最新分数乘法教学反思(通用19篇)
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
分数乘法教学反思篇一
1、以“秦兵马俑”的视频引入,不仅让学生加深对世界文化遗产秦兵马俑的了解,同时也让学生借此领略中国的古老与文明,激发学生的学习兴趣,吸引学生积极主动地投入到解决问题的探索活动中来。
2、对本节课两个红点的处理,以放为主,扶放结合。对于第一个问题是整体与部分的关系,学生完全有能力自己解决,所以完全放手。对于第二个问题,重点让学生理解“1号坑占地面积比2号坑多5/9”的含义,重视引导学生利用线段图理解数量关系,解决问题,使学生逐步掌握用线段图分析数量关系的方法,有助于学生体验数形结合方法的优越性,有利于提高学习有困难学生的理解能力。同时,重点让学生说清自己的思路,使学生逐步掌握策略提高能力,同时也发展学生的思维。
3、练习设计本着贴近生活,应用生活的理念设计了三道练习,并且第三组设计以题组形式出现,关注学生差异。
4、针对本节课的内容,送上两位数学家的名言,是想让学生明白通过积极的思维,积极的思考,体验一种智慧才能体验到数学学习带给我们的那种成就感,鼓励学生多思多学,研究数学,乐学数学。
本节课还存在着许多不足:
1、教学环节的处理上,红点二的处理教学顺序有点乱,应该在同学说思路的同时随机板书学生算式,然后再来处理第二种思路。
2、解决问题的课应训练学生分析数量关系,说清思路,掌握策略和方法,本节课在培养学生分析问题和理清思路上还存在着很大问题。
3、在反馈上,对于生成的问题,处理的不及时,不到位,不能关注到个别学生的思维。
4、整堂课的时间把握不好,所以前面用时过多,后面的练习未能处理,使得整节课练习的效果不好,不能及时巩固本节课的学习内容。
分数乘法教学反思篇二
这节整理复习课我对分数乘法知识进行一次梳理,给学生建立一个完整的分数乘法知识体系,巩固对乘法知识的掌握和理解应用。
本节课是一节复习练习课,内容学生都已经基本掌握,所以,我放手让学生自想、自做、自讲、自论。先是学生自己思考,独立完成,然后上台解答,自己讲解方法,如有疑问可以自由进行交流,最后集体订正。整个过程都是学生在互相交流、讨论、讲解,每个学生都是那么的认真、积极,似乎比老师问、讲兴趣更高。在没有太大难度的练习题中,一直采用这种方式,学生学的主动、积极。就连学困生也很主动地进行参与。
让学生进行解决简单问题的练习。在练习中,通过小组间的合作,优生带差生的方式,在小组合作中,我还重点培养优生的讲题能力,引导优生如何利用实践操作帮助学困生进一步理解和掌握解决关于倍的知识和技能。从而为课堂节约了时间,使老师有了更多的时间去关注学困生。
由于本节课主要是针对全体学生的一次整理复习,所以设计上并没有出现太大难度的题型,使得优生有点浪费时间。在以后练习课中,不仅要考虑到学困生的能力,还要考虑到优生的特点,使每个学生都有大的收获。
分数乘法教学反思篇三
课上充分利用知识间的内在联系,向学生提供充分从事数学活动,探究的机会,让学生在自主探索、合作交流中得到发展,提高思维,培养创新能力。
创设情境,质疑猜想。
师:你能说说你现在最想解决什么问题?
生:整数乘法运算定律可以推广到分数吗?会不会让计算也变得简便呢?出示课题,画上一个“?”通过创设的问题,引发学生的认知冲突,进而组织学生猜想:能否推广到分数乘法。
让学生自由的发表自己的猜测。验证完合理性后,在例题教学中,我决定现由学生个体尝试,碰到困难,可求助于学习小组,然后再到小组交流,进而过渡到全班汇报。步步为营,层层递进,始终紧扣重点“简算时,运用了什么定律”展开,实践自己探究出的新知,使学生获得成功的体验,增强学习数学的信心;独立解答,再在小组内交流,也使合作学习落到实处,进一步扩充了课堂教学的信息渠道。在我设计的练习题中,通过多样化的形式,如选择,判断,填空等,加深对新授的理解和难点的突破。有助于学生形成良好的认知结构。总之,本堂课将立足学生,培养他们学习的能力和创新的意识,为学生今后的发展,提供良好的锻炼空间和舞台。
分数乘法教学反思篇四
教学就是一个摸索的过程,年轻人有朝气但缺经验,老教师有经验但缺热情。虽然教了几次六年级对于很多内容的教法却一直没有定型也不能定型。
原来对于分数乘法只是从做法上进行教学师生都感觉很简单,一般第一单元测试基础差、思维差的同学也能考到90多分,所以为了节约时间,让学生不只是乘,而把乘法这个单元一带而过,和分数除法一起学习,在对比中让学生明白道理,选择做法。但综合到一起学习,学生刚开始也是错误百出,只能机械地告诉学生单位1已知用乘法,单位1未知用除法,加上学生约分出现约分不彻底,成了一锅浆糊慢慢理。不过,这样好像也能比进度慢的老师成绩好一点,但对于基础特差的学生似乎有点残酷。
我决定在分数乘法这一单元让学生彻底明白道理,深入每位学生心里,一步一个脚印地学习。于是在学新课之前,我先对五年级的公因数、公倍数问题进行复习,发现这个难点依然值得深入复习,学生对互质数等基本概念都忘了,特殊数的最大公因数更是错误百出。深入对约分环节打好基础,也为整个小学阶段的复习打下坚实的基础。
然后让学生应用中多说道理,同桌互为老师讲一讲道理,避免学生理解表面化,真正理解了分数乘整数的意义。分数乘分数让学生折一折、涂一涂,操作中自然理解更深入,学习更有兴趣。虽然多耗点时间,但这样学习才能真正面向全体,基础更扎实,后续学习更高效而有兴趣。
