2022年《比例的意义》教学设计(3篇)
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
《比例的意义》教学设计篇一
1、理解比例的意义,能运用比例的意义判断两个比能否组成比例,并会组比例。
2、探索国旗中蕴含的数学知识,渗透爱国主义教育,提高学生的认知能力。
3、体验获得成功的乐趣,建立学好数学的自信心。
教学重点:理解比例的意义。
教学难点:应用比例的意义判断两个比能否组成比例。
ppt课件
请同学们回忆一下上学期我们学过的比的知识,谁能说说:
1、什么叫做比?比的书写形式有哪些?
2、什么叫做比值?
一、情境引入
同学们,每个星期一的早上我们学校都会举行什么活动?我们一起说吧。
(生齐声说:升旗仪式)
课件出示:升旗仪式的情景
你们对这个情景已经非常熟悉了,你们对这面国旗的长和宽分别是多少了解吗?
不了解是吧?那老师告诉大家:
课件出示并介绍:我们这面国旗的长是2.4米、宽是1.6米。
提问:你除了在升旗仪式上还在生活中的哪些地方加到过国旗呢?
指名回答(学校周一升旗时操场上的国旗、会议桌上的国旗、教室后面的国旗、)
在很多的场合像我们的教室、还有大型的庆典活动上我们都可以看到庄严的国旗。
那么你们知道这些国旗的尺寸大小吗?追问:知道不知道?
那么下面呢我们看一下老师收集到的一些信息。
课件出示不同场合下的国旗
课件出示:不同场合下的国旗
提问:谁能用最简短的语言描述一下这四面国旗分别出现在什么地方?并读出它的长和宽(1)天安门广场的国旗,长5米,宽10/3米。
(2)学校的国旗长2.4米,宽1.6米。
(3)教室里面的国旗长60厘米,宽40厘米。
(4)会议桌上的国旗长15厘米,宽10厘米。
那我们现在看到的这些国旗的大小都一样吗?
师小结:在不同的场合的国旗的大小是不一样的。
追问:它们的形状相同吗?(相同)
尽管它们的大小不一样,但形状相同。我们看上去每面国旗在我们的眼中还是那么的庄严和美丽,那么的和谐和统一是吗?那么到底按照怎么样的标准才能制作出这种大小不同、形状相同的国旗呢?其实每面国旗的里面是否也蕴含着我们的数学知识呢—比例!(板书课题:比例)下面我们就一起来研究这个问题。
二:探究新知
下面请同学们拿出练习本,听清要求:
先写出图中国旗长与宽的比然后再求出它的比值。
学生自主计算,教师巡视。
提醒:同学们在计算时,一定要认真。注意计算结果的准确性。
哪个同学愿意和大家来分享你的成果?和大家勇敢的分享你的成果。指名回答
根据学生汇报并分类板书。
5:10/3=3/2
2.4::16=3/2
60:40=3/2
15:10=3/2
大家同意他的计算结果吗?
师:请同学们观察黑板上的计算结果,看看有什么发现。
指名回答
师小结:说的非常好,这是个很重大的发现,这四面国旗它们的长与宽都有变化,但比值都是3/2 。其实呀不止这两面红旗长与宽的比是3:2,所有国旗长与宽的比的比值都是3/2,这在国旗法中有明文规定的
板书:5:10/3 2.4:1.6
师:像这样的两个比,它们的比值相等的,也就说这两个比相等,那么我们可以用什么符号把它们连接起来变成一个等式?
来大家一起把这个等式念一下(学生齐读)5:10/3=2.4:1.6
提问:那么谁能根据这四个5:10/3=3/2
2.4:1.6=3/2
60:40=3/2
15:10=3/2
相等的比也像老师一样写一个等式呢?
指名回答并根据汇报板书
我们写的这些等式数学上把它叫做比例。谁能根据自己的理解说说什么叫做比例?指名回答
老师明确:我们把表示两个比相等的式子叫做比例。(重点强调比值相等)
大家齐读两遍,开始。
学生齐读
这就是我们今天要学习的内容—比例的意义
板书课题
提问:在读了比例的意义以后,在这句话里你认为那些字非常重要呢?
