最新大学数学心得 数学大学心得体会题目(精选8篇)
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
大学数学心得篇一
随着大学学习的深入,我深刻地意识到数学学科在人类科学发展史中的重要地位。在大学学习中,我也有了许多的体会和感悟,今天想分享一下我对于数学大学的心得体会。
第一段:数学学科的重要性。
数学是一门基础科学,是自然科学、生命科学、工程技术和社会科学的基础。在现代社会,数学学科已经渗透到了各个领域,成为了科技创新、经济发展的重要驱动力。而在大学阶段,数学更是一个非常重要的学科,它是人类思维的基础和逻辑的支柱。大学的数学教育是让人们通过学习数学来理解事物的本质,探索现象背后的规律,提高逻辑思维和创造性思维的一个重要平台。
第二段:数学学科的特点。
数学学科有其自身的特点,它不仅需要学生掌握数学的基本概念,同时还要注重数学的思维方法、推理过程和实际应用。在学习数学的过程中,我们需要通过康托尔集合、拉格朗日乘数法等各种抽象与具体的方式进行学习和思考,这需要我们学习者有较高的抽象能力和逻辑思维能力。因此,我认为数学作为基础学科,需要我们在大学阶段注重其特点和应用,同时也需要掌握好相关的数学工具和思维方法,以方便我们在日后的学习和工作中得到更多的应用。
第三段:数学学习过程中的困惑。
虽然数学学科的重要性和特点已经显而易见,但我在学习中还是遇到了很多的困惑。比如,现实生活中常常会遇到我们数学基础不够的问题,如如何求导、如何积分、如何做常微分方程等。而在课本中,由于数学语言的抽象性和逻辑推理的繁琐性,学习起来显得异常艰难。但是,只要我们付出足够的努力和耐心,积极地解决一些古怪的数学问题,就会逐渐发现做数学问题并不是很难。
第四段:数学学习的方法。
针对在学习数学过程中遇到的困惑,我想说的是,我们可以借鉴一些有益的数学学习方法,来克服这些困难。首先,知道一个结论,要深入了解其中的证明和推理过程,掌握如何证明一个定理或结论的方法,这有助于我们理解数学的基本逻辑和推理方式。其次,关注数学应用的实际场景,充分认识到数学思维方式的实用性和必要性,这是数学学习的重要动力和动力来源。另外,解题是学习数学的一个重要方法,因此,我们可以多做相关的数学题,在经验积累的过程中提高自己的解题能力。所以,我们需要为我们的数学学习定一个清晰的学习目标,并选定合适的学习方式和经验积累的方法。
第五段:数学学科的未来。
在未来的发展中,数学学科已经成为各大学术领域的重要组成部分。我们需要认真学习并掌握数学学科的基本知识和方法,以便在日后的学习和实践中能够有所收获。同时,我们也需要充满信心和激情去探索和创新,为数学学科的发展和进步做出自己的贡献。希望未来的数学学科能够越来越具有前瞻性、广泛性和多样性,促进人类社会的进步和发展。
总而言之,大学学习中我对于数学学科的心得体会,主要围绕着数学学科的重要性、特点、学习中遇到的困惑、学习的方法以及数学学科的未来等几个方面。我相信,在不断的学习实践中,我能够更好地理解和掌握数学学科,努力实现自己的期望和愿景。
大学数学心得篇二
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的',如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从a/b/c中选择一项填写):
我们的参赛论文题目是:
参赛队员(打印):
队员1姓名:;联系电话:;邮箱:;
学院:;专业年级:;
队员2姓名:;联系电话:;邮箱:;
学院:;专业年级:;
队员3姓名:;联系电话:;邮箱:;
学院:;专业年级:;
参赛队员签名:1;2;3。
日期:年月日
大学数学心得篇三
作为一名数学专业的学生,我一直对数学建模感兴趣。因此,在招募时我毫不犹豫地报名参加了数学建模比赛,并成功地进入了我们学校的代表队。在比赛的过程中,我深刻体会到了数学建模的重要性,并且学到了很多知识。下面我将分享我在数学建模中学到的心得体会。
首先,在做数学建模的过程中,我们需要有一颗分析问题的眼光。比如,在赛题分析中,我们需要理清题意,确定问题的重心并制定出解决方案。这个阶段的良好开端是在数学建模中获得成功的关键之一。因此,一些基本的数学分析知识是至关重要的。在这里,我们可以运用到矩阵论、微积分、统计分析等多种学科,然后以此为依据,发挥出我们自己的思维能力寻找解决问题的方法。对于那些初次参加数学建模的选手来说,建立正确的分析思路非常重要。