知其然更要知其所以然,说着容易,但体现在教学的每一步并不容易。
分数乘法教学反思篇五
1、每节课的内容不易过多,不能贪多,贪多嚼不烂,学生不易一下全掌握。要分的稍微细致一些,以便学生理解掌握,也有利于知识的扩展与深化。
2、分数乘法中:求一个数的几分之几是本册中的中心,是重点。本册所有数与代数教学内容都是围绕着这一中心展开的。
3、由于我没有经验,以至于在教学中没有强化分率与数量的一一对应关系。在后来的混合计算这一章中进行应用题教学学生理解起来有困难。
针对以上失误,在今后教学中要补充的内容是:
1、让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
2、强化分率与数量的一一对应关系。
3、帮助学生理解“一个数的几分之几”与“一个数占另一个数”的几分之几的不同。
分数乘法教学反思篇六
教学了《分数乘法(一)》。我将本课的教学目标定位为理解分数乘法的意义及算理、算法。与本课相联系的学生的学习起点是整数、小数乘法的意义,算理与算法。分数加减法的算理算法。我在复习铺垫环节,抓住了“分数”、“乘法”两个关键字。在备课时,可以从两个角度进行思考:第一,分数乘法的算理、算法基础是分数加减法;第二,因为是乘法所以又涉及到乘法的意义。因此在教学时,我对分数的加减法进行了深入复习,对乘法的.意义也进行了强调。由此,再迁移出分数乘法,学生觉得很轻松。
另外,许多同学在预习时已经会算,即已经通过自学知道算法是什么,但这仅是限于机械地记忆,没有理解其背后的本质。因此,在教学过程中,我认为教师可以结合画图,帮助学生数形结合去理解乘法的意义和算法。算理和算法在本课中,我认为已经浑然一体,不需分割。在解释算理的过程中,学生即总结出了算法。
分数乘法教学反思篇七
分数乘法一单元已经学完,我们往往感觉学生学的很好。应用分数乘法的意义去解决问题,也能列出算式。其实不然,当我们学学完第二单元分数除法时,我们就会惊奇的发现,原来事情不是这样的。学生不知道是列方程还是直接去乘分数。学生往往难于判断究竟把那个数量作为去乘还是去除以几分之几。于是乎,我们的教学就又陷入了瘫痪。富有经验的老师在多次尝试失败以后,在此处,都既无可奈何又顺理成章的选择了五步走的方法。即:一,判断单位一;二,画图;三,写出数量关系式;四,判断单位一已知还是未知;五,已知直接乘未知用方程。教参71页提出现在采用方程解,化难为易,思路比较统一。所以,五步强调方程先入为主。其实不然,学生由于目前接触到的都事用算术方法比较简单的,所以方程的优越性不是很明显,学生还是选择算数方法的比较多。我没有过多的统一。而是任其自由选择。
我重点思考的在于新教材与老教材先比,本部分知识简化了那么多内容,为什么还是学起来很费劲呢?我想,我们的新课改目的是好的,素质教育是好的但是,我们每个人从小接受的教育不都是德智体美劳全面发展吗?什么时候我们都不能认为减少数学知识容量就是素质教育了。反而,正是因为减少了锻炼的机会和次数,我们学生的某些数学功能正在退化。我们都明白,只有加强锻炼,我们的身体才能更强壮。数学能力也是如此。
分数乘法教学反思篇八
分数乘法这一单元内容包括:分数乘法的意义和计算方法以及分数乘法的应用。内容不仅多并且较抽象,学生理解较难。
分数乘法的意义在整数乘法的基础上有了进一步的拓展和延伸。特别是对一个数乘分数的理解上是这一单元的重点和难点。利用图形使抽象的问题直观化,在本单元教学中就显得重要了。
回顾分数乘法这一单元教学的备课时一直被如何处理分数乘法意义所困惑。后来一想,如果从数学应用的角度来看,学生只要能从具体的实际问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。
在教学分数和整数相乘时,根据学生的已有的知识基础,引导学生回忆复习整理整数乘法的意义和同分母分数的加法的计算法则。另外科学的学习方法,能提高学习效率,能使学生的智慧得到充分发挥。
在教学分数和整数相乘的计算法则时,我指导学生从读一读,说一说,练一练,想一想,议一议五个方面入手,例如:教学3/10×5,首先要让学生明确,要求5个3/10相加的和,也就是求3/10+3/103/10+3/10+3/10是多少,并联系同分母分数加法的计算得出3+3+3+3+3/10,然后让学生分析分子部分5个3连加就是3×5,并算出结果,在此基础上,引导学生观察计算过程,特别是3/10×5与5×3/10之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练6×3/10,然后进行集体交流,看一看能不能在相乘之前的哪一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的先约分。
在数量关系的理解时,紧紧依托于图像的直观性,这就是我们通常理解的图形与数量的结合。变抽象为直观,用直观的图示帮助学生理解抽象的文字表述,再逐步使学生脱离直观上升到抽象语句的规律性理解和掌握。例如在教学一个数乘分数的意义时,就要引导学生用图示的方式方法理解把一个数平均分成了几份,表示这样的几份,就是求这个数的几分之几是多少,反之求一个数的几分之几是多少,直接用乘法来列式即可。同时引导学生直观的感知到了积小于被乘数的道理。下一步教学计算时更是要借助图示来帮助理解等于几的道理。用图形表征让学生充分观察理解分数乘分数的这一比较复杂的计算过程。引导归纳得到一个规律性的结论:分子相乘做积的分子,分母相乘做积的分母,能约分的要先约分才比较简便。
