解。
3、认识事物的过程是呈螺旋上升的,教学中,应注重几时巩固练习,促进理解。
教学要求:
1、了解小数的产生,理解并掌握小数的意义,会正确读写小数。
2、理解和掌握小数的性质,会正确比较小数的大小。
3、理解和掌握小数点位置移动引起小数大小变化的规律,会对一个数进行不同单位的改写。
4、掌握求一个小数的近似数的方法,会按要求正确求一个小数的近似数。
教学建议:
1、重视基本概念、基础知识的教学。
本单元的一些概念、法则、性质非常重要,是进一步学习的重要基础一定要让学生掌握好。如小数的性质,不仅可以加深学生对小数意义的理解,而且还是小数四则计算的基础。再如小数点位置移动引起小数大小的变化,既是小数乘、除法计算的基础,同时也是学习小数单位换算的基础。这些知识逻辑性比较强,学生学习起来有一定的困难,教学时,要注意根据学生的认知特点,采用适宜的方法帮助学生理解这些知识。
2、注意调动学生已有的知识和经验,促进知识的迁移。
学生在前面所学的小数的初步认识以及整数的有关知识和经验,都可能在本单元的学习中发挥积极的迁移作用。如小数大小的比较就可以将整数大小的比较方法迁移过来。教师应充分利用这些有利条件,激活学生的相关知识基础,促进学习的正迁移,放手让学生自主探索,使学生在学会的同时,学习能力也得到提高。
1、 小数的意义和读写法
第一课时 小数的意义
教学内容 教材第32、第33页的内容及第36页练习九的第1—3题。 课型 新课
教学目标 1了解小数是如何产生的,理解和掌握小数的意义。
2、明确小数与分数之间的联系,掌握小数的计数单位以及它们之间的进率。
3、经历小数的发现、认识过程,感知知识与生活之间的密切联系,体验探究发现和迁移推理的学习方法,激发学生的学习兴趣,培养学生动手实践、合作探究的学习习惯。
教学重点 理解和掌握小数的意义、小数计数单位以及它们之间的进率。
教学难点 理解小数的计数单位以及它们之间的进率。
一、情境导入
老师课前布置了收集生活中的小数的作业,现在谁能给大家说说你都在哪里见过小数?
(学生汇报交流:从商店的价签上、出租车的计价表上、时间上、数学书后面的价格上……)
师:其实生活中还有很多地方需要用到小数。请同学们估算一下,我们教室讲桌的高大约有几米呢?
(学生可能会回答出:1米、1米多等等)
师:下面就请两位同学合作来测量一下讲桌的高(用米作单位)。看看你猜测的对吗?
学生汇报测量结果。
师:在日常生活中,有时测量结果不能用整数来表示,像这样得不到整数结果的例子在生活中还有很多,于是人们想到了用分数或者小数来表示,这样就产生了小数,今天我们就研究“小数的意义”。(板书:小数的意义)
二、自主探究
1、认识一位小数。(课件出示例1)
师:同学们仔细观察这把1米长的尺子被分成了多少份?
生:10份。
师:请同学们想一想,每一份是多长呢?如果用米作单位写成分数是多少米?写成小数又怎样表示呢?
小组合作探究:
(1)学生拿出米尺观察,先比画一下“1分米”的长度。
(2)结合米尺讨论1分米用米作单位,用分数、小数的表示方法。
(3)学生汇报时可能会说出:1分米= 米=0.1米
让学生继续观察米尺,思考这样的3份、7份写成分数、小数各是多少米?
(指名汇报,教师板书)
生:3分米= 米=0.3米 7分米= 米=0.7米
师:仔细观察,你们发现分数与小数的联系了吗?
生1:我发现分数和小数的关系非常密切,可以把分数写成小数。
生2:我发现分母是10的分数可以写成一位小数。
师:请同学们试着说一说,一位小数表示什么呢?
师生共同总结:分母是10的分数可以写成一位小数,一位小数表示十分之几。
2、认识两位小数。
如果把1米长的尺子平均分成100份,那么每份长又是多少米呢?
师:如果用米作单位,写成分数是多少米?写成小数又是多少米?
生:把1米平均分成100份,其中的1份是1厘米,也就是 米,用小数表示为0.01米。
教师根据学生回答板书:1厘米= 米=0.01米
师:引导学生观察米尺,这样的3份、6份写成分数、小数各是多少米?
生:3厘米= 米=0.03米 6厘米= 米=0.06米
师:仔细观察,你们又发现分数与小数有什么联系?
师生共同总结:发现分母是100的分数可以写成两位小数,两位小数表示百分之几。
3、认识三位小数。
师:刚才我们认识了一位小数和两位小数,相信同学们能推想出,如果再把1米长的线段平均分成1000份,每份在尺子上长是多少米?写成分数、小数各是多少米?