其次,数学建模是一个充满挑战的过程,需要一个团队合作的精神。竞赛中的时间非常宝贵,明确的工作分配可以大大减轻大家的合作压力,每个人在全力以赴的同时,也要充分发挥自己的力量。例如,数据分析可由计算机专业的组员进行,而建模问题可交给数学专业的人员合作完成。此外,在竞赛的过程中,遇到问题时应及时与队友沟通,互相协商出解决问题的方案。通过团队的合作,我们可以不断发挥自身的专长,最终找到问题的解决办法。
第三,在数学建模过程中,运用一些数学模型可大大提高我们的解题效率。数学模型是具有可行性和实用性的。通过妥善运用数学理论与工具,我们可以将复杂的实际问题转化为数学模型,然后采用算法和模拟来求解数学模型,这种方法非常灵活。在数学建模比赛中,无论是数学模型的设计、实现与运用都很关键,一个好的模型能够极大提高我们解题的效率,而在模型的表述和使用中,数学专业的学生有天然的优势,这也是我们在团队中承担重要角色的原因之一。
第四,在数学建模竞赛中,除了解题的能力和团队合作的精神外,语言表达和思路清晰也是非常重要。评委在评选过程中不仅关注竞赛的结果,亦会对报告的文本质量作出评判,以此来综合评价团队综合素质。如何用简洁明了的语言说明我们的思路并有效地表达出来,是一个更为务实的问题。例如,现实问题虽然很复杂,但是解决办法却很多,精练的语言能让我们更快找到途径。在数学竞赛中,一个具有优秀文本质量的团队也会在众多队伍中脱颖而出。
最后,通过数学建模过程,我们还能够进一步提高自身的学术水平。我相信通过参加数学建模比赛,我们能够进一步提高自身的综合素质,尤其是提高我们的数学能力和科研技能,增强自身合作意识和解决问题能力,为进一步实现我们的事业与职业目标打下基础。
总之,数学建模不仅是实践与理论结合的产物,它也是一个全新的、不断创新的领域。通过参与数学建模竞赛实践,我不仅学到了丰富的数学知识和技能,还提升了自身综合素质,增强了团队合作意识。希望年轻的学生能够积极参与数学建模竞赛,发现更多的可能性和机遇,在比赛的过程中不断提高自己的学习成果和解决问题能力,更加完整的体验数学建模的乐趣!
大学数学心得篇四
3.1用现代化的教育理念整合信息技术与大学数学课程。时代在发展进步,教育理念也在不断地更新,现今社会是互联网的时代,教育理念要融合到信息时代中,互联网背景下教师的主要教学目标已从过去的仅是知识传授到目前培养适应社会的创新型人才。所以作为教师,我们应该意识到信息技术与大学数学课程教学整合是必要的。信息技术与大学数学课程教学整合中,我们要注意将教学的内容、方式方法和时代问题、背景相互融合,丰富和完善数学课程的结构、功能和内容,构建数学课程的新体系。
3.2用信息化的教学手段,促进教学改革。信息技术发展至今,对我们的教学也起到了极大的促进作用,比如说,过去的数学课就是让学生做练习和做作业,而今天信息化时代背景下,我们的数学课可以有多种互动学习的方式方法,比如说,利用教学软件发起答疑讨论、投票问卷、测试、小组任务、小组评价、抢答、选人等活动,可以极大的活跃我们的课堂,丰富学生对大学数学知识的理解和体验。
3.3注意利用信息技术创设情境式教学模式。大学数学这门学科的特点就是逻辑严谨,理论抽象,定理定义难以理解,导致很多学生学数学都很困难,极大地影响了学生学习数学的热情,由于多媒体技术有着形象直观的特点,那么我们在在大学数学教学中,应该适当地引入多媒体辅助教学,设计教学情境,比如说利用动画来演示定理、定义,运用视频来形象地刻画数学在实际生活中的应用等。
3.4整合中要树立数学建模的思想。过去的数学课由于教学时间和设备有限,缺少信息技术的支持,很难做到将课堂教学内容和实际生活相联系,而现在由于多媒体技术可以节省很多教学时间,我们可以将节省下来的时间用来讲解教学内容在实际生活中的应用,这就是建模思想在课堂上的应用,这样不仅可以巩固基础知识,同时,教会了学生活学活用,促使学生主动思考如何应用书本知识解决实际问题,也培养了学生的实践和创新能力。
4结语。
综上所述,信息技术与大学数学课程进行有效整合是切实可行的,按照每堂课的教学内容合理的将传统教学与现代信息技术教学相融合,创设新的教学情景,为社会培养更多创新型人才。
参考文献。
[3]刘国刚.关于信息技术与大学数学课程整合的思考[j].科教文汇,(17):66,67.