在分数乘法的应用时,主要是用画线段图的方式来帮助学生建立数量与分数之间的对应关系。进一步使学生理解和明确分数乘法的应用就是对分数乘法意义的拓展和深化。
数学的理解是离不开图形的辅助的。图形和数量是数学学习的一对相互依附的对象。要学好数学就要教师帮助学生建立用一定的符号、图形来翻译抽象的数学内涵,变深邃为简约,更有利于学生的深刻理解和掌握,为进一步的学习数学知识积累数学活动的经验吧。
在教学《分数乘法》时,我重点让学生掌握分数乘法的计算方法,坚持每天进行口算训练。对于求一个数的几分之几是多少的应用题,能联系一个数乘分数的意义进行教学,注重加强分析题目的数量关系,明确把谁看作单位"1",但也忽略了单位化聚的方法复习以及一些重点评讲。以后应从以下几点来加强日常教学。
1、在教学中多进行题组训练,突破难点,让学生充分感知提炼方法。
2、教学中要注意用线段图表示题目的条件和问题,这有利于学生弄清以谁为标准,让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
3、帮助学生理解"一个数的几分之几"与"一个数占另一个数的几分之几"的不同。
4、加强单位化聚方法的复习,如时=()分吨=()千克。
通过努力结合现实的问题情境,引导学生理解分数乘法的意义。练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合。创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算,又可以启发学生用加法算出3/10×5的结果。
总之,在上数学课时尽量地充分调动学生的各种感官,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。
分数乘法教学反思篇九
今天的教学内容是分数乘法(三),重点是巩固和进化理解分数乘法的意义,探索分数乘分数的计算法则。
数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:
一、引导学生通过用图形表示“一尺之捶,日取其半,万世不竭”的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。
二、以3/4×1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后在根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程是学生巩固分数乘法的意义,体会分数乘分数的计算过程。
三、学生运用数形结合的方法独立完成教材中的试一试,进一步达成以上目标,并为总结分数乘分数的计算积累认知。
可以说整体教学的效果很好。
通过今天的课我有了一下的认知:
(二)中是利用具体的实物图形,帮助学生从具体问题中抽象出数学问题;在分数乘法(三)中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象,也就是要讲“以形论数”和“以数表形”两个方面有机的结合起来,只有完整的是学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。
在本单元的教学目标中,“探索”是一个关键词——“结合具体的情境,在操作活动中,探索并理解分数乘法的意义”、“探索并掌握分数乘法的计算方法,并能正确计算”。这是由数学目标中“数学过程”“问题解决”两个维度决定的;同时“探索”的过程也是达成“情感、态度和价值观”目标的重要途径。
在教学过程中,组织学生进行对数学知识的探索活动,要根据不同的材料和背景采用不同的策略才能达到是活动有效的目的。例如在本单元的分数乘法(一)中,由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。而在分数乘法(三)中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的策略就比较妥当了。具体的讲就是:教师通过简单的具体事例进行集体引导,这便是“扶一扶”。再通过具体的探索要求帮助学生尝试着探索比较复杂的实例,这便是“放一放”。
单元小结。
第一单元的新课已经结束了,接下来的几节课都是练习课,到昨天为止已经上了三节。整理这三节课,对在新课程背景下的数学训练有了一些新的认识:
“训练”马上就“色变”,认为将回到传统教育的老路上去了。我们冷静下来思考一下就会发现:我们现在所热衷的“组织学生探索数学知识,使他们经历数学知识的形成过程”实际上就是以学生“已有的知识经验”为基础的。如果学生对已有的'数学知识理解掌握的不深刻、应用的不灵活,那么又如何能够进行新的认识活动呢?因此数学探索和数学训练往往是相互作用、互为基础的。
2在新课程背景下,我们需要什么样的数学训练。
数学训练不等于“机械、重复”,应该体现对数学基础知识的应用性的训练。
