最新简易方程教学反思苏教版(五篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
简易方程教学反思苏教版篇一
1、在学习中,我以天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉比较抽象,我引导学生在反复操作中理解加、减一个数的目的和依据。
我在天平的左侧放5克砝码,右侧也放5克砝码。(抛砖引玉)
2、学生亲自动手反复不断的进行操作。(学生动手操作)
在此基础上,我再做进一步的引导。
活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。
3、教师:请同学们都想一想,如果天平两侧都减去相同的质量,天平会出现什么现象?你能列出几个这样的方程吗?(学生同桌之间通过充分地交流,反馈交流结果,学生得知,如果我们把天平作为一个等式(当天平平衡时)的话,等式的两边都减去同一个数,等式仍然成立。通过引导,学生能完全得出了等式的性质。最后我们通过学生自己的整理和总结,把以上发现的性质合二为一。得出:等式的两边都加上(或减去)同一个数,等式仍然成立。
在课堂上学生对用等式的性质来解方程感到很陌生,在他们原有的经验中更喜欢用加减法各部分的关系来解,所以我们要特别注意引导学生认识到用等式的性质来解方程的优越性,从而养成用等式的性质来解方程的习惯。
在整节课的教学中,其实学生是非常主动的,他们总觉得天平能启发着他们去解决这么神奇的方程,孩子们对方程都有一种难以割舍的好奇心。
告诉学生利用等式的性质来解方程熟练以后特别快。同时强调书写格式。通过教学,学生利用等式的性质学生能解决简单的方程,但我认为利用等式性质解方程的方法单一化,内容虽少问题很多。其表现在:
1、从教材的编排上,整体难度下降,有意避开了形如:66—2方程=30等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现方程在后面的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出方程在后面的方程吗?我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受——解答方程在后面这类方程的解答方法,就是等号二边同时加上方程,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。
2、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可实际上反而是多了。教师要给他们补充方程在后面的方程的解法。要教他们列方程时怎么避免方程在后面这样方程的出现等等。因此,我干脆就又把原来的老方法交给同学们,以便备用或请他们根据具体情况选择适当的解题方法。
3、我个人认为:现行教材的某些地方还有待于进一步的改进与完善。
简易方程教学反思苏教版篇二
在这节课的教学中,我从以下几个方面入手:
在学习中,我以多媒体中天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。
在课堂上学生对用等式的性质来解方程感到很陌生,在他们原有的经验中更喜欢用加减法各部分的关系来解,所以我们要特别注意引导学生认识到用等式的性质来解方程的优越性,从而养成用等式的性质来解方程的习惯。
在整节课的教学中,其实学生是非常主动的,他们总觉得天平能启发着他们去解决这么神奇的方程,孩子们对方程都有一种难以割舍的好奇心。
新课程的改革,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法虽然说让方程的解法找到了本质的东西,但是也让我感到了许多困惑
1、从教材的编排上,整体难度下降,有意避开了,形如:45—方程=23 24÷方程=6等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现方程前面是减号或除号的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出方程在后面的方程,我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受——解答方程在后面这类方程的解答方法,就是等号二边同时加上方程,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。
2、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充方程前面是除号或减号的方程的解法。要教他们列方程时怎么避免方程前面是除号或减号的方程的出现等等。
简易方程教学反思苏教版篇三
人教版五年级上册《解简易方程》这个单元中,教材是通过等式的基本性质来解方程,这个方法虽然说使得小学的知识与初中的知识更加的接轨,让方程的解法更加的简单。从教材的编排上,整体难度下降,对学生以后的发展是有利的。但是教材中故意避开了减数和除数为未知数的方程,如:a-x=b或a÷x=b,要求学生根据实际问题的数量关系,列成如x+b=a或bx=a的方程。这样的处理方法,有时也会无法避免地直接和方程思想发生矛盾。例如“爸爸比小明大28岁,小明х岁,爸爸40岁。”很多学生列出了这样的方程:40-х=28,方程列的是没有任何问题的,但是应该怎么解呢?允不允许学生用四则运算各部分的关系来解方程?是否该向学生讲解方法?还是让学生把此方程改成教材要求的那样的方程?如果要改成教材要求的方程,那就是在向学生传达这样的思想:这样的列法是不被认可的,那么以后在学习“未知数是减数和除数的方程”时,学生的思维不就又和现在冲突了吗?现在学习的节方程中,学生很容易看见加法就减,看见减法就加,看见乘法就除,看见除法就乘,如把30÷ⅹ=15的解法教给学生,能熟练掌握并运用的学生很少,对大部分学生来说越教越是糊涂,把本来刚建构的解方程方法打破了。如果不安排,那么每次在出现的时故意回避吗?