大学数学心得篇五
奥秘,数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。
第一次上选修课选科目的时候我就选了“数学文化”,因为当我看到这个名字时,我觉得学到一些数学的周边知识对我的学习与生活可能还是有点用的,所以我报了名。
“数学”这门神秘而又与我们息息相关的科学,对我们来说是获益匪浅的。
着,就像参观景点一般浏览了数学世界的奥秘,第一堂课的时候,老师就给我们讲了数学的历史:数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。
除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。
到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
除了数学的历史以外,老师还给我们点评了数学史上的一些重大事件,如三次数学危机,这三次数学危机每一次都是数学探索者们在进行对数学这门学科的探索时产生的问题,每次出现了数学危机后,数学家们都努力地对其进行探究,通过各种各样的方法把这些问题解决。那节课让我了解到数学的世界是时时刻刻都会有矛盾的世界,研究数学就是在研究把这些矛盾解决掉或者用正当的理论把矛盾解释清楚的方法。
于180°,这些可能暂时对我们的用处还不大,但了解了这些东西对我们以后学好“数学”这门课程或者说研究这门科学有很大的帮助。
我很喜欢老师给我们上的最后一节课,因为在这节课上,老师给我们看了很多由数学分形而制成的各种各样的图像,如julia集合,一幅幅画面看得我眼花缭乱,仿佛进入了仙境一般,我都无法用言语来形容我当时的感受,那让我明白了原来生活中在衣服上、各种电器的屏保中的那么多美丽的图案都是出自数学这门神秘的学科里,那节课真的让我们体验到了数学的神奇与壮观。
不了解数学、不学好数学是不行的我会努力地去学数学这门课程不单单是学习数学的公式定理更要学习数学家们坚持不懈、开拓进取的精神。
我们从小学就开始学习数学,一直学到高中。上了大学,还要学习高等数学。高数作为一门重要的基础课程,是所有大一新生的必修课,也是考研的科目。
高等数学与高中数学相比有很大的不同,内容上主要是引进了一些全新的数学思想,特别是无限分割逐步逼近,极限等。从形式上讲,学习方式也很不一样,一般都是大班授课,进度快,老师很难做到个别辅导,所以对自学能力的要求很高。
我一直很重视高数的学习,上课认真听讲,记好笔记,课后做练习题。这学期还报了高数选修课,不仅是因为学分多,更可以多学一点知识。
老师把前面学的知识,按章节。
总结。
题型,讲解解题技巧,并配有难一点的考研题或是竞赛题。
刚开始时,高数选修课很火爆,很多没报名的同学也来听课,导致我们只能坐在后面几排,他们上课听讲很是认真,笔记记得也很详细,老师的提问总是很快地就回答出来。为了不输给他们,我们中午就去占前排的座位,上课认真记笔记,目不转睛地看着老师。
这学期的高数明显难与上学期的内容,但为了通过考试,为了考研,必须打起12分的精神努力学习。
高数有别于其他科目,这就要求我们有很高的思维性和理解力,与此同时,也要不停地做题和总结。我们学习高数有一个共通的地方,就是我们在高中时期学习数学养成了一种固定的模式,就是按照老师给定的格式,给定的思维去思考问题。但是在大学,我们面对的是高数,有时证明某种定理就需要很长时间,在做题中还会遇到各种各样的问题,很多事情都需要我们自己去完成。正是由于这段时间的高数学习,培养了我们自学和总结的能力。
高数当中我们会经常遇到很细的知识点,具体说就是惯例中的特例,那些先人总结出的各种定理,我们都喜欢用,甚至遇到类似的情况就生搬硬套,而忽略了很多条件,不但不利于我们对知识的掌握,还会起到负面作用,就是错误理解,导致相关知识都会变得相当混乱。只有深刻理解知识,了解它所能应用的条件和环境,之后才去实战中应用。而我们的重点就是在做题中总结,不断地增长自己的经验,培养自己解决问题的能力和更高的思维能力。