(1)、说理性训练。学生对一个数学知识掌握总是要经历一个由“具体——抽象——具体”的认识过程,其中数学基础知识的形成过程(具体——抽象),可以说是一个抽象概括(数学建模)的过程,而数学基础知识应用的过程(抽象——具体),可以说是一个演绎推理(对模型的解释与应用)的过程。在从具体到抽象的过程中学生认识的是数学基础知识的本质属性,在抽象到具体的过程中学生将认识到数学基础知识的应用范围(概念的外延),这是将起到深化理解概念和灵活应用概念的作用。在此过程中,学生将把数学基础知识的成立条件与具体问题中的条件进行比对,进行一系列的思维活动,由于小学生的思维处于发展的阶段,他们的内部言语并不发达,是片断的、条理性不强的,所以用学生的外部语言表述来促进其内部言语的整合与条理,这就是重视“说理训练”的意义所在。
(2)、图形表征的训练。数与形是数学研究的两大对象,他们相互作用,互为表里。每一个形中多蕴含着一定的数量关系,而每一个数又都能通过图形直观的描述和反映。教学实践是我们有了这样一个认识:学生对数学知识的获得或是应用数学知识解决具体的问题,往往都是完成对数学语言、数学符合、数学图形的翻译过程。因此,有意识的训练学生用图形表征已学的数学知识,将有利于学生深刻的理解和掌握,并能为学生进一步学习积累数学活动的经验。
(3)、计算技能的训练。当一个数学问题的解答思路确定之后,接下来的就是通过计算得到正确答案的过程。无论解决问题的思路多么的完美,如果不能准确、熟烂的计算,那么学生将不会完美的解决一个问题。再有对于比较复杂的问题,如果能通过口算或估算出没一个关键的数值,往往对解决问题有着至关重要的促进作用。因此,我们在教学中应该重视对学生基础口算的训练,加强估算能力的培养。
数学训练的内容应该突出基础性和应用性。数学训练的形式不应该是单一的、枯燥的,应该结合训练的内容和学生的具体情况突出趣味性、灵活性、竞争性、多样性。
根据以上的思考自己在这三节课的教学是这样安排的:
第一节:
2口算训练(直接写得数),通过观察发现分数乘法的因数与积之间的关系,在通过图形表征,应用分数乘法意义理解这种关系,深化对分数乘法意义的认识。
3单位转化,初步应用分数乘法意义解决实际问题。
第二节:
1解决具体问题(求一个数得几分之几是多少),感知分数乘法意义的应用。
2集体交流,剖析解题的思路。
3专项训练,理解分数条件(图形表征、语言叙述)。
4巩固练习,渗透对应思想。
分数乘法教学反思篇十
在教学这部分内容的时候我更加深刻感受到“求一个数的几分之几“用乘法这部分内容需要补充的`必要性。同时有以下想法。
学生画线段图的技能相对较弱。在学生这部分内容的时候我加强了学生画线段图的练习。效果不错。同时为后面更加复杂的内容的学习打好基础。
虽然学生能够结合线段图理解分数的含义。我觉得还是不够的 ,应该让学生多说,说一说分数所表示的含义究竟是什么,也可以用手“比划“的方法。充分说一说是把谁平均分成多少份,谁相当于其中的多少份。让学生对于单位1有充分的认识。
让学生结合具体的问题多来说一说为什么用乘法。在理解题意的基础上说一说求谁,就是求谁的几分之几,用乘法计算。说的练习是一个内化的过程。我觉得是非常非常重要的环节。
练习四中第4题是存在两个单位1的分数乘法应用题。在解决这个的问题的时候,不能图快。要让班里每一位同学都彻底明白这个问题中存在两个单位1.如何分步进行计算。
分数乘法教学反思篇十一
学好应用题能有效提高学生的分析能分析思维能力,求一个数的几分之几是多少的应用题,是学生学习分数应用题的起始内容,是学习分数应用题的基础,在本课教学中,我努力做到了以下几点:
《国家数学课程标准》指出:数学教学要从学生的生活经验和已有的知识背景出。
发,向他们提供充分的从事数学活动和交流的机会,教学一开始我就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目,再让学生介绍本班的情况,引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。
每个学生是不同的个体,他们的思维方法可能千差万别,他们对教材也会有不同的。
理解。学生的这种不同理解,其实就是一种很好的课程资源,在新知教学过程中,学生在理解题意的基础上,先画线段图,后尝试解答,再合作研讨。如:在计算我班参加田径队的有多少人,在巡视检查的过程中,发现学生有两种解法:(1)49÷7×2(2)49×。于是我请两位同学上台板演,并要求他们讲讲自己解题的想法。在此基础上引导学生分析比较两种解法的联系。同学们在合作探讨中清楚地认识了两种求法实际上都是求49的2/7是多少,在这个过程中,学生的想法得到了充分的肯定和鼓励,同时也拓宽了其他学生的思路。
如何让学生体会学习数学有用,学习数学有价值。我想,最好的办法是设计相关练。
习,让学生应用所学的数学知识来解决实际问题,由此来体会数学与生活的密切联系。在本课教学中,我采用新颖的图文结合的形式呈现问题,通过尝试计算我们班参加烹饪组的有多少人、参加田径队的有多少人,为学生创造了学数学的氛围,又巩固了分数乘法应用题的数量关系,渗透了学法指导,培养了学生的探究能力,在练习过程中,有效地培养了学生选择信息、加工信息、整合信息的能力。以人为本是新课程改革的核心理念。在教学中,我们要创造性使用教材,让教材真正成为学生自主开展数学学习的有效素材,我们应从学的层面对教材进行学习化的加工,应站在学材的视角上对教材从内容、结构、呈现方式等多个角度作出理性重构,努力使教学内容为学生所喜欢。我们要给学生提供充分探求的空间,有力促进学生积极、主动、高效地学习,让学生真正成为课堂教学的有效资源。我们还要精心设计练习,使学生学以致用,体会到学数学有用。总之,我们要努力让数学课堂成为焕发学生生命动力的殿堂!
