2023年六年级数学教案苏教版 苏教版六年级数学教案(大全17篇)
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。优秀的教案都具备一些什么特点呢?下面是小编为大家带来的优秀教案范文,希望大家可以喜欢。
六年级数学教案苏教版篇一
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2.分数的分类。
真分数:分子比分母小的分数叫做真分数。真分数小于1。
把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数。
1.表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用“%”来表示。百分号是表示百分数的符号。
根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。求比例中的未知项,叫做解比例。
将本文的word文档下载到电脑,方便收藏和打印。
六年级数学教案苏教版篇二
1、让学生经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。
2、培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。
3、让学生理解圆周率的含义,熟记圆周率的近似值,结合圆周率的教学,感受数学文化,激发爱国热情。
六年级数学教案苏教版篇三
8.什么叫合数?9.什么叫质因数?10.什么叫分解质因数?
11.能被2、3、5整除的数各有什么特征?12.什么叫偶数?
13.什么叫奇数?14.什么叫倍数?15.什么叫约数?
16.怎样求两个数的最大公约数和最小公倍数?
17.什么叫加法?什么叫减法?什么叫乘法?什么叫除法?
18.加法各部分之间的关系有哪些?减法各部分之间的关系有哪些?
19.乘法各部分之间的关系有哪些?除法各部分之间的关系有哪些?
20.四则混合运算的运算顺序是怎样的?
21.什么是加法交换律?用字母怎样表示?什么是加法结合律?用字母怎样表示?
22.什么是乘法交换律?用字母怎样表示?什么是乘法结合律?用字母怎样表示?
23.什么是乘法分配律?用字母怎样表示?
24.四则混合运算中,第一级运算有哪些?第二级运算有哪些?
六年级数学教案苏教版篇四
教学内容:
长方体和正方体的认识。
教学目标:
1、使学生通过观察实物、动手操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。
2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。
教学资源:
教学过程:
一、引入新课。
1、由平面图形引到立体图形。
接着电脑演示由面到体的过程,揭示课题:“长方体的认识”。
2、引导学生认识什么是立体图形。
指出它占有一定的空间,像这样占有一定空间的物体的形状就是立体图形(电脑显示若干立体实物)。
问:这些物体的形状都是什么图形呢?在这里面哪些物体的形状是长方体的呢?
3、举例。
让学生举出日常生活中见过的长方体的物体实例。
师:要知道这些物体为什么都是长方体,就要研究长方体的特征。
二、引导探究。
1、出示例1:
(1)拿一个长方体的纸盒来观察:
长方体有几个面?从不同的角度观察一个长方体,最多能同时看到几个面?
指导学生从不同的角度观察学具,回答上面的问题。
(2)抽象图形。
说明:因为我们最多只能看到长方体的3个面,所以通常这样画长方体。
(师边讲边画长方体的直观图,注意要规范。)。
让学生上去指一指,图上哪3个面是我们能直接看到的?另外3个面在哪里?
2、认识长方体各部分的名称。
(1)教师结合直观图逐一向学生介绍棱和顶点,并及时在图中作出标注。
(2)同桌学生用手摸长方体纸盒,互相指出长方体的面、棱、顶点。
电脑分别显示面、棱、顶点这三个部分,加深印象。
3、长方体的特征。
出示:长方体有几条棱和几个顶点?它的面和棱各有什么特征?看一看,量一量,比一比,并在小组里交流。
学生四人一组讨论长方体有什么特点,讨论后自由发表自己的看法,教师引导学生总结长方体特点。
(1)面的特点。
长方体有几个面?谁能迅速的数出长方体的6个面?比较哪一种方法好?
长方体的6个面是什么形状的?还有不同看法吗?这两个面的位置是怎样的?(可结合拍手理解“相对”)。
(还可以出示预先准备好的纸盒让学生直观感受长方体的一种特殊情况,一般来说,长方体的每个面是长方形,特殊情况也可能有两个相对的面是正方形。)。
相对的面形状相同,大小一样,可以用这四个字(出示:完全相同)来代替。(电脑演示相对的面完全相同这个特点)。
(2)棱的特点。
长方体有多少条棱呢?谁能给大家介绍一种很快的数出这12条棱的方法?
如果有学生是分组来数的,可以结合长方体铁丝框架数一数。想一想:每组有几条棱?每组4条棱的位置是怎样的?相对的棱有什么特点?(长度相等)(电脑显示棱的特点)。
(3)顶点的个数。
长方体有几个顶点?你是怎样迅速数出来的?
