六年级数学知识点总结(精选18篇)
总结是在一段时间内对自己工作和学习进行总结和回顾,可以发现不足并改进。要写好总结,我们需要系统地整理和归纳自己在一段时间内的经验和教训。在下面的范文中,我们可以看出一些写作总结时的常见模式和技巧。
六年级数学知识点总结篇一
3、个位满10向十位进1。
(二)笔算两位数减法,要记三条。
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
(三)混合运算计算法则。
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
3、算式里有括号的要先算括号里面的。
(四)四位数的读法。
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;
2、中间有一个0或两个0只读一个“零”;。
3、末位不管有几个0都不读。
(五)四位数写法。
1、从高位起,按照顺序写;
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)4位数减法也要注意三条。
2、从个位减起;
3、哪一位数不够减,从前位退1,在本位加10再减。
(七)一位数乘多位数乘法法则。
1、从个位起,用一位数依次乘多位数中的每一位数;
2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则。
2、除数除到哪一位,就把商写在那一位上面;
3、每求出一位商,余下的数必须比除数小。
(九)一个因数是两位数的乘法法则。
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;
2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则。
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,
2、除到被除数的哪一位就在哪一位上面写商;
3、每求出一位商,余下的数必须比除数小。
(十一)万级数的读法法则。
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(十二)多位数的读法法则。
1、从高位起,一级一级往下读;
2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
熟读唐诗三百首,不会做诗也会吟。为大家整理的3篇小学一至六年级数学知识点总结到这里就结束了,希望可以帮助您更好的写作小学一到六年级数学知识点总结。
六年级数学知识点总结篇二
把两个数合并成一个数的运算叫做加法。
在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
加数+加数=和一个加数=和-另一个加数。
已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
加法和减法互为逆运算。
求几个相同加数的和的简便运算叫做乘法。
在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
在乘法里,0和任何数相乘都得0.1和任何数相乘都的任何数。
一个因数一个因数=积一个因数=积另一个因数。
已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
乘法和除法互为逆运算。
在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
被除数除数=商除数=被除数商被除数=商除数。
六年级数学知识点总结篇三
复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。
制作条形统计图的一般步骤:。
用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。
优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。
注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。
制作折线统计图的一般步骤:。
用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。
优点:很清楚地表示出各部分同总数之间的关系。
制扇形统计图的一般步骤:
(1)先算出各部分数量占总量的百分之几。
(2)再算出表示各部分数量的扇形的圆心角度数。
(3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。
(4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。
六年级数学知识点总结篇四
国之恨,弥留之际请求把心脏带回祖国,表达了对祖国强烈的爱。
2.肖邦:波兰最伟大的作曲家、钢琴家,被称为“浪漫主义的钢琴诗人”,作。
品有《革命练习曲》、《悲伤》。
3.中外爱国音乐家:冼星海、聂耳、乔羽、贝多芬、莫扎特、舒伯特。
4.表现爱国情怀的成语:赤胆忠心、忧国忧民、碧血丹心、精忠报国、以身许国。
5.表现忘我工作、学习的成语:夜以继日、通宵达旦、废寝忘食、争分夺秒。
6.爱国名言:天下兴亡,匹夫有责。——顾炎武。
位卑未敢忘忧国——陆游。
【习题解答】。
习题3答案:1.悲愤欲绝:悲痛愤怒到了极点。绝,气息中止、死亡。
2.与世长辞:永远离开人世。辞,告别。
习题4答案:1.埃斯内尔把泥土作为“特殊礼物”送给肖邦,为的是让肖邦永远不要忘记自己的祖国。
2.“弥留之际”指病危将死的时候,肖邦对姐姐说的话,表达了他至死不忘祖国的强烈爱国情感。
4古诗两首。
1.《闻官军收河南河北》是唐代诗人杜甫的作品,被前人称为“杜甫生平第一快诗”。这首诗描写了诗人听到官军收复失地的消息之后惊喜欲狂的心情,反映了诗人渴望安定生活的思想。“即从巴峡穿巫峡,便下襄阳向洛阳。”这一句准确地表达了诗人的归心似箭和为收复失地而喜悦的心情。
(2)杜甫被誉为“诗圣”,他的诗被誉为“诗史”。
(3)全诗体现了一个“喜”字,从“初闻涕泪满衣裳”、“漫卷诗书喜欲狂”、“白日放歌须纵酒”、“却看妻子愁何在”等词句可以体会到诗人因听到大唐军队收复失地而欣喜。