指名回答
教师明确:两个比相等并在这句话的字的下面标上黑点
表示两个比相等的式子叫做比例。
2、深入理解比例的意义
那大家看一看:15∶3和60∶12能组成比例吗?你是怎样判断的?对,15∶3的比值是5;60∶12的比值也是1.5,所以说15∶3和60∶12能组成比例。
那同学们,要判断两个比能不能组成比例,关键是看什么啊?对,判断两个比能不能组成比例,关键要看它们的比值是否相等。
追问并出示课件:那同学们,要判断两个比能不能组成比例,关键是看什么啊?
(指名回答)
大家同意吗?
对学生的回答进行评价
追问:如果不相等的话,能组成比例吗?
教学比例的另外一种写法:同学们知道比还有另外一种写法(分数的写法)像2.4:1.6=15:10这个比例还可以写成2.4/1.6=15/10,这是两种不同的写法!
(3)、合作探究:在四面国旗的长和宽的数据中,你还能找出哪些比可以组成比例??
请同学们在小组内讨论讨论!看哪个小组的同学找的多,开始吧!
班内交流:哪位同学说一说你们小组找出来哪些比例?
同学们真了不起,从这四面大小不同的国旗中,就组成了这么多不同的比例。比老师找的还多呢,请看屏幕
展示:2.4:1.6 = 60:40 (长:宽=长:宽)
1.6:2.4 = 40:60 (宽:长=宽:长)
2.4:60 =1.6:40 (长:长=宽:宽)
这里能组成的比例还有很多,同学们课下再找出其他的比例吧!
2、比和比例的区别?
(1)同学们,以前学了比,现在又学比例,那你觉得比和比例一样吗?现在老师有个问题需要同学们帮忙解决一下,请看屏幕,“比和比例有什么区别?”下面请同学们小组内探讨,一会儿告诉老师好吗?好,开始吧!
(2)交流:谁愿意来说一说你们小组讨论的结果?
(生答)
(3)展示:说的太好了,比由两个数组成,是一个式子,表示两个数相除。比例由四个数组成,是一个等式。它是表示两个比相等的`式子。,请看屏幕上的表格
三、智慧城堡
师小结:今天这节课同学们表现得特别好,我们一起去智慧城堡闯闯关同学们有没有信心?
四、谈收获
这节课,大家都非常积极和认真,老师相信同学们的收获肯定很多,那谁想来和大家分享一下你的收获呢?
五、全课总结:
师小结:比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。
比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。
《比例的意义》教学设计篇二
1、使学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别,能应用比例的意义和比例的基本性质判断两个比能否组成比例。
2、激发学生的学习兴趣,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。
理解比例的意义基本性质。
应用比例的意义和性质判断两个比是否成比例。
1、什么叫比?
2、求出下面各比的比值(小黑板)
12:16 1/4:1/3和9:12 4.5:2.7 10:6
1、教学比例的意义
(1)出示例1:同学们能写出多少个有意义的比?观察这些比,哪此能用等号连接?把能用等号连接的比用等号连接起来。这些式子都是比例,你能用自己的语言说一说什么是比例吗?
(2)归纳比例的意义
(3)2:5和80:200能组成比例吗?你是怎样判断的?
(4)完成第45页“做一做”
2、教学比例的基本性质
(1)在一个比例里,有四个数,这四个数分别叫什么名字?
(2)请同们分别找出80:2=200:5和2分之80=5分之200的内项和外项。
(3)你们任意找一个比例,把它们的内项和外项分别乘起来,双可以发现什么?
(4)指导学生归纳后,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
(5)指导学生完成第一46页“做一做”第1题。
这节课你学到了哪些知识?
创意作业:
有一房间,窗子的长是6分米,宽是4分米;门的长和宽分别是21分米和14分米,你能用已知的四个数组成多少个比例?比一比哪个同学组成的多。
《比例的意义》教学设计篇三
1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.
2.通过观察、比较、归纳,提高学生综合概括推理的能力.
3.渗透辩证唯物主义的观点,进行运用变化观点的启蒙教育.
理解正反比例的意义,掌握正反比例的变化的规律.
一、导入新课
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量
(三)教师谈话
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学
(一)成正比例的量
例1.一列火车行驶的时间和所行的路程如下表:
时间(时):路程(千米)
1:90
2:180
3:270
4:360
5:450
6:540
7:630
8:720
1.写出路程和时间的比并计算比值.
(1)2表示什么?180呢?比值呢?
(2)这个比值表示什么意义?
(3)360比5可以吗?为什么?
2.思考
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.
3.小结:有什么规律?