生:把1米长的线段平均分成1000份,每份是1毫米,在尺子上长是 米,如果用小数表示为0.001米。
师:如果把6毫米、13毫米用米作单位写成分数、小数各是多少?
生:1毫米= 米=0.001米 6毫米= 米=0.006米 13毫米= 米=0.013米
师:说一说,0.006米、0.013米各自表示的意义。
师生共同小结:分母是1000的分数,可写成三位小数,三位小数表示千分之几。
师:如果把1米继续按上面的方法平均分下去,这样的1份就是 米,写成四位小数就是0.0001米,我们再继续分下去就可以得出五位、六位小数。
三、探究结果汇报
师:上面的例子各是把1米平均分成多少份?
生:10份、100份、1000份……
师:这样的一份或几份用什么样的分数来表示?
生:十分之几、百分之几、千分之几……
师:这些分数写成小数分别是多少?
生:0.1、0.01、0.001……
师:你能用一句话说说什么是小数吗?
师生小结:分母是10、100、1000……的分数可以用小数表示。
师:十分之几、百分之几、千分之几这些分数的计数单位分别是什么?这些计数单位用小数表示分别是多少?
生:十分之一、百分之一、千分之一都是分数单位,而分数与小数又有密切的关系,所以小数的计数单位也是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……(板书)
师:观察米尺回答,可以小组讨论,议一议。
(1)0.1里面有个0.01米。0.01里面有()个0.001米。
(2)小数每相邻两个计数单位间的进率是()。
师:刚才我们已经看到了0.1米里面有10个0.01米,也就是0.1的10倍,我们就说0.1和0.01之间的进率是10,,0.01里面有10个0.001米,也就可以说0.01和0.001之间的进率是10,用一句话可以怎么概括?
生:每相邻两个计数单位之间的进率是10.(板书)
四、师生总结收获
师:通过本课的学习,同学们有哪些收获?
生1:我知道了分母是10、100、1000的分数可以用小数表示。
生2:小数每相邻的两个计数单位之间的进率是10.
师:除了数学知识方面的收获外,在数学思想和方法方面呢?
生1:分数和小数可以互化,这是数学的转化思想。
生2:认识小数时,借助了米尺,这是数学的“数形结合”思想。
生3:我知道了数学可以类比推理。
五、板书设计
小数的意义的教学设计篇九
《小数的产生和意义》是在三年级《分数的初步认识》和《小数的初步认识》的基础上教学的。这一内容,既是前面知识的延伸,也是系统学习小数的开始。要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识是本节课应达到的知识教学目标。对比教学设计和上课的实际效果我有如下想法。
1、猜数导入,将学生注意力引向课堂。
课始当我打开课件,呈现的.是一个由多个长方形组成的一个大长方形,学生们马上就兴奋了。“老师,这是什么啊。”“老师,这下面有什么啊。”我说:这个长方形下面有一个很特别的数看看谁能猜出来。当一个个小长方形不断飞走数字一步步凸显一直到8.9这个数出现学生都处于兴奋状态。就此很顺利的引入了小数课题。这个环节也表明:兴趣是最活跃的心理成分。当学生对某种事物发生兴趣时,他们就会主动地、积极地、执着地探索。
2、注重方法渗透,引导学生探究
本节课中,在教学1分米=1/10米=0.1米时前我增加了让学生在熟悉的人民币单位背景中探究分数与小数的联系这个环节。具体的作法是:(1)出示一张一元的人民币问:谁能从中拿出一角钱。有学生说去买九角钱东西就还剩下一角钱;有学生说把这一元钱换成10角钱再拿一角就行,我请这个学生上台示范给大家看。然后再问:一角钱用元作单位用分数怎么表示,用小数怎么表示。学生很快写出了1元=1/10元=0.1元(2)我又拿起一张一角的人民币问:谁能从中拿出一分钱。将上一个环节重复。学生又写出了1分=1/100元=0.01元。渗透了这种等量替换思想后让学生自学书上关于1分米=1/10米=0.1米……内容。让学生感悟十进制分数与小数之间的联系,进而鼓励学生在学习过一位小数的基础上,让学生迁移、类比认识二、三、四位小数。最后让学生自己归纳抽象出十分之几、百分之几、……可以写成一位小数、二位小数……,使学生顺利地从直观思维过渡到抽象思维。
3、不足或困惑
小数意义这一课属于概念教学,如何让学生建立准确的概念,尤其是在探索小数的意义这一环,本来用熟悉的米尺让孩子去直观认识,应该为学生实实在在的创设一片自主探究的天地,而我是一路“扶”着孩子走过来的,没有把学习主动权真正交给学生,因为自己最怕上的就是要带着学具,希望学生能够小组合作进行操作探究的课,学生一操作,就要花费很多时间,这样练习时间往往不够。如何引导全体学生自主探究,并且能够在操作中领悟到一些什么,而且还有一些练习的时间,那该多好!