2.《示儿》是南宋爱国诗人陆游的绝笔,诗中作者以遗嘱的口吻,表达了作者对收复失地、洗雪国耻、重新统一祖国的无比渴望。
3.表现爱国情怀的古诗名句:
但使龙城飞将在,不教胡马度阴山。——(唐)王昌龄《出塞》。
先天下之忧而忧,后天下之乐而乐。——(宋)范仲淹《岳阳楼记》。
【习题解答】。
习题3答案:1.妻子:夫人和孩子。漫:随意,胡乱。全句的意思是:再看看夫人和孩子,他们的忧愁不知哪里去了;我胡乱地把诗篇和书籍一卷,高兴得简直要发狂。2.元:同“原”,本来。但:只。全句的意思是:我本来就知道人一死就什么都不知道了,只是为不能看见祖国的统一而感到悲伤。
习题4答案:因为陆游一直将驱逐金兵,收复失地作为自己的头等大事,这也是他一生念念不忘的事,虽然他没有亲眼看到祖国统一,但他坚信总有一天宋朝的军队会平定中原,光复失地,所以叮嘱儿子“王师北定中原日,家祭无忘告乃翁。”,由此也可见诗人强烈的爱国之情。
六年级数学知识点总结篇五
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的。和的简便运算。
2、一个数与分数相乘,可以看作是求这个数的几分之几是多少。
(二)分数乘法的计算法则:
1、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
2、分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
5、规律:(乘法中比较大小时)。
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
6、分数混合运算的运算顺序和整数的运算顺序相同。
7、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:ab=ba。
乘法结合律:(ab)c=a(bc)。
乘法分配律:(a+b)c=ac+bc。
六年级数学知识点总结篇六
2、从个位加起;。
3、个位满10向十位进1。
(二)笔算两位数减法,要记三条。
2、从个位减起;。
3、个位不够减从十位退1,在个位加10再减。
(三)混合运算计算法则。
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;。
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;。
3、算式里有括号的要先算括号里面的。
(四)四位数的读法。
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;。
2、中间有一个0或两个0只读一个“零”;。
3、末位不管有几个0都不读。
(五)四位数写法。
1、从高位起,按照顺序写;。
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)4位数减法也要注意三条。
2、从个位减起;。
3、哪一位数不够减,从前位退1,在本位加10再减。
(七)一位数乘多位数乘法法则。
1、从个位起,用一位数依次乘多位数中的每一位数;。
2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则。
2、除数除到哪一位,就把商写在那一位上面;。
3、每求出一位商,余下的数必须比除数小。
(九)一个因数是两位数的乘法法则。
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;。
2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;。
3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则。
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,
2、除到被除数的哪一位就在哪一位上面写商;。
3、每求出一位商,余下的数必须比除数小。
1、先读万级,再读个级;。
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;。
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(十二)多位数的读法法则。
1、从高位起,一级一级往下读;。
2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;。
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
六年级数学知识点总结篇七
1.最小的一位数是1,最小的自然数是0。
2.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
4.小数的分类:小数、有限小数、无限循环小数、无限小数、无限不循环小数、
5.整数和小数都是按照十进制计数法写出的数。
6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。
六年级数学知识点总结篇八
1、0既不是正数,也不是负数,它是正数和负数的分界。
0大于负数,小于正数。负数比较大小时,不考虑负号,数字大的数反而小。
2、“+”可以省略不写,“-”不能省略。
3、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。
数轴上0左边的数都是负数,0右边的数都是正数。
从左到右逐渐变大最大负整数-1最小正整数1。
六年级数学知识点总结篇九
一、扇形统计图的意义:
用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:
1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形的面积大小:
在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)。
针对练习:
一、我国国土总面积是960万平方千米。下面是我国地形分布情况统计图,请根据统计图回答问题。
1、我国山地面积占总面积的百分之几?