学习高数很重要的一点就是联系,我们看到有很多东西表面上是分散的,而且是独立的,但是这其中都是紧密联系的。我们开始学极限,微分,积分,以及微分方程,多元函数积分,多重积分,曲线曲面积分,这些知识都是紧密地联系的,是逐层递进的。极限是高数的基础,所以一开始我们就先学习极限。关系是明朗的而且清晰的,我们学习只需要着重把握各章重点,做好联系就可以了。
学好高数,我认为,一定要把教材看懂,尤其是小结的部分,可以使你的学习目的更明确,做到有的放矢,不必花太多时间在次要的内容上。每看完一章就反复琢磨书后的小结,找准重点后再重新把书中的重点知识学习第二遍,力求一定掌握重点知识,并会做相应的习题。其次,一定要把书后的练习题做一遍,适当使用参考书,因为只有不断的练习,才能提高解题速度,并熟练记住公式。做完之后再对着书后的答案检查,什么地方做错了,通过分析就可以尽量避免在考试时犯同样的错误。对于书中不会做的题目或者是看不懂的例题,一定要及时向同学、老师请教,直到弄明白为止。
考试前的一个月,就做前几年考试的试题,了解一下考试出题的类型和哪一部分内容在考试中占的分数比较多,对于分数少而又比较难的部分,在时间不够的情况下可以有选择地放弃。
考试时,一定要细心,会做的题,一定要拿满分。很多学长就是差几分没能通过,其中一个重要原因,就是会做的题,由于种种原因,没有拿满分。这一点虽然是老生常谈的问题,却是我们最容易忽视的一点,也是最关键的一点,如果我们在这一点上失误了,就可能前功尽弃。
此外,提高45分钟课堂效率,上课认真听讲,记好笔记。这一点看似平常,但做好并不容易,因为我们学习的大部分时间都是在课堂上,如果不能很好地抓住课堂时间,而寄希望于课下去补,则会使学习效率大打折扣。我们会有困的时候,会有心情不好的时候,还会受到其他同学的的影响。听课时,更不可挑挑捡捡,会的不听,不会的才听。会的地方,听听老师深刻独到的见解,加深对知识的理解。不光要记老师的板书,更要记老师讲课时对解题思路的讲解,因为老师不可能把所有的思路都以板书的形式呈现出来。实际上,学高数就是学各种题型的解题思路。
学习是个循序渐进的过程,只有平时一点一滴地积累,不断夯实基础,才能学好高数,才能达到比较高的层次,统观全局。切记“一分耕耘,一分收获”。
下周高数选修课就要结束了,在10周的课上,老师把以前的知识给我们复习了一遍,还学到一些技巧,并做了一些有难度的题,开拓了思路,让我们认识到自己的不足,明确了自己的目标,可谓收获颇丰。
浅印象里提起数学一词,对于我个人来说,数学就是一堆堆死板无活力的公式,像是一个个严肃的战士,需要各种证明来计算我们课本或者卷纸上的问题。幼稚园时候,数学就是数数,简单的计算,简单到用手指头就能计算出结果;小学时候,数学就是不停的计算鸡鸭鹅狗笼子里多少只脚的问题;初中时候,问题变得多元化,但是从此开始了更没有什么趣味的代数和几何,不停的计算来证明,得分。唯一的一点趣味也无了踪影;高中时候,数学变成了高数,每天脑子里的正余弦定理,一切依旧没了趣味;大学时候,学的依旧叫高数,只是名字由高中数学变成了高等数学,依旧对数学提不起兴趣。无意中选修了这门选修课,却让我收获了另一种看法,一改以往的印象,其实数学是需要欣赏的,数学有它自己的文化和趣味,并不是一门枯燥反反复复的计算。
关于数学我这样理解:数学,用公式的话来解释它就是研究数量.结构.变化及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用。由计数.计算.量度和对物体形状及运动的现象中产生。数学家们拓展这些概念,为了公事新的猜想以及从何时选定的公式及定义中建立起严谨推导出的真理。
数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特的数学文化论力图把数学回归到文化层面。克莱因的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。
国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。
以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。
