2022年商的近似数教学反思(八篇)
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
商的近似数教学反思篇一
本节课教学用”四舍五入”的方法求一个小数的近似数。教材以地球和太阳之间的距离为素材,设计了三个问题组织学生进行探索。先通过例1,引导学生用“四舍五入”的方法把1.496精确到十分位,再通过例2,引导学生用同样大方法把1.496精确到百分位,然后引导学生比较上面求出的两个近似数,理解保留的小数位数越多,求出的近似数越精确。教材安排“试一试”与例题不同的是,这里取近似数的过程中需要把百分位舍去。并引导学生总结和归纳求小数近似数的方法。
教学中引入生活实例,通过探究、互动、总结、归纳等活动,让学生掌握求小数的近似数的方法,要注意结合具体情境求小数近似数,让学生体会数学的应用价值。
教学重点:求小数近似数的方法。
教学难点:理解保留的小数位数越多,求出的近似值越精确。
目标预设:1、会根据要求用“四舍五入”的方法求一个小数的近似数。
2.使学生初步了解求一个小数的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。
3、进一步理解和掌握所学的知识,体会数学在日常生活中的广泛应用,感受数学的文化价值。
学生经验:学生已经掌握了把大数目改写成整万、整亿数和整数近似数的知识,为本节课求一个小数的近似数奠定了基础。
教学准备:小黑板
教学过程:
昨天老师到银行办事,听见一位老爷爷和储蓄员在争论着。原来老爷爷的利息单上写着税后利息:9.547元,储蓄员付给爷爷9.5元,爷爷硬要9.6元,你觉得付多少比较合理?
学生回答后,问这个数据是怎么得到的?
今天我们学了求一个小数的近似数之后,你就会解决生活中这类现象了。(出示课题)
1.把下面的叙述换一种说法:
(1)1999年全国有小学生145371600人。也可以说:1999年全国大约有小学生(万)人。
(2)光的传播速度是每秒钟299800千米。也可以说:光的传播速度大约是每秒钟(万)千米。
2.下面的□里可以填上哪些数字?32□645≈32万 47□05≈47万
(1)独立完成。
(2)校对答案。
(3)说说求近似数的方法——四舍五入法。
板书:求近似数一般用四舍五入法
(一)、出示例题:
例1.地球和太阳之间的平均距离大约是1.496亿千米。
接着明确要求:
精确到十分位是多少亿千米?
精确到百分位是多少亿千米?
精确到整数是多少亿千米?
然后让学生进行独立思考,发表意见,说出结果及想法。
1、精确到十分位
思考:精确到十分位就是要保留几位小数?
(1)学生独立探索。
(2)小组交流。
(3)反馈:要保留一位小数,就要省略十分位后面的数,要看百分位上的数。百分位上的9满5,进一。
1.496亿千米≈1.5亿千米
讲解:精确到十分位,就是保留一位小数。
2、精确到百分位
(1)独立完成
(2)组织交流。
精确到百分位就是要保留两位小数,就要省略百分位后面的数,要看千分位上的数。千分位上的6,省略尾数后向百分位进1。百分位上9+1=10,满十又要向前一位进一。
1.496亿千米≈1.50亿千米
问:近似数1.50末尾的0能去掉,为什么?
学生讨论:明确:不能去掉,去掉就不符合要求了。
教师总结:0不能去掉,它起到占位的作用。
3、比较精确度。
问:1.5和1.50哪个更精确?
学生讨论后汇报想法。
想法1:1.5是精确到十分位的结果,1.50是精确到百分位的结果,所以1.50比1.5更精确。所以1.50末尾的0不能去掉。
想法2:近似值是1.5的两位小数在1.45-1.54之间,而近似值是1.50的三位小数在1.495-1.504的范围更大,所以1.50比1.5更精确。
4、精确到整数
(1)独立完成
(2)组织交流。
精确到整数就要省略百分位后面的数,要看十分位上的数。十分位上的4,
省略小数点后的尾数。
5、教学“试一试”
学生独立解决,集体订正。
引导学生比较与刚才例题的区别,进一步明确什么时候应四舍,什么时候应五入。
(二)小结:
教师提出问题:求小数近似数应注意什么?