2、各类地形中,什么地形面积?什么最小?
3、你还能得到哪些信息?
4、请算出各类地形的实际面积,填入下表。
地形种类山地丘陵高原盆地平原。
面积(万平方千米)。
二、小军家20xx年11月支出情况统计如下图。聪聪家20xx年11月的总支出是3600元。请你回答问题。
1、这个月哪项出最多?支出了多少元?
2、文化教育支出了多少元?购买衣物支出了多少元?
3、购买衣物的支出比文化教育支出少百分之几?
4、你还能提出什么问题?并解决你所提出的问题?
六年级数学知识点总结篇十
一次不定方程:
常规方法:
观察法、试验法、枚举法;。
多元不定方程:
含有三个未知数的方程叫三元一次方程,它的解也不。
多元不定方程解法:
列方程、数的整除、大小比较。
解不定方程的步骤:
1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案。
技巧总结:
b、消元技巧:消掉范围大的未知数。
什么是百分数?
表示一个数是另一个数百分之几的数叫百分数,百分数也叫百分率或百分比。
比例。
(1)什么是比例?
表示两个比相等的式子叫比例。
(2)什么是比例的项?
组成比例的四个数叫比例的项。
(3)什么是比例外项?
两端的两项叫比例外项。
(4)什么是比例内项?
中间的两项叫比例内项。
(5)什么是比例的基本性质?
在比例中两个外项的积等于两个内项的积。
(6)什么是解比例?
求比例中的未知项叫解比例。
(7)什么是正比例关系?
两种相关的量,一种变化,另一种量也变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量叫正比例的量,它们的关系叫正比例关系。
(8)什么是反比例关系?
两种相关的量,一种变化,另一种也随着变化,如果这两种量中相对应的积一定,这两种量叫反比例的量,它们的关系成反比例关系。
圆柱。
(1)什么是圆柱底面?
圆柱的上下两个面叫圆柱的底面。
(2)什么是圆柱的侧面?
圆柱的曲面叫圆柱的侧面。
(3)什么是圆柱的高?
圆柱两个底面的距离叫圆柱的高。
一、要明确复习的目的、任务,从实际出发。
复习绝不能搞成简单的机械重复。应通过复习系统整理小学阶段所学的数学基础知识,理清知识的重点和关键,搞清知识间的内在联系,使学生的四则计算能力、初步的逻辑思维能力和空间观念在原有的基础上得到进一步的提高。
通过复习,学生能系统地掌握有关整数、小数、分数、百分数、比和比例、简易方程等基础知识,并能正确、迅速地进行整数、小数和分教的四则计算,提高计算能力。进一步掌握一常用的计量单位,能够比较熟练地计算一些几何形体的周长、面积和体积,并能进行简单你土地丈量和土石方计算,培养学生的空间观念。能够掌握所学的常见的数量关系和解}答应用题的方法,提高学生用算术方法和列方程解应用题的能力,培养学生逻辑思维能力科解决实际间题的能力。
复习前一定要结合本班学生的实际确定重点,选取的教学方法进行复习。每节课都要有明确的复习目的、要求和主攻方向,这样才能提高复习质量。
二、确定复习的重点及范围。
复习不是简单地重复以前所学的知识,教师必须重视授课的内容,对已学的知识进行系统的整理,复习时,要注意发挥学生的主体作用,调动学生学习的积极性,启发他们自学,自己归纳整理所学的知识,使知识系统化。或启发学生质疑间难,由教师引导学生释疑,以促进学生深入理解知识。下面是十个复习重点:
1)整数和小数的意义、读写法,计量单位和名数的互化。
2)整数、小数、分数的四则混合运算。
3)平面图形的概念、周长和面积。
4)简易方程。
5)数的整除和珠算。
6)分数、百分数的意义和性质及繁分数的化简。
7)立体图形的表面积和体积。
8)比和比例。
9)各类应用题的解法及列方程解应用题。
10)统计表和统计图。
三、采用灵活的复习方法。
在复习时必须注意发挥学生的主动性。促使学生独立思考。复习不应只是让学生把已学的数学知识简单地再现。这样会助长学生死记硬背,应当注意促进学生融会贯通和灵活运用所学的知识。
1)对比分析法。对于学生容易棍淆的一些概念、定义、公式和法则,要让学生在理解的基础上逐渐掌握。并通过对比分析,帮助学生了解它们之间的联系与区别,从而加深记忆。
2)独立阅读法。复习的知识都是已经学过的,教师可选择若干段有联系的教材,让学生独立阅读,教师就关键性的伺题组织讨论,抓住重点或学生不懂之处扼要地进行讲解,扩散学生的思维,培养学生独立分析间题的能力。
3)分类整理法。纵观小学数学的应用题内容,形式多种多样。在教材中的编排也较为分散,特别是几何知识,内容抽象,概念多,公式多,计算繁。因此,我们在复习时必须分类进行整理。使知识系统化、条理化。找出各种知识的本质特征,培养学生的逻辑思维能力。
4)归纳综合法。小学数学内容繁多,知识面广。每部分的内容大多涉及其他部分的知识,横向联系面大,知识的迁移性较强。复习时应由易到难,由一般到特殊,由基本到灵活,充分运用知识的迁移规律,进行综合性的复习。
5)有侧重点地进行复习。随时掌握学生的学习情况,发现学生中的知识缺陷,根据具体情况及时予以补救。要有针对性、有重点地进行复习、完善学生的知识。
六年级数学知识点总结篇十一
1.加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。
2.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。