课上我们看了个视频,名字记不住了,但是确实很吸引我们,让我们感受到数学确实很重要,我们在不断的实践,无论哪个国家。这是人类的探索。
奥秘,数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。
除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
可见数学的发展是一步步发现深化和完善的,我们如同探险者,不断的推翻错误的观点和公式,然后用新的公式代替,最后期待实现真理的目的。数学的神秘和有趣是无尽的,是人们追求的,是人们在高科技现代化所需要的文明产物,可以说上到科学研究,下到吃穿住行没有一个可以完全脱离数学而存在的。它是支撑我们这个多元多彩世界的重要部分,没有它就没有这个丰富的世界。所以通过这门选修课,确实让我对数学有了更深的了解,我不能用以往的印象理解数学,误解数学的美。感谢老师以及数学,让我意识到数学有它独特的美,我们要用欣赏的眼光去看待数学,因为它不仅是一种解决问题的方法,也是一种美丽的文化。
在没接触《数学文化》这门课程之前我就经常听我朋友说有关这门课程的东西,那时候我一直以为跟我们所学的高数、线性代数一样枯燥无味。直到真正去上了这门课程之后,我才发觉跟我一开始想的完全不一样。
在《数学文化》的课堂上,老师的。
授课。
方式很有趣,每个专题各有特色,在听老师的详细讲述后,我对数学文化颇有兴趣,深有感触,特别是“混沌”和“维数”这两个专题。
我觉得老师对“混沌”和“维数”这两个专题见解独到,我也能从中吮吸到一定的精华。这两个专题所涉及的内容也让我很感兴趣。
关于“混沌”,一开始对这两个字根本不了解。还误以为跟“馄饨”有一定关系,直到听了老师仔细的讲述,我才真正明白了“混沌”的含义。其实它也是数学文化中的一个方面,在非线性科学中,混沌现象指的是一种确定的但不可预测的运动状态。它的外在表现和纯粹的随机运动很相似,即都不可预测。但和随机运动不同的是,混沌运动在动力学上是确定的,它的不可预测性是于运动的不稳定性。或者说混沌系统对无限小的初值变动和微扰也具于敏感性,无论多小的扰动在长时间以后,也会使系统彻底偏离原来的演化方向。上了关于“混沌”这个专题后,我第一个想到的典例就是天气变化,我觉得它很形象地形容了天气变化的特性,其中最著名的表述就是蝴蝶效应:南美洲一只蝴蝶扇一扇翅膀,就会在佛罗里达引起一场飓风。在今天计算机技术飞速发展的时代,混沌学已发展成为一门影响深远、发展迅速的前沿科学,同时也跟我们的日常生活息息相关。
而另外一个专题就是“维数”,对于这个专题我比较熟悉,因为在之前的数学课堂上便有接触关于一维、二维···甚至n维,不过在学的时候不是重点章节,数学老师也没有给我们做深入的讲解,直到上了数学文化这门课,老师给我们做了一个专题方便我们更系统地了解“维数”这一概念。所谓“维数”,又称维度,是数学中独立参数的数目。在物理学和哲学的领域内,指独立的时空坐标的数目。之前还不知道维数有那么多讲究,现在才真正明白每个维数所代表的含义,0维是一点,没有长度。一维是线,只有长度。二维是一个平面,是由长度和宽度形成面积。三维是二维加上高度形成体积面。四维分为时间上和空间上的四维,人们说的四维经常是指关于时间的概念。准确来说,四维有两种。第一种是四维时空,指三维空间加一维时间。另一种便是四维空间,只指四个维度的空间。四维运动产生了五维...虽然“维数”比较抽象,但是在我们的实际生活中,也有一些相关领域把一个常用和熟知的有限维数的结果推广到无限维数的情形,对我们也有一定的实用意义。
在数学文化这门课程中,我受益匪浅,老师别样的讲课风格以及详细的课件内容让我对数学文化这个博大精深的领域兴致勃发,在学习了关于“混沌”和“维数”这两个专题之后,使我更加想了解更多有关数学文化的想法,对我们来说,虽然数学文化很抽象,但是对我们的实际生活却很有影响。
我觉得,在这门课程结束之后,我依然会更深入地去了解有关数学文化方面的知识,因为深受老师的熏染,我更渴望去了解相关知识。
总而言之,我很荣幸抢到了数学文化这门课,更荣幸的是有这样一位老师传授了很多有趣的关于数学方面又涉及实际生活的知识。辛苦了,谢谢老师这学期的辛勤教导!