分数乘法教学反思篇十二
在教学一个数乘分数的好处和分数乘分数的计算法则中,透过操作、演示、观察、比较等活动,即先形象具体,后抽象概括,帮忙学生理解分数乘法的好处和算理。在教学中,教师要引导学生操作,直观感悟,使学生参与到教学中来,充分发挥学生的主动性,调动学生的用心性。
从已学知识的基础上出发,利用知识的`迁移和扩展,理解分数乘法的好处。教学时先透过对整数乘法的复习,使学生明确整数乘法的好处,再充分利用直观图,使学生清楚地看出能够用加法计算,也能够用乘法计算。
引导学生把直观操作与抽象推理相结合,理解分数乘法的计算法则的推导过程。
由于分数乘法的计算法则比较抽象,学生理解起来有必须的困难。教学时我尽量加强直观,变抽象为形象,多给学生创造对手操作的机会,激发学生学习的兴趣,使他们主动地参与到教学过程中来。在直观操作的基础上在推导出分数乘分数的计算方法,进而概括出分数乘法的法则。
培养学生良好的计算习惯和认真的学习态度。学生掌握这部分资料并不困难,但要透过这部分资料的学习和练习,培养其认真审题、注意运算顺序、观察数字特点,、选取简便方法等良好的计算习惯和严谨认真的学习态度,为他们以后的学习打好基础。
在教学过程中,要以教师为主导,学生为主体,为学生创造参与教学活动的情景,透过操作、演示、观察、比较培养学生的抽象概括潜力,透过分析讨论,培养学生的分析综合潜力。同时,教学过程中要注意抓住新旧知识的内在联系,使学生了解知识g的横向联系。学生在联系和比较中找到了知识与知识之间的联系,并获得探索知识的体验。
还要重视学法指导,培养学生的内推力。
分数乘法教学反思篇十三
今天教学分数乘法应用题,在昨天的预备教学时,我便让学生做了预备题,即写出一句话,让学生先找出单位“1”,再让学生写出数量关系式,通过几题的训练,我觉得学生已经掌握了这种题型的数量关系,开始教学学生例题,学生学得也不错,然后让学生口述练一练的单位“1”与数量关系式,最后让学生解答,学生也顺利解答出来,但在中午所做的家庭作业中不少学生还出现了明显的错误。
中午做学生对19页的'练习三第五题有大约二十个同学分不清单位一或数量关系而出错;下午做补充习题时也有学生在填单位“1”时出错,从这儿可以看出,我班学生对单位“1”的确定及数量关系式的确定还存在一定的缺陷,需要加强这方面的练习。如何准确定位单位“1”是一个关键问题,同时,现在还仅仅学习分数乘法应用题,学生还不会混淆、出大错,因此,应在这时让学生进行强化训练,力争使每一个学生都能准确找出单位“1”,定位数量关系式,这样,等到学生学习分数除法应用题与稍复杂的分数应用题时才不会出错。
分数乘法教学反思篇十四
“求一个数的几分之几是多少”的乘法应用题是学生已经掌握了分数乘法的计算方法和分数乘法的意义上进行学习的。它是分数应用题中最基本的、最基础的,不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,学生掌握这种应用题的解答方法具有重要的意义。在本课教学中,我努力做到了以下几点:
本节课中,找准单位“1”,写出数量关系式是解分数应用题的关键。因此在新课之前,我出示了这样一组练习做铺垫:
(背投出示)。
1、列式解答。
(1)20的1/5是多少?(2)6的3/4是多少?