引导学生讨论知道:求一个小数的近似数要注意两点:
(1)要根据题目的要求取近似值,
如果要保留整数,就要看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是舍还是入。
(2)取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉。
(三)、教学“练一练”
学生独立解决,集体订正。
电评时引导学生在两方面进行比较:
(1)按不同精确要求求近似数的比较。
(2)取一个数的近似数与把一个数改写
成以“万”或“亿”作单位的小数的方法的比较。
第二小题练习完毕后,再要求学生把改写后的小数和求出的近似数分别放入原来的语言环境中读一读、比一比,体会到用“万”作单位的小数及其近似数的应用价值。
1.填空:
① 求一个小数的近似数,要根据需要用()法保留小数数位.保留整数,表示精确到()位;保留一位小数表示精确到()位;保留两位小数表示精确到()位……
②近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了()位,6表示精确到了()位,所以6.0后面的“0”不能丢掉.
2.判断题(用手势表示“√”或“×”)
①3.97精确到十分位是4.0。()
②把9.996精确到百分位是10.00。()
③8和8.0的大小相等,它们的精确度也相同。()
④在表示近似数时,小数末尾的0应该去掉。()
3.“练习七”第五题。
(1)学生独立完成
(2)教师检查反馈。
说明:把王强身高精确到百分位,体重精确到个位,让学生体会到实际应用中要根据需要来确定近似数的精确程度。
4、“练习七”第6题。
(1)组织学生观察、比较,说说哪组的两个数是等值。哪组的两个数是近似。
(2)独立填写后再组织汇报交流。
5、“练习七”第7~8题。
学生独立审题并解答。
6、解决前面的问题。在实际生活中,9.547元≈()元
5.小数的近似数在我们生活中应用非常广泛,请同学们课余留心观察,看什么地方有了小数近似数,下节课来大家交流。
“练习七”第4题。
今天这节课你有哪些新的收获?还有什么要提醒同学们注意的地方吗?
1、探索是数学的生命线,没有探索就没有数学的发展。课始,先让学生明确探索的目标,给学生以思维的方向。课中,引导学生从求整数的近似数迁移至小数,使学生的探索思维多角度、多层次展开,在学生探索的过程中学习数学、理解数学,从而感受到数学的魅力。
2、新课程注重强调学生的主体地位。但是我认为在特定的课堂时空中,要让没有多少探索经验和能力贮备的学生完全自主地“找”出求小数近似数的方法,也实在有些勉为其难。
因此,在课堂教学中我注意适度地加以引导,做到了放得“开”,收得“拢”;放得适度,收得自然。
既尊重了学生的主体地位,又张扬了学生的个性,同时有效地完成了课堂教学任务。
商的近似数教学反思篇二
《商的近似数》是堂新授课。但是我们已经学过积的近似数,于是我尝试让学生自己完成例题,并由学生来完成讲解,尝试效果如何。
1、问题的生成是学生亲身经历的,而不是教师提供的。
当学生在计算150÷44的时候,碰到了一种现象“除不尽”。这在以前的小数除法中没有出现过,与学生原有的认知产生了冲突,形成了问题。这是其自己发现的,很自然便会产生一种自己尝试解决的迫切欲望。这无疑为引导学生自主探究解决问题奠定了良好的心理基础。
2、解决问题策略的多样性,体现了学生自主探究的成果。
当问题产生以后,解决问题便成为了学生学习的目标。但由于教师没有提供解决问题的统一方法,学生缺少了模仿和依赖的基础,整个探究空间也有了比较大的自由度。学生既可以结合已有的知识经验去解决这一问题,也可以“创造”出一种新方法来解决。当然,也出现了一些思路是正确的,结果却是错误的情况。但无论怎样,这是学生经过了一番思考后产生的一些想法,也是真正意义上的“解决问题策略的多样性”的典型表现。
3、问题解决的过程也是一个学生评价与反思的过程。
学生在展示自己独特的解决问题的方法和策略的同时,他们同样也关注别人解决问题的方法或策略。当别人的方法与自己不同时,学生自然会产生“为什么他的方法与我的不一样”、“我的方法到底有没有问题”等想法,从而促使其反思自己的做法。
总的看来,我在本节课的教学中,引导学生充分经历了问题的生成和解决过程,突出了学生在问题生成和解决过程中的主体作用,收到了良好的效果。
商的近似数教学反思篇三
《用四舍五入法把数改写成用“万”作单位的数》,这节课并不简单。学生既要学会四舍五入法,又要学会用四舍五入法对数进行改写,而且还并非仅仅是课题中所写的改写成以“万”作单位的数,还需要根据要求改写成以“千”、“百”等作单位的数。而教材的编排意图显然是充分利用学生前面学过的把整万的数改写成“万”作单位的数的经验,力图让学生经历先把一个大数用四舍五入法省略万后面的尾数求出近似的整万数,再改写成用“万”作单位的数的过程。显然,前面的过程是关键。而四舍五入法,四舍比较简单,难的是五入。
从课堂反应及学生的作业批改来看,学生对这一课的掌握情况很不好,出现了一些问题。如:反思学生出现的问题,我觉得是因为我的教学不够严谨、细致,才导致问题的面这么多而广。
原因一、 没有激发部分学生的兴趣
原因二、 上课内容比较抽象,后进生难以理解,故此没能投入学习互动中来。
改进后,二次教学设计。
汽车价格是193500元,558800,( ),( )
理清几个概念。
1、什么叫尾数?1389567万位(千位、百位)后面的尾数分别是什么?