当时选选修课的时候,我很犹豫要不要选数学提高班,因为选修课在我心目中一直是以培养兴趣爱好为目的的,好像并不关学习什么事,我本人也不是特别喜欢数学。但是在母上大人的督促下我还是抱着试一试的态度选了。所以大概来说我选数学提高班这门选修课的时候抱着提高数学成绩的目的选的,虽然其实在成绩上的长进并不那么明显,但是提高班确实让我获得了许多学习数学的乐趣和方法。在一学期的选修课中,我们大致按照数学行课顺序和速度,一章接一章的复习了不等式,立体几何等等很多章节。其中我对立体几何的印象最深,可能也是因为自己比较喜欢吧,所以收获也比较多。
的无奈,补了很多课,却都不济于是。我从来没有想过我这辈子可能会有那么一点喜欢数学,但是我确实这样做了。大概是从学习立体几何开始,我慢慢发现其实数学也是很有趣的。从这个时候开始,我也是第一次从心底里开始想上提高班,也是获益的开始。提高。
班上。
我不仅复习了课堂上的知识弥补了漏洞还学习了方法收获了快乐。
问题,解决问题。这种轻松愉悦的气氛真的可以让我沉浸于数学之中,发现许多数学与我的契合点,从而发现快乐。总的来说,提高班真的让我获益匪浅,如果还有机会的话,我还愿意选这门选修课。
大学数学心得篇六
数学作为一门基础学科,是现代科技与社会发展的重要支撑。为了提高大学生对数学知识的理解和运用能力,学校特别邀请了著名的数学教授来举行一场数学讲座。作为一名大学生,我深知数学的重要性,因此我迫不及待地参加了这次讲座。通过这次讲座,我不仅对数学有了更深入的认识,还受到了很多启发和鼓舞。
首先,数学讲座从数学的起源和发展出发,向我们讲解了数学的基本概念和原理。讲座中教授介绍了数学的起源,数学公理的建立以及数学在不同时期的发展。他通过生动的例子和形象化的讲解,使得抽象的数学概念变得通俗易懂。尤其是在讲解数学公理时,教授强调了数学的逻辑性和严谨性,使我对数学知识有了更为深刻的认识。这次讲座让我明白了数学的哲学思想,培养了我对数学的兴趣。
其次,数学讲座重点讲解了一些数学的热门问题和新进展。现代数学发展迅猛,新的数学理论和方法不断涌现。在讲座中,教授向我们讲解了一些数学的前沿领域,如数论、拓扑学等,让我感受到了数学的前沿魅力。他还向我们介绍了一些数学问题的解决方法,让我明白了数学的普适性和实用性。通过这些案例,我不仅了解到数学的发展动态,也了解到数学的实际应用场景。
第三,数学讲座强调了数学与现实生活的联系。数学是一门普遍存在于现实世界的学科,它的应用范围广泛。教授通过实际案例,向我们展示了数学在生活中的应用,如金融、通信、物流等领域。他告诉我们,数学不仅是一门学科,更是一种思维方式。利用数学的思维方法,我们可以更好地解决现实生活中的问题,并发现一些规律和模式。这使我对数学有了更为深刻的认识,也激发了我学习数学的动力。
第四,数学讲座强调了数学学习的重要性和方法。教授告诉我们,数学是一门需要持之以恒的学科,需要不断地练习和思考。他建议我们要独立思考数学问题,并多做习题来提高自己的能力。他还向我们介绍了一些优秀数学学习资源,如数学期刊、网课等,帮助我们更好地学习。通过这次讲座,我明白了数学学习的重要性,也学会了一些实用的学习方法。