3.乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4.乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。
5.乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c。
6.减法的性质:
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)。
(三)运算法则。
1.整数加法计算法则:
相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2.整数减法计算法则:
相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3.整数乘法计算法则:
先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
4.整数除法计算法则:
先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。
5.小数乘法法则:
先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
6.除数是整数的小数除法计算法则:
先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
7.除数是小数的除法计算法则:
先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
8.同分母分数加减法计算方法:。
同分母分数相加减,只把分子相加减,分母不变。
9.异分母分数加减法计算方法:。
先通分,然后按照同分母分数加减法的的法则进行计算。
10.带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来。
整
六年级数学知识点总结篇十二
1、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
3、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4、分数乘整数:数形结合、转化化归
5、倒数:乘积是1的两个数叫做互为倒数。
6、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
8、小数的倒数:
普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1。
9、用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
10、分数除法:分数除法是分数乘法的逆运算。
11、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13、分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个。
15、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。
比表示两个数相除;只有两个项:比的前项和后项。
比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
六年级数学知识点总结篇十三
1、用圆规画圆,圆规两脚的距离就是所画圆额(__)。
a、圆心b、半径c、直径。
2、圆中两端都在圆上的线段(__)。
a、一定是圆的半径b、一定是圆的直径c、无法确定。
3、在日常生活中,我们所见的下水井盖一般都制成(__)。
a、正方形b、长方形c、圆形。
4、在同一个圆中最长的一条线段是(__)。
a、半径b、直径c、直线。
5、画一个直径为5厘米的圆,圆规两脚之间的距离是(__)。
a、5厘米b、10厘米c、2.5厘米。
1、所有的半径都相等,所有的直径都相等。(__)。
2、圆的半径越长,这个圆就越大。(__)。
3、画图时,圆规两脚尖之间的距离就是圆的半径。(__)。
4、圆沿一条直线滚动时,圆心在一条直线上运动。(__)。
5、两个圆的大小一样,它们的半径一定相等。(__)。
6、一条直径可以分成两条半径,两条半径也就是一条直径。(__)。
7、平行四边形、长方形、正方形、圆形都是平面图形中的直线图形。(__)。
8、经过一点可以画无数个圆。(__)。
9、经过圆心的线段一定是直径。(__)。
10、圆心相同的圆,大小也相等。(__)。
1、画一个半径为1厘米的圆。
2、以点o为圆心,分别画两个大小不同的圆。
3、用你喜欢的方法画一个半圆,并标出它的圆心,半径和直径。
4、在下面长方形和正方形中各画一个的圆。r=(__)d=(__)。
1、图中已学过的图形有(__)、(__)、(__)、(__)。
2、正方形的周长是(__),小圆的直径是(__),半径是(__)。
3、直角梯形的高与上底都是(__),下底是(__),面积是(__)。
4、大三角形的底边长是(__),高是(__),面积是(__)。
1、在边长为12米的正方形中剪直径为3厘米的圆,你最多能剪多少个?