2、“省略”是什么意思?是像语文里讲的一样直接省略不写吗?(区别语数中“省略”一词概念的不同)
3、那么,什么情况下直接舍去尾数,什么情况下要向前一位进1呢?关键看哪一位?
4、辩证思考:193500为什么不看成20万?558800为什么不看成55万?
5、拓展:怎么改变这个价格,使它能约等于55万?
预设:生1“千位上改成4、3、2、1、0”,师追问“百位、十位、个位上的数呢?最大是多少?最小是多少?”
生2:万位上改成4,千位上改成5、6、7、8、9。
师板书各情况,并追问“百位、十位、个位上的数呢?最大是多少?最小是多少?”
小结:约等于55万的数,最大的是四舍得到的554999,最小的是五入得到的545000。
6、完成作业本第6页第5题。
7、完成练习二。
一步一步地使学生明白“把12756省略万位后面的尾数求近似数,就是把1后面的尾数都去掉,并写0占位,写成10000,但是题目要的是“万”做单位,所以还要把10000改写成1万。这样就使得学生对求近似数的每一步的用意都有一个清楚的认识。
通过这节课的反思,我认识到教学一定要顺应学生的认知特点和过程来进行,每一步的设计一定要从学生的角度来思考,从教学的重难点来分析。那种“填鸭式”的教学方式,不仅苦的是学生,害的是学生,其实受害最大是老师,因为课后你得利用更多的时间来辅导那些知识上有缺漏的学生。
商的近似数教学反思篇四
这节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法——四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解“保留几位小数;精确到什么位;省略什么位后面的尾数”这些要求的含义;表示近似数的时候,小数末尾的“0”必须保留,不能去掉;连续进位的问题。
从生活出发,让学生感受数学与实际的联系
在创设情境环节,结合教科书的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。
注重过程,让学生在探索中学习
在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0.984≈0.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.984≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。
虽然求小数的近似数的方法与整数的近似数相似。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。
课堂也存在一些问题:
一些基础差的学生在求小数的近似数时却还是遇到了一些困难。最典型的就是他们忘了精确到哪一位,以为精确到哪一位就是看哪一位。还有些同学甚至“连环进位”,让他保留两位小数,他就把千分位、百分位、十分位的数都往前进一了。这不仅说明这些同学基础差,还说明了反馈练习的重要性。如果没有反馈,我们就不知道每个学生的课堂学习效果,也就不能帮助接受能力弱的同学,提升有巨大潜力的学生了。
商的近似数教学反思篇五
本节课的内容是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数。本节课的教学重点是理解保留整数、保留一位小数、保留两位小数的含义。教学难点是近似数的连续进位问题。
1.复旧引新,沟通前后知识间的联系。课始出示:把下面各数省略万后面的尾数,求出它们的近似数986413 35628 65214 90088 ,目的是让学生温故而知新,减少学习中的盲目性,提高课堂教学效率。
2.联系生活实际,体会数学与生活的联系。结合主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。
3.深刻体会保留保留几位小数的含义。通过学习,使学生体会到保留一位小数就是精确到十分位;保留两位小数就是精确到百分位;保留整数就是精确到十分位。