(4)概括长方体的特征。
____让学生看着自己的长方体纸盒说说长方体的面、棱、顶点各有什么特征。
____小结:长方体是由6个长方形围成的立体图形。它有12条棱,8个顶点。一个长方体的面可以分为3对,相对的面完全相同;长方体的棱可以分为3组,每组4条,相对的棱长度相等。
4、学习长、宽、高。
(1)问:相交于同一顶点的3条棱的长度都相等吗?
指出:长方体相交于同一个顶点的这三条棱的长度,分别叫做长方体的长、宽、高。通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(师边讲边标注)。
(2)学生选择一个长方体实物,量出它的长、宽、高。
5、认识正方体的特征。
(2)学生交流后,让他们小小组去探究。
(3)全班交流。
6、讨论长方体和正方体的关系。
(1)观察比较:长方体和正方体有哪些相同点?有哪些不同点?
明确:正方体是一种特殊的长方体。由于正方体的12条棱长度都相等,所以它的棱的长度不分长、宽、高了,就叫做棱长。
(2)选择一个正方体实物,量出它的棱长。
7、小结:今天我们一起来研究了长方体和正方体的特征,请同学们打开课本看第10—11页的内容。
三、巩固练习。
1、练习一第1题。
看图说出每个长方体的长、宽、高各是多少。
结合第3个图形再说说这个长方体的面的形状有什么特别之处。
2、练习一第2题。让学生说一说。
3、练习一第3题。让学生仔细观察后回答各问题,并说说怎么看出来的。
明确:这个长方体前后的两个面是正方形,其余的4个面是完全相同的长方形。
4、练习一第4题。
先让学生判断摆出的这几个几何体分别是长方体还是正方体,再让学生互相指一指每个几何体中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。
5、练习一第5题。
学生独立完成后交流。
四、总结。
通过这节课的学习,你有什么收获?
师:这儿有一个关于长方体特征的顺口溜。大家可以轻声读读。
出示:
长方体立体形,8顶6面十二棱;。
棱分长、宽、高,每组四条要记好;。
6个面对着放,对应面都一样。
五、课外延伸。
在家里找一个自己喜欢的长方体玩具或物体,仔细观察一下它的面、棱、顶点;或是找一些材料自己做一个长方体并涂上或画上喜欢的图案。
六年级数学教案苏教版篇五
让学生先独立完成,再点评。
2.完成“练习与实践”第8题。
引导学生列举几组对应的数值。
再分析每组中两个数的关系,再判断。
3.完成“练习与实践”第9题。
第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)。
第2小题让学生在教材的方格图上描点、连线,
引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。
体会数形结合在解决问题方面的价值。
4.完成“练习与实践”第10题。
什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)。
怎样求图上距离?怎样求实际距离。
学生量出的图上距离。
利用的线段比例尺,求出相应的实际距离。
六年级数学教案苏教版篇六
教学要求:
1.使学生进一步掌握含有百分数统计表的结构及能够准确熟练地进行数据计算与表格填写。
2.进一步培养学生观察、分析的能力。
3.通过制统计表,培养学生认真、仔细的良好习惯。
教学过程:
1.讲述练习内容。
上节课我们学习了制作含有百分数的统计表,这节课我们进行巩固练习。
2.复习。
让学生观察教材52页例1统计表提问:制一张合格的统计表的步骤是什么?(要求边看书边讨论,然后回答)。
制复式统计表的步骤:
(1)设计“表头”
(2)定纵横栏目各需几格。
(3)画表。
(4)填写数据(包括总计、合计)。
(5)写上名称、制表日期
3.巩固练习。
在学生掌握复式统计表制作方法的基础上,出示练习十七第3题。
方法:指导做题,让学生研究后再制表。
(1)提问:“各年级”和“全年级”各表示什么意思?