六年级数学知识点总结篇十四
1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7.比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:
8.组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。
9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。
10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
六年级数学知识点总结篇十五
1.分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归。
5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
8.小数的倒数:
9.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1.单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个。
15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。
比表示两个数相除;只有两个项:比的前项和后项。
比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。
六年级数学知识点总结篇十六
1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。
2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。
3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。
6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
8、公式。(每两个相邻的时间单位之间的进率是60)。
1时=60分。
1分=60秒。
半时=30分。
60分=1时。
60秒=1分。
30分=半时。
六年级数学知识点总结篇十七
一、负数:1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3、能借助数轴初步学会比较正数、0和负数之间的大小。
二、圆柱和圆锥。
1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
三、比例。
1、理解比例的意义和基本性质,会解比例。
2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
四、统计。
1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。
2、能根据统计图提供的信息,做出正确的判断或简单预测。
五、数学广角。
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过“抽屉原理”的灵活应用感受数学的魅力。
六、整理和复习。
1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。
2、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。
3、掌握所学几何形体的特征;能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用;巩固所学的简单的画图、测量等技能;巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识;能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。
4、掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据做出简单的判断与预测,会求一些简单事件的可能性,能够解决一些计算平均数的实际问题。
5、进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。
六年级数学知识点总结篇十八
(1)分数的乘法和除法。分数乘法的意义。分数乘法。乘法的运算定律推广到分数。倒数。分数除法的意义。分数除法。
(2)分数四则混合运算。分数四则混合运算。
(3)百分数。百分数的意义和写法。百分数和分数、小数的互化。
(二)比和比例比的意义和性质。比例的意义和基本性质。解比例。成正比例的量和成反比例的量。
出处 Cooco.nET.CN
(三)几何初步知识圆的认识。圆周率。画圆。圆的周长和面积。_扇形的认识。轴对称图形的初步认识。圆柱的认识。圆柱的表面积和体积。圆锥的认识。圆锥的体积。球和球的半径、直径的初步认识。
(四)统计初步知识统计表。条形统计图,折线统计图,_扇形统计图。
(五)应用题分数四则应用题(包括工程问题)。百分数的实际应用(包括发芽率、合格率、利率、税率等的计算)。比例尺。按比例分配。
(六)实践活动联系学生所接触到的社会情况组织活动。例如就家中的卧室,画一个平面图。
(七)整理和复习六年级数学学习方法:进入小学高年级后,科目稍微增加、内容拓宽、知识深化……学生认知结构发生根本变化,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。总结比较,理清思绪知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。题目的总结比较。同学们可以建立自己的题库。在学习《位置》在用数对确定点的位置,这部分渗透了数形结合的思想,和一一对应的思想。学生可在方格纸上画画。
学习分数乘法的意义:
1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。
2、分数乘分数是求一个数的几分之几是多少。
例:一小时刷一面墙的1/4,1/5小时刷一面墙的多少?实际上是求1/5的1/4是多少?这种题型可以利用数形结合的数学思想,画一画,折一折。再就是利用:工作效率_工作时间=工作总量在学习分数除法这一节时,例如:分数、除法和小数之间的关系和区别,以及分数除法应用题无论是折纸实验,还是画线段图,都是用图形语言揭示分数除法计算过程的几何意义。分数乘除法,比的知识,运用了类比的数学。(相似和变式)在学习圆这一节时,用逐渐逼近的转化思想。把一个园等分(偶数份)成的份数越多,拼成的图像越接近长方形。体现化圆为方,化曲为直的思想,应用转化思想。在应用中,我们还知道面积相同时,长方形的周长最长,正方形居中,圆周长最短。周长一定时,圆面积最大,正方形居中,长方形面积最小。这题蕴含着一个数学规律,即在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积最大,而长方形的面积则最小。在学习数学广角这一章节中,例如,研究古代鸡兔同笼的问题,就应用了假设法来教学。这种思维方式就是划归法。
将本文的word文档下载到电脑,方便收藏和打印。