4.重点比较2.5和2.50的区别。通过在数轴上的取值范围,使学生体会到2.5的取值范围在2.45~2.54,2.50的取值范围在2.495~2.504,虽然大小相等,但是精确度不一样,2.5表示精确到十分位,2.50表示精确到百分位。
1.学生对于保留整数就是看十分位上的数是否满5,但对于精确到十分位就是保留整数的逆向理解有些困难。
2.对于典型题中形如9.956保留整数、保留一位小数,学生还是存在不知如何进位的问题。
1.加强保留整数、保留一位小数、保留两位小数的含义的逆向理解,使学生深刻体会保留几位小数的含义。
2.加强典型易错题的练习,消除学习中易出错、易混淆的问题。
商的近似数教学反思篇六
您现在正在阅读的小学数学《近似数》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!小学数学《近似数》教学反思《近似数》是义务教育课程标准实验教科书数学二年级下册第77页的内容,学生在学校本内容之前,已经学校过简单数的估数,以及100以内加减法的估算,学生基本能理解大约、左右、大概等词的意思,并且已经学习了万以内数的读写法,数的组成。这些知识构成了本节课的学习基础。
我的教学处理是这样的:首先提示我口袋上的钱大约是100元、我们学校学生总数约是310人,让学生猜钱的数量和学生的总数,在猜出结果基础上,告诉学生像102元、313人这些数,它们准确地反映了事物的真实情况,可以把它们叫准确数,而100、310接近真实情况的数,称为近似数。再让学生思考,我们生活中,你还遇到哪些数,它们是准确数,还是近似数?在学生说一些准确数和近似数之后。让生思考近似数有什么特点,又有什么作用?
课堂设计的板书如下:
近似数
准确数: 近似数:
102元100元
313人310人
41人 40人
9992人 10000人
近似数接近准确数,近似数一般是整十、
整百、整千、整万的数,所以较容易记忆。
在练习过程中,我发现学生存在几个问题:
1、学生没有真真切切地体会到近似数的特点与作用。比如说对于603米,有的学生的答案是约为601、602米。
您现在正在阅读的小学数学《近似数》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!小学数学《近似数》教学反思2、学生没有很好地理解近似数可以有多个。
3、学生没有能正确地进行估数,比如练习洗衣机售价为1198元,约是多少元?这题,很多学生就回答约是20xx元。
4、对于较大的数,学生比较难理解接近的程度,比如说:9019人,学生一般估成3020人,或9010人;学生根本没有想到9000人。教师讲解后,我模糊地听到有学生说9000与9019相差了19,不能算接近了吧
为什么会出现如此多的问题呢?回顾我的教学过程,我发现对于近似数的特点,教授得并不透彻,而且好像没有正式地提到近似数可以有多个。所以如果上课时,我有意识地注意到这些细节,也许就可以避免出现第一和第二个问题。
第三和第四个问题出现的原因,我觉得可能是一样的,那就是学生还没有体验到较大的数在生活中的应用、无法准确地把握大数之间差距的程度究竟有多大,如:学生可能知道9019与9000相差19,却无法体会到19对于这两个数而言,这个差距是很小的。
如果重新教授本课,我该如何处理,才能很好地解决这些问题呢?也许通过学生交流、讨论,教师小结,可以很好地解决第一和第二个问题;而第三个问题,可以通过一百一百地从1200数到20xx,发现之间的差距有800之多,并顺势提醒,近似数跟准确数是接近的。但第四个问题,目前,我真想不出很好的办法来解决。
记得吴正宪老师教授三年级《估算》一课,吴老师的课堂设计很好地贴切了生活的需要,如生活中什么时候需要估数、估算?什么时候需要估大,什么时候需要估小等等。在吴老师的精心设计下,学生的学习效果是很好的。《近似数》一课的设计,是否也应该体现从生活中来,到生活中去的原则呢?设计的教学内容与环节,应该贴切生活中的需要呢?从而让学生在将知识应用于生活问题过程中,很好地理解数差距的程度是大,还是小呢?