求一个数的几分之几是多少,用乘法来计算。
2、找单位“1”,说关系式。
(1)、男生占总人数的2/3。
(2)、红花占总数的5/6。
(3)、一本书,读了3/4。
(4)、一条路,还剩下1/4没有修。
为本节课的新知识做好了准备。
小学生思维处于无序思维向有序思维的过渡阶段。因此,教师要积极地引导和帮助学生过渡这个阶段,训练思维的条理性。在教学这节课时,我特别注重让学生分析表示数量间关系的句子,也就是关键句,在关键句中找出哪个量是单位“1”,哪一个是比较的量,然后分析分率的意义,根据题意画线段图,根据线段图列出等量关系,寻求已知量和未知量,根据关系进行解答。
解答分数问题的关键是弄清楚题中的数量关系,这也是课堂教学的重难点。运用直观的线段图来表示题中的数量关系,有助于学生理解题意。在这节课上,我让每个孩子动手,在理解题意的基础上画出线段图,然后让学生观察、分析、比较,鼓励学生互相讨论,得出哪种线段图最完整,能够看图就能知道题的意思。这一环节使每一位学生都积极认真的参与到学习之中。
这节课也有不尽人意的地方。因为这一段学习的都是分数乘法,学生更多的时候不认真审题,分析数量关系,往往想也不想看到分数就与整数相乘,就知道列乘法算式,好像在套模式。看来学生对分数乘法的认识还是不那么理解。我想,学习了分数除法应用题,与除法进行对比练习后,学生可能才会有更深刻的理解。
分数乘法教学反思篇十五
1、每节课的内容不易过多,不能贪多,贪多嚼不烂,学生不易一下全掌握。要分的稍微细致一些,以便学生理解掌握,也有利于知识的扩展与深化。
2、分数乘法中:求一个数的几分之几是本册中的中心,是重点。本册所有数与代数教学内容都是围绕着这一中心展开的。
3、由于我没有经验,以至于在教学中没有强化分率与数量的一一对应关系。在后来的混合计算这一章中进行应用题教学学生理解起来有困难。
针对以上失误,在今后教学中要补充的内容是:
1、让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
2、强化分率与数量的一一对应关系。
3、帮助学生理解“一个数的几分之几”与“一个数占另一个数”的几分之几的不同。
4、利用分数化单位,如:2/5时=()分1/5吨=()千克。
分数乘法教学反思篇十六
分数乘法是在前面学生掌握了整数乘法、分数加减法、分数的意义和性质等知识的基础上进行教学的。
1.明晰分数乘法的意义。分数乘法包含两种情况:一种是分数乘整数,另一种是分数乘分数。在教学分数乘整数的意义中又分为两种情况:一是分数乘整数;二是整数乘分数。虽然它们的计算方法相同,但是表示的意义却不相同。学生非常容易在此处出现意义上的模糊。例如:2/3×4表示4个2/3是多少,而4×2/3表示4的2/3是多少。教学分数乘分数的意义时,学生出错较少,能够清晰的表示出分数乘分数的意义。
2.明确分数乘法的计算方法。在教学中,对于分数乘整数的计算方法要让学生明确分数的分子与整数相乘的积作分子,分母不变;而对于分数乘分数的计算方法要让学生明确分子相乘的积作分子,分母相乘的积作分母。在计算中先约分,再计算,会使计算变得简便。
1.学生在计算分数乘整数时,还是有个别同学把整数和分子约分计算,还有的出现先计算,再约分,容易出现约分后的分数不是最简分数。
2.在计算小数乘分数时,学生容易出现小数与分母约分后得整数的现象。
3.在简便方法计算时,学生容易出现应用乘法分配律进行计算的错误。特别是形如2/9-2/9×7/16这样的题目,学生往往不知道是应该应用乘法分配律来进行计算。
1.强调分数乘整数的计算方法,特别是整数必须要与分母约分。
2.强化练习形如2/9-2/9×7/16这样的题目,避免学生在此题目上出错。
分数乘法教学反思篇十七
新世纪小学数学五年级下册第一单元是《分数乘法》,本单元学习的主要内容有:分数乘整数、分数乘分数以及解决有关简单的实际问题。其中分数乘法(一)的主要内容是求几个相同分数的和,将分数乘法与整数乘法沟通,并探索分数乘整数的计算方法;分数乘法(二)的主要内容是求一个数的几分之几,将分数乘整数的意义加以扩展;分数乘法(三)的主要内容是分数乘分数的意义及计算方法。在教学如何引导学生理解分数乘法的意义时,我进行了一些思考。
一、分数乘法的教学中,在书写顺序中应该不区分被乘数与乘数。
小学数学第一学段学习乘法的认识时就取消了乘数和被乘数的区别,3×5既可以解释为3个5,也可以解释为5个3,学生借助具体情境认识到乘法是几个相同加数的和的简便运算。
本册教材第2页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?
教学时,通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,理解题目的意思就是求3个1/5的和是多少?),让学生列式可以是1/5×3也可以是3×1/5。然后运用分数乘整数的意义解释计算的过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。
又如:教材第5页:小红有6个苹果,淘气的苹果数是小红的1/2,淘气有多少苹果?