最后,这次数学讲座让我意识到数学是一门有挑战性的学科,需要永不停歇的追求。通过讲座,我看到了数学的广阔前景和无限魅力。数学的深刻与抽象性让我感到困难,但同时也让我兴奋和感到挑战。我决心在以后的学习中更加努力,提高自己的数学知识和技能。
通过这次数学讲座,我对数学有了更深入的认识,也受到了很多启发和鼓舞。我相信,只有不断地学习和探索,我们才能更好地理解数学,为社会的发展作出贡献。我将继续努力,加强数学学习,为我自己的成长和社会的进步做出努力。
大学数学心得篇七
数学是一门基础工具学科,是培养学生建立良好的逻辑思维、严谨的抽象推理能力的一门素质课程。随着互联网和手机以及多媒体计算机的普及,人们的生活发生了巨大的变化。信息技术为我们开辟了一条新的大学数学教学的重要途径。一直以来,大学数学以抽象、逻辑严谨的形象留在学生的心中,被认为是一门艰涩难懂的科目,如何将“艰涩难懂”变为“生动形象”,如何让数学课成为一门与生活紧密联系的有趣的课程是大学数学老师亟待解决的问题。那么信息技术教学为大学数学课提供了新的转机,对比于传统的教学模式,信息化教学的优势非常明显,可以显著提升教学效率,还可以使一些艰涩难懂的数学定理定义等变得形象生动,使得数学课堂变得更加生动有趣,增加学生的参与度。
大学数学心得篇八
大学数学课程作为学科体系中的一部分,是大学生们必须经历的一门重要课程。然而,数学课往往会让许多学生望而却步,觉得难以掌握。然而,通过我在大学数学课上的学习经历,我逐渐明白了数学的重要性,同时也掌握了一些应对数学课的方法和技巧。
第二段:克服困难。
大学数学课相较于中学时期的数学课程,难度大大增加。开始阶段,我感到有些力不从心。然而,我明白了不能一味逃避困难,而是要积极面对。我主动找老师请教,参加助教辅导班,花更多的时间和心思来攻克难题。通过不断努力和坚持,我逐渐提高了数学水平,并享受到数学带来的成就感。
第三段:合理安排学习时间。
在大学数学课上,学生要面对更广泛和深入的知识和技巧。为了更好地掌握这些内容,我发现了合理安排学习时间的重要性。首先,我培养了每天坚持复习的习惯,及时消化当天的学习内容,避免遗忘。其次,我将更多的时间留给数学课程,如选择不参加一些娱乐活动,利用空闲时间做练习题或者复习笔记。通过这样的时间管理,我能够更有效地掌握数学知识,并提高学习效果。
第四段:掌握解题方法。
解题是数学课上的重要环节。对于一些生涩难懂的题目,我开始尝试掌握一些解题方法,例如通过画图、列方程式或借助计算机软件等辅助工具来辅助解题。同时,我还了解了一些常用的数学定理和公式,这些都为我在解题过程中提供了更多的思路和方法。通过不断尝试和探索,我逐渐掌握了解题的技巧,并能够灵活应用到具体的问题中。
第五段:培养数学兴趣。
在大学数学课程中,我逐渐培养了对数学的兴趣。数学的美妙之处在于它不仅仅是一种工具,更是一种思维方式和逻辑思考的能力。通过解题、证明和探索,我发现数学中的逻辑性和美妙的结构。这使得我对数学课程的学习更有动力和热情,也更能全身心地投入到数学中。
结尾:
通过对大学数学课的学习,我逐渐明白了数学的重要性以及应对数学课的方法和技巧。虽然数学课程会面临许多困难和挑战,但只要我们抱着积极的态度,勇往直前,就能够克服困难,提高自己的数学水平。在这个过程中,我们也会慢慢培养出对数学的兴趣和热爱,进一步深化对数学的理解和体会。