路漫漫其修远兮,吾将上下而求索。
商的近似数教学反思篇七
1.情境化导入,引发学生的兴趣。
教学新知时,利用豆豆身高的近似数来引入:豆豆的身高是0.984 m,三位同学的回答不同,通过说法的不同引出争论。通过引导,让学生在合作交流、自主探究、小组交流中把思维充分暴露出来,加深学生对用四舍五入法求小数的近似数方法的理解。
2.给学生充分展示的机会。
学生理解了保留几位小数的含义:保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数……尽量让学生自己说出这些语句,小结后让学生熟读。通过让学生试着把豆豆的身高保留两位小数、保留一位小数、保留整数,这样逐步过渡,让学生找出求一个小数的近似数的方法。
3.通过质疑,引发思考。
在比较近似数1.0与近似数1谁更精确些时,通过提问,引发学生思考,从而使学生明白近似数末尾的0不能省略的道理,突破难点。这样的设计使学生在真正理解和掌握基本的数学知识与技能、数学思想和方法的同时,获得了广泛的数学活动经验,为学生的全面发展提供了更多的机会。
同学们出现较多的问题是不能准确写出符合要求的小数:比如4.985要求保留两位小数,错写成一位小数。还有,学生对小数不同数位的对应位置还不够熟练。
再次教学中,要立足于学生的主体发展,引导学生思考,纠正学生错误,通过巩固练习使学生加深对小数不同数位的对应位置的理解,提高做题的正确率。
商的近似数教学反思篇八
《新课程标准》指出:数学教学是数学活动,教师要紧密联系学生的生活环境,从学生的经验和已有的知识出发……学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。这一理念教师们都已知道,而家长们却不是很清楚,在辅导孩子学习时经常是脱离生活而纸上谈兵。本节课的教学是专为我校家长开放日而设计的。要求学生能根据要求用四舍五入法求小数的近似数,进一步掌握四舍五入法,丰富所学知识。我的设计分如下几个环节:⑴创设情景、揭示课题⑵复习铺垫,促进迁移;(3)自主探究、合作交流(4)独立学习,掌握知识。⑸畅谈收获,体验成功。
创设情景、揭示课题
师:昨天老师到银行办事,只见一位老爷爷和银行工作人员在争论着。原来老爷爷的利息单上写着税后利息:9.547元,银行工作人员付给爷爷9.5元,爷爷觉得不合理,两人发生了争论。你能判一判:付多少利息钱给爷爷比较合理呢?
生一:我认为应该付给爷爷9元5角4分,因为人民币的单位有只有元、角、分,第三位小数应该省略。
生二:我有不同意见。第三位小数是“7”,它比5大,如果直接省略不妥当,,应该向前一位进1,所以应该付给爷爷9元5角5分。
师:现在存在分歧了,你能谈谈你的处理意见吗?
(学生交流片刻,一致认为应该付给爷爷9.55元)
生三(若有所思):我听说人民币还有比分更小的单位是厘。不过我没见过几厘钱。
师:你真是个见识多广的孩子。确实,生活中有“厘”这个单位,1分=10厘。由于这个单位太小了,在实际生活中很少用到它。
生四:我发现在买东西的时候也没有用到“分”了,都是几元几角了。
师:你确实很会观察。现在,随着国民经济的发展,人们的消费水平提高了,“分”这个人民币单位几乎从生活中取消了。平时涉及到“分”时,一般都“四舍五入”到“几角”了。
生五:那我觉得应该付给爷爷9元5角钱。
生六:我认为应该付给爷爷9元6角钱。
群生一:9元5角
群生二:9元6角(声音越来越大,争论得面红脖粗)
师:好!争吵总该有个说理依据。今天我们学了求一个小数的近似数之后,你就会非常轻松地解决生活中这类现象了。(出示课题:求一个小数的近似数)
数学的兴趣和学习数学的信心对学生来说是十分重要的问题,教师就应该将学生的生活与数学学习结合起来,让学生熟知.亲近.现实的生活化的数学走进学生视野,进入数学课堂,使数学教材变得具体.生动.直观,使学生感悟,发现数学的作用与意义,学会用数学的眼光观察周围的客观世界,增强数学作用意识。为了创设更好的教学情境,了解教材内容体系,了解学生的兴趣爱好,应选择既贴近学生生活,又紧扣教材知识内容的实际问题作为情境,这里从学生熟悉的“存钱得利息”生活情境中引入,在讨论、说理的过程中,让学生初步感知学“求小数的近似数”是生活所趋。把它作为实际背景来区分准确数和近似数容易被学生所接受,使学生感受数学与人类的密切联系,体会数学的价值、增强用数学的意识和学好数学的愿望和信心。
自主探究、合作交流
例1.李明在运动会中的跳远成绩是2.953米,你知道他跳远成绩的近似数是多少吗?