在教学列方程解加减乘除解决问题第一课时,我是这样处理的。先出示做一做的题目,这题更接近学生的实际,学生也能更好理解数量关系。小明今年身高152厘米,比去年长高了8厘米。小明去年身高多少?先让学生读题理解题目中有哪几个量?引导学生进行概括,去年的身高、今年的身高、相差数。追问:这三个量之间有怎样的相等关系呢?
去年的身高+长高的8cm=今年的身高
今年的身高-去年的身高=长高的8cm
今年的身高-长高的8cm=去年的身高
你能根据这三个数量关系列出方程吗?学生尝试列方程。几乎全班学生都是正确的。
x+8=152 152-x=8 152-8=x
追问学生你对哪个方程有想法?学生一致认为对第三个方程有想法?生1:这个根本没有必要写x,因为直接可以计算了。生2:x不写,就是一个算式,直接可以算了。我肯定到:列算式解决实际问题时,未知数始终作为一个“解决的目标”不参加列式运算,只能用已知数和运算符号组成算式,所以这样的x就没有必要。接着让学生解这两个方程x+8=152 、152-x=8方程。学生发现152-x=8解出来的解是不正确的。告诉学生减数为未知数的方程我们小学阶段不作要求,所以你们就无法解答了。接着,我再引导学生观察这三个数量关系,他们之间有联系吗?其实减法是加法的逆运算,是有加法转变过来。因此,我们在思考数量关系时,只要思考加法的数量关系,这是顺向思维,解题思路更加直截了当,降低了思考的难度。接着只要把未知数以一个字母(如x)为代表和已知数一起参加列式运算x+b=a,体会列方程解决问题的优越性。这就是我们今天学习的一种新的解决问题的方法——列方程解决问题。
接着用同样的教学方法探究bx=a的解决问题。
我这样的教学不知道是否合理?其实小学生在学习加减法、乘除法时,早就对四则运算之间的关系有所感知,并积累了比较丰富的感性经验。要不要运用等式的性质对学生再加以概括呢?
简易方程教学反思苏教版篇四
今天早上在库沟小学听了张福华老师的《简易方程的整理和复习》这节复习课。这是我第一次听复习课,以往只是从教学策略上了解复习课的教学流程,当今天真真正正的倾听了一节复习课后,感受颇深,所学甚多,只奈何有言吐不出,下面就简单说一些听完这节课的体会。
首先,张老师的语言简练干脆,善于利用名言名句。
在课的开始,大屏幕上就展示出了俄国乌申斯基的一句话:“装着一些片段的,没有联系的知识的头脑,就像一个乱七八糟的仓库,主人从那里是什么也找不出来的。”这句话的展示,让学生一下子就了解了整理的重要性,也了解了这节课的目的所在。在回顾整理,构建网络这一环节,张老师在让学生自己看课本例题的知识点时又说了一句“不动笔墨不读书”,提醒了学生看例题时可以适时的进行批画,将遗忘的知识点突出显示出来。在课的最后又课件展示了韦达和爱因斯坦的名言警句。
其次,目录归纳知识点,清楚明了。
我想所有的老师都会头疼复习某一单元或某一册课本时知识点的归纳,只奈何没有更好的方法可以把所有知识点系统的展现给学生。本节课张老师的方法让我眼前一亮,目录展示法,让所有知识点的区别和联系清楚的摆了出来,方便了学生的回顾和整理。
最后,练习充实有趣,层次分明。
闯关形式的练习提高了学生的积极性,激发了学生的好胜心。在一,二,三的闯关中,依次将基础知识点,重难点进行了练习,稳固。学生在回答闯关的答案时,张老师经常会问一个为什么,引导学生对知识点进行再回顾。例如,在一名学生回答bx8等于8b时,问为什么不是b8?在学生回答axa=a的平方时,问为什么不是2a?看似不经意的询问,却巩固了细微处的知识点。
当然,张老师的课还有许多值得我学习的地方。例如,创设了有效地复习情景,亲和力强,能及时唤起回忆,将零散的知识系统化等等。通过这节课,让我更清楚的了解了复习课的教学模式,对以后上好复习课有了更多的信心。
简易方程教学反思苏教版篇五
出示例题:6x-6.8×2=20
师:请你观察一下这道方程和我们原来所学的方程有什么不一样?