教学时,通过直观图引导学生理解题目的意思后(6个苹果的1/2是3个苹果),要有意引导“求淘气有多少苹果,就是求6的1/2是多少?”再通过另一种解决问题的方法:把每个苹果都平均分成2份,淘气是6个1/2,也就是6×1/2或1/2×6,从而用6×1/2或1/2×6两种列式方法解决了问题。最后,再引导学生比较两种不同的理解,从而拓宽了分数乘法的意义。也让学生初步体会到求6的1/2是多少?可以用6×1/2解决也可以用1/2×6解决。
二、注意让学生在具体的情境中理解分数乘法中隐藏的数学意义。
书写顺序中不区分被乘数与乘数,更要求我们在教学中一定要注意让学生在具体的情境中,理解情境描述中隐藏的数学意义!因此,通过具体情境,来呈现对分数乘法意义的多种解释,帮助学生理解分数乘法的意义则显得重要。如:上面所讲教材第2页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?教学时,一定要让学生明白是求3个1/5的和是多少?,虽然,学生列出1/5×3或3×1/5解决了问题,但一定要让学生联系本题情境理解算式所表示的意义。
又如:刚才所举的例子:小红有6个苹果,淘气的苹果数是小红的1/2,淘气有多少苹果?当学生用6×1/2或1/2×6解决了问题后,一定要有意让学生明白:本题情境可以理解为求6的1/2是多少?从而让学生体验到求一个数的几分之几是多少可以用乘法计算。
三、要让学生从多角度理解分数乘法的意义
在避开具体的情境下,要让学生从多角度理解分数乘法的意义。如:1/5×3(3×1/5)表示的意义可以是求3个1/5的和是多少?求1/5的3倍是多少?或者把3缩小到原来的1/5实际上就是求3的1/5是多少?等。
又如:求3的1/5是多少?列式解答可以是1/5×3也可以是3×1/5。
关于分数乘法的以上解释,并不是哪一种解释是正确的,重要的是对于一个数学概念,我们应该尽可能多地让学生认识到不同的解释,这对于发展学生的数学概念是非常有益的。
分数乘法教学反思篇十八
在备课时一直被如何处理分数乘法意义困惑。后来想一想,如果从数学应用的角度来看,学生只要能从具体的问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的.关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。想明白了这一点,回头看看过去的教学,在这方面好像就真的把问题复杂化了。
本单元的重点有两个:一是乘法意义的拓展及简单的应用,二是分数乘法法则的掌握。从教材整体编排上看,这两个重点是交织在一起的:
分数乘法(一)通过对具体问题的解决使整数乘法意义迁移到分数乘法,并使学生在解决问题的过程中理解分数乘整数的计算法则,能正确熟练的计算分数乘整数,正确熟练的解决一些简单的实际问题。
分数乘法(二)通过对具体问题的解决,使乘法的意义得到拓展,认识到“求一个数的几分之几是多少”也用乘法,并能正确地应用之解决实际的问题。
从以上的分析来看分数乘法(一)作为本单元的起始课就有着至关重要的作用。
在教学中我先放手让学生解决教材上提供的具体问题,在讲评的过程中,有意识的分为两个层次:一是通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,二是运用分数乘整数的意义解释计算的地过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。“涂一涂、算一算”的重点放在“涂”上,使学生巩固意义,同时通过以形论数理解计算的道理。试一试的重点则在分数乘整数计算法则的总结。这节课的教学过程概括起来:以分数乘整数的意义为起点,以分数乘整数的法则为归宿。
今天教学的内容是分数乘法(二),重点是分数乘法意义的拓展——“求一个数的几分之几是多少”,这部分内容既是这个单元的重点,也是这个单元的难点。
从学生认识过程来看,这部分知识的基础是分数意义和整数乘法的意义。在教学中我突出了类比迁移和数形结合的方法,首先改编了教材的例题——“小红有6个苹果,笑笑的苹果数是小红的2倍,淘气的苹果数是小红的1/2”,根据呈现的已知条件学生提出数学问题:“笑笑有几个苹果?淘气有几个苹果”然后教师引导学生先用图形表示出“笑笑的苹果数是小红的2倍,淘气的苹果数是小红的1/2”,再列出算式,最后尝试解释算式表示的意义。这样把将分数意义以图的形式呈现,做到“以形论数”,在通过对图的理解抽象出问题实质就是求“一个数的几倍(几分之几)是多少”,运用类比的方法得出“求6的2倍是多少”和“求6的1/2是多少”都用乘法,进而列出算式,完成“以数表形”,使学生理解“求一个数的几分之几是多少”用乘法的道理。
今天的教学内容是分数乘法(三),重点是巩固和进化理解分数乘法的意义,探索分数乘分数的计算法则。
数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:
一、引导学生通过用图形表示“一尺之捶,日取其半,万世不竭”的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。
二、以3/4×1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后在根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程是学生巩固分数乘法的意义,体会分数乘分数的计算过程。
三、学生运用数形结合的方法独立完成教材中的试一试,进一步达成以上目标,并为总结分数乘分数的计算积累认知。
可以说整体教学的效果很好。
通过今天的课我有了一下的认知:
(二)中是利用具体的实物图形,帮助学生从具体问题中抽象出数学问题;在分数乘法(三)中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象,也就是要讲“以形论数”和“以数表形”两个方面有机的结合起来,只有完整的是学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。