接着明确提出要求:
1.保留两位小数2.保留一位小数3.保留整数
然后让学生进行独立思考,发表意见,说出结果及想法。
1、保留两位小数
师提示思考:保留两位小数要看哪一位上的数?
(1)学生独立探索。
(2)小组交流。
(3)反馈后总结:要保留两位小数,就要省略百分位后面的数,要看千分位上的数。运用四舍五入法,“千分位上的3不满5,舍去。
2.953≈2.95
师讲解:保留两位小数,表示精确到百分位。
师:6.587你会保留两位小数吗?把你的方法介绍给同学们吧。
2、保留一位小数
(1)小组合作学习。
(2)组内交流,组长汇报交流结果。自己总结:要保留一位小数,就要省略十分位后面的数,要看百分位上的数。百分位上是5,省略尾数后向十分位进1。十分位上9+1=10,满十又要向前一位进一,连续两次进位。
2.953≈3.0
师:近似数3.0末尾的0能不能去掉,为什么?
生一:可以去掉,根据小数的性质:去掉小数末尾的0,小数的大小不变。
生二:0不能去掉,如果去掉就保留到了个位。
师:现在有两种不同意见了。你赞同哪一种说法?小组交流交流。
生交流后,一致认为:0不能去掉。
师:确实,近似数末尾的0不能去掉。它起到“占位和表示精确度”的作用。
师问:刚才我们已知道“保留两位小数,表示精确到百分位。”那么保留一位小数,表示精确到哪一位呢?
生齐答:保留一位小数,表示精确到个位。
3.保留整数
师:你认为该怎样处理呢?把你的意见和同桌交流。
点名汇报:保留整数,表示精确到个位,就要省略个位后面的数,要看十分位上的数。十分位上的9满5,省略尾数后向个位进1。2.953≈3
要保留整数(表示精确到个位),就要省略个位后面的尾数,把十分位上的数四舍五入;要保留一位小数(表示精确到十分位),就要省略十分位后面的尾数,把百分位上的数四舍五入……
在数学过程中,教师应该充分利用学生的认知规律,已有的生活经验和数学的实际,转化“以教材为本”的旧观念,灵活处理教材,根据实际需要对原材料进行优化组合。数学教学中,要从多方面“找”数学素材和多让学生到生活中“找”数学,“想”数学,真切感受“生活中处处有数学。”根据这一理念,本环节教学时,例题1不是课本中的例题,是我根据学生已有的知识经验而编制的例题,目的是让学生综合应用所学知识和技能解决问题、发展应用意识、在探索中形成自己的观点,能在相互交流和反思的过程中逐渐完善自己的想法。在教学过程中,学生的思维是活跃的,教学采用学生自主探究、合作交流的学习方式,鼓励学生积极主动地参与探索新知的全过程。在小组交流中把学生的思维充分暴露出来,加深学生对“用四舍五入法求小数的近似数”的理解。教师善于提出问题引导学生思考。所提出的问题不论是实际问题还是理论问题都紧密结合教学内容,并编拟成科学的探究程序。所以在教学过程中,我是分层次教学的,重点放在教学“①保留两位小数”的方法上,坚持启发式,让学生多说多讨论,激发学生积极思维,引导他们自己发现和掌握有关规律。教师再帮助分析讲解,使学生的思路更加清晰;在教学“②保留一位小数”时,则问得较少,使学生能根据刚才的知识形成一条清晰的思路。;而“③保留整数”我根本不用讲解,学生就能独立自主地解决问题了。
独立学习,掌握知识。
2.豆豆身高0.984米,我们可以说豆豆大约高﹎﹎﹎﹎米。(你想保留几位小数就保留几位小数)
学生思考,自由保留小数位数回答出0.984米的近似数,老师板书,请其余的同学说说分别保留了几位小数。
生一:0.984米≈1米
师:你知道他是保留了几位小数?