生:它比原来多了一个6.8×2。
生:它比我们原来所学的方程多了一步运算。
师:你回答的非常好,这个方程比刚才解答的方程要多一步计算,这就是今天要学习的解简易方程。(板书课题)
评析:
“一切真理都要让学生自己去获得,由他重新发明,而不是草率地传递给他。”为此,我在教学中通过让学生对新旧知识进行比较,让他们自己去获取新知。继而在教师的引导下尝试求6x-6.8×2=20的解。
我知道在前面已复习了ax土bx=c的方程,为推导求ax土b=c(b表示两数的积)的方程作铺垫;例题不但承接了上节课的内容,而且引出了本节课的新内容。这两道题,帮助学生找到新旧知识最近的连接点,为新知的学习做好铺路架桥的工作。
教学实录:
师:这道题是6x减去什么的差等于20,你觉得这道题开始要怎样解?
生:应先算6.8×2。
师:为什么要先算6.8×2?
生:因为前面是减法,后面是加法,我们应该按照四则混合运算的顺序先乘后减,所以要先算6.8×2。
生:先算6.8×2就可以使方程变为6x-13.6=20,又回到了我们原来所学的方程。
生:因为在这条方程中6.8×2可以先算出来,所以要先算。
师:这两位同学很会动脑筋也都观察的非常仔细。解这个方程时,按运算顺序能先算的一步就要先算出来,然后再求方程的解,其中又把6x暂时看做一个数。
师:现在就请一位同学上黑板来演示一遍,看这样算行不行?其他同学也请自己在下面试试看。
同学们踊跃地举起了手。
师:你们觉得他做的对吗?做的完整吗?
生:我觉得他做的是对的,我也做到这么多。
同学们都在那里点头称是。
师:再仔细看看!
同学们感到很疑惑,一个个皱紧了眉头。沉默片刻,突然有一只小手举了起来。
生:他的答案是正确的,但是我觉得他做的不完整。
学生被这个说法吸引了起来,顿时三三两两地举起了手。
生:因为他还没有检验。
师:你们同意吗?
生齐答:同意。
师:对了,在解方程时我们一定要养成自觉检验的习惯,以此来检查方程的解对不对。
让学生在自己的本子上边回忆边检验,然后同桌互相检查检验的过程。
第一层:操作尝试,理解概念
为了让学生更好地掌握怎样去解答ax土b=c(b表示两数的积)的方程,我让学生自己去探究。
第二层:潜移默化,推导方法
有了上一层的前提教学,在这一层,我就可以放手让学生尝试解答例题了。并提出问题你觉得这道题开始时要怎样去解?为什么?该怎样检验方程的解?
其实这些“想”的过程正是教师要教的过程,也是学生解题的的思考过程。这些自学提纲充当了学生自学的“领路人”,学生通过提示,再思考该填上的内容,新知识便顺利地掌握了。