在本单元的教学目标中,“探索”是一个关键词——“结合具体的情境,在操作活动中,探索并理解分数乘法的意义”、“探索并掌握分数乘法的计算方法,并能正确计算”。这是由数学目标中“数学过程”“问题解决”两个维度决定的;同时“探索”的过程也是达成“情感、态度和价值观”目标的重要途径。
在教学过程中,组织学生进行对数学知识的探索活动,要根据不同的材料和背景采用不同的策略才能达到是活动有效的目的。例如在本单元的分数乘法(一)中,由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。而在分数乘法(三)中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的策略就比较妥当了。具体的讲就是:教师通过简单的具体事例进行集体引导,这便是“扶一扶”。再通过具体的探索要求帮助学生尝试着探索比较复杂的实例,这便是“放一放”。
单元小结。
第一单元的新课已经结束了,接下来的几节课都是练习课,到昨天为止已经上了三节。整理这三节课,对在新课程背景下的数学训练有了一些新的认识:
“训练”马上就“色变”,认为将回到传统教育的老路上去了。我们冷静下来思考一下就会发现:我们现在所热衷的“组织学生探索数学知识,使他们经历数学知识的形成过程”实际上就是以学生“已有的知识经验”为基础的。如果学生对已有的数学知识理解掌握的不深刻、应用的不灵活,那么又如何能够进行新的认识活动呢?因此数学探索和数学训练往往是相互作用、互为基础的。
2在新课程背景下,我们需要什么样的数学训练。
数学训练不等于“机械、重复”,应该体现对数学基础知识的应用性的训练。
(1)、说理性训练。学生对一个数学知识掌握总是要经历一个由“具体——抽象——具体”的认识过程,其中数学基础知识的形成过程(具体——抽象),可以说是一个抽象概括(数学建模)的过程,而数学基础知识应用的过程(抽象——具体),可以说是一个演绎推理(对模型的解释与应用)的过程。在从具体到抽象的过程中学生认识的是数学基础知识的本质属性,在抽象到具体的过程中学生将认识到数学基础知识的应用范围(概念的外延),这是将起到深化理解概念和灵活应用概念的作用。在此过程中,学生将把数学基础知识的成立条件与具体问题中的条件进行比对,进行一系列的思维活动,由于小学生的思维处于发展的阶段,他们的内部言语并不发达,是片断的、条理性不强的,所以用学生的外部语言表述来促进其内部言语的整合与条理,这就是重视“说理训练”的意义所在。
(2)、图形表征的训练。数与形是数学研究的两大对象,他们相互作用,互为表里。每一个形中多蕴含着一定的数量关系,而每一个数又都能通过图形直观的描述和反映。教学实践是我们有了这样一个认识:学生对数学知识的获得或是应用数学知识解决具体的问题,往往都是完成对数学语言、数学符合、数学图形的翻译过程。因此,有意识的训练学生用图形表征已学的数学知识,将有利于学生深刻的理解和掌握,并能为学生进一步学习积累数学活动的经验。
(3)、计算技能的训练。当一个数学问题的解答思路确定之后,接下来的就是通过计算得到正确答案的过程。无论解决问题的思路多么的完美,如果不能准确、熟烂的计算,那么学生将不会完美的解决一个问题。再有对于比较复杂的问题,如果能通过口算或估算出没一个关键的数值,往往对解决问题有着至关重要的促进作用。因此,我们在教学中应该重视对学生基础口算的训练,加强估算能力的培养。
数学训练的内容应该突出基础性和应用性。数学训练的形式不应该是单一的、枯燥的,应该结合训练的内容和学生的具体情况突出趣味性、灵活性、竞争性、多样性。
根据以上的思考自己在这三节课的教学是这样安排的:
第一节:
2口算训练(直接写得数),通过观察发现分数乘法的因数与积之间的关系,在通过图形表征,应用分数乘法意义理解这种关系,深化对分数乘法意义的认识。
3单位转化,初步应用分数乘法意义解决实际问题。
第二节:
1解决具体问题(求一个数得几分之几是多少),感知分数乘法意义的应用。
2集体交流,剖析解题的思路。
3专项训练,理解分数条件(图形表征、语言叙述)。
4巩固练习,渗透对应思想。
分数乘法教学反思篇十九
分数乘法如果从数学应用的角度来看,学生只要能从具体的实际问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。
在教学分数和整数相乘时,根据学生的已有的知识基础,导学稿上设计了复习整理整数乘法的意义和同分母分数的加法的计算法则。在教学分数和整数相乘的计算法则时,我指导学生联系旧知再小组中自行探究,例如:教学3/10×5,首先要让学生明确,要求5个3/10相加的和,也就是求3/10+3/10+3/10+3/10+3/10是多少,并联系同分母分数加法的计算得出3+3+3+3+3/10,然后让学生分析分子部分5个3连加就是3×5,并算出结果,在此基础上,引导学生观察计算过程,特别是3/10×5与5×3/10之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练5×3/10,然后进行集体交流,看一看能不能在相乘之前的哪一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的先约分。
练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合。创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算,又可以启发学生用加法算出3/10×5的结果。
总之,在上数学课时尽量地充分调动学生的各种感官,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。