生二:他是保留到整数的
生三:这个数也表示精确到个位
生四:0.984米≈1.0米
生五:这个结果保留了一位小数
生六:也是精确到十分位
生七:我还会保留两位小数0.984米≈0.98米
生八:保留两位小数又表示精确到百分位
:今天我们学习的知识就在课本第73面。请认真看书73页,核对一下刚才例2中的结果,有什么疑问请提出来。
如果没有疑问,就请找出书中你认为需要掌握的`知识,做个记号。然后大声地读出来。
传统的课堂教学要求教师重视知识的传授,强调知识的熟练程度,新教材要求只是通过几个问题,几句话,做适当的引导,把更多的时间交给学生,留给大量的时间让学生去思考、去讨论,不仅能教会学生与他人合作,与他人交流思维的过程和结果,而且能培养学生形成实事求是的态度以及进行质疑和独立思考的习惯。因此,在本环节的设计中,我把课本中的例题作为兴趣例题2,发散学生思维,让他们想如何保留就如何去做,既尊重了学生,又掌握了知识。
对于小学生来说,要特别重视学法指导,注意发挥教材在学生学习中的作用,使学生学会自我学习、自我发展。现代科学日新月异,知识的海洋博大无比。我们教师不能也不可能教给学生所有的知识,但是我们可以教给学生获取知识的本领——学会学习,学会看书掌握知识。这种学习的技能一旦形成将终身受益。
畅谈收获,体验成功
师:同学们,这节课我们学习了什么?有什么收获?
生一:我学到了怎样求一个小数的近似数。
生二:我知道求一个小数的近似数也要用四舍五入法
生三:保留整数,表示精确到个位…………
师:那么现在,你再会解决“老爷爷得利息”这个问题吗?
生:(干脆利落)会
师:老爷爷的利息单上写着税后利息:9.547元,你能判一判:付多少利息钱给爷爷比较合理呢?
生一:我认为这个问题就是求小数的近似数。
师:你觉得在实际生活中应该保留几位小数比较合理呢?
生二:我觉得在实际生活中,应该保留一位小数。因为大家都知道,我们现在的用到人民币最小的单位是角。
生三:9.547元≈(9.5)元
群生:(欢喜地)对,应该付9.5元
师:你发现生活中哪些地方有小数?请你大声说出来。你想精确到哪一位?考考你的同桌吧。
生同桌互练。
师:小数的近似数在我们生活中应用非常广泛,请同学们课余留心观察,看还有什么地方有了小数近似数,下节课大家再来继续交流。
学生学习数学是“运用所学的数学知识和方法解决一些简单的实际问题的,是必要的日常生活的工具。”引导学生把所学知识联系,运用于生活实际,可以促进学生的探索意识和创新意识的形成,培养学生初步的实践能力。学生在解决完“正确处理老爷爷的利息”后兴奋不已。然后又“参与寻找生活中的小数”过程中,从多方面“找”数学素材和多让学生到生活中“找”数学,“想”数学。这样的设计,不仅贴近学生的生活水平,符合学生的需要心理,而且也给学生留有一些瑕想和期盼,使他们将数学知识和实际生活联系得更紧密,学生真切感受“生活中处处有数学。”体会到了数学在生活中的用处。让数学教学充满生活气息和时代色彩,真正调动起学生学习数学的积极性,培养他们的自主创新能力和解决问题的能力。
《新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。教师应激发学生学习的积极性,向学生提供从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课执教者立足于从现实生活入手,创设教学情景,生成数学问题,引发学生的探索兴趣,交给学生学习方法。体现了“数学源于生活,又用于生活”的教育理念。
灵活地处理教材:《新课程标准》提出:教师要创造性地使用教材,不能拘泥于教材。教材中以单独一个例题(量豆豆的身高)出现,执教者巧妙地做了变动,从生活实际引出学生跳远的成绩2.953米,然后重点教学。使学生体会到生活中有数学,生活中用数学,提高了学生的数学应用意识。把教材的例题作为次重点例2,让学生看图,想保留几位小数就保留几位小数,学生掌握了知识,也提高了兴趣。这些构想和尝试体现了教师对教材使用的科学态度,也表现出了对新教材处理的灵活性。
开放的教学风格:《新课程标准》提出:数学教学要给学生提供充分参与数学活动的机会,让他们学会从数学学习中发现问题,通过合作交流,主动探索,寻找解决问题的方法,弄清数学知识之间的联系和区别,体现学生是数学活动的主体,教师是数学活动的组织者、引导者和合作者的理念。执教者从“爷爷的利息”入手,生成了问题。然后充分尊重学生,让他们谈谈该如何处理……整节课教师在为学生创设民主、开放、和谐的学习氛围,学生学得兴趣盎然。
“教学与方法”、“生活与数学”、“教材与课堂”这些关系的处理,从本节课我们可以看到高老师正在努力尝试……