(2)教师巡视指导,然后让学生结合题目说一说制表的步骤。
4.综合练习。
(1)完成教材练习十一第5题。
方法:独立完成。然后让学生回答第二季度合计数填写的位置,全班齐练。
(2)完成教材练习十一第4题。
方法:要求学生认真审题,抓住关键词语,弄清数量关系,正确列出算式,准确计算。在做题时一定要注意差后,发现普通的问题要统一纠正。
5.深化练习。
练习十一第6题,不要求所有的学生都能完成,教师提示引导,学生试做。
教师引导,表中各班占总数的百分几中的总数指的是谁平均每人植树的棵数又是什么意思?学生试做后讲评。
6.全课总结。
有关统计部分的知识在我们的生活中应用很广,因此这部分知识很重要,同学们一定要牢牢记住。
7.作业(补充)。
(1)请把下面统计表填写完整。
双林衬衫厂去年各季度生产情况统计表1993年1月。
(2)填表。根据统计要求将下表填写完整。
东方小学男、女生人数统计表。
六年级数学教案苏教版篇七
教学目标:
1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。
2、发展学生思维,侧重培养学生分析问题的能力。
教学重点:理解数量关系。
教学难点:根据多几分之几或少几分之几找出所求量是多少。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)。
1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?
(1)一块布做衣服用去。(2)用去一部分钱后,还剩下。
(3)一条路,已修了。(4)水结成冰,体积膨胀。
(5)甲数比乙数少。
2、口头列式:
(1)32的是多少?(2)120页的是多少?
3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?
4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。
二、新知探究。
(一)教学例2。
1、课件出示自学提纲:
1)画出线段图,分析题意,寻找解题方法。
2)小组间说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。
3)四人小组讨论,根据线段图提出不同解决办法,并列式计算。
2、学生汇报:
解法二:80×(1-)=80×=70(分贝)。
3、学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从。
总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的。
几份之几是多少的方法求出这个部分量。
4、巩固练习:p20“做一做”
(二)教学例3。
1、读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多”表示什么意思?(组织学生讨论,说说自己的理解)。
2、引导学生将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的”。着重让学生说说谁与谁比,把谁看作单位“1”。
3、出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。
解法一:75+75×=75+60=135(次)。
解法二:75×(1+)=75×=135(次)。
4、巩固练习:p21“做一做”(列式后让学生说说算式各部分表示什么)。
三、当堂测评。
练习五第2、3、4、5题。
1、学生依据例题引导的解题方法,引导学生抓住题目中关键句子分析,找到谁与谁比,
谁是表示单位“1”的量。独立完成。教师巡回指点,照顾差生。
2、小组间解决疑难,全班汇报,教师讲评。
四、谈收获、找疑难。
这节课你有什么收获?还有什么不懂的吗?
设计意图:
例2和例3都是在理解和掌握了求一个数的几分之几是多少的问题的思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。
教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位“1”,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。
六年级数学教案苏教版篇八
教学内容:学习课本第一页的例1、完成“试一试”和“练一练”,练习一的第1至3题。
教学目标:
1.在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2.在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
教学重、难点:
理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
教学准备:
教学光盘及多媒体设备。
教学过程:
一、复习导入。
(出示下列题目,请学生解答。)。
东山村去年原计划造林16公顷,实际造林24公顷。实际造林是原计划的百分之几?
2.学生独立列式计算后进行交流,重点说说数量关系。
3.揭示课题:今天这节课我们继续学习有关百分数的知识。
二、教学例1。
1.出示例1中的两个已知条件,要求学生各自画线段图表示这两个数量之间的关系。
提出要求:根据这两个已知条件,你能求出哪些问题?
引导学生分别从差比和倍比的角度提出如“实际造林比计划多多少公顷”“原计划造林比实际少多少公顷”“实际造林面积相当于原计划的百分之几”“原计划造林面积相当于实际的百分之几”等问题。
在学生充分交流的基础上提出例1中的问题:实际造林比原计划多百分之几?
2.引导思考:
小结:要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数相当于原计划的百分之几。
启发:根据上面的讨论,你打算怎样列式解答这个问题?
学生列式计算后追问:这里得到的125%与刚才得到的25%这两个百分数有什么关系?
联系学生的讨论明确:从125%中去掉与单位“1”相同的部分,就是实际造林比原计划多的百分数。
提出要求:根据上面的讨论,要求“实际造林比原计划多百分之几”,还可以怎样列式?
三、教学“试一试”
1.出示问题:原计划造林比实际少百分之几?
启发:根据例题中问题的答案猜一猜,这个问题的答案是什么?
学生作出猜想后,暂不作评价。
2.学生列式计算后讨论:这个答案与你此前的猜想一样吗?为什么不一样?
小结:“试一试”与例题中的问题都是把实际造林面积与原计划造林面积进行比较,但由于比较时单位1的数量不同,所以得到的百分数也就不同。
四、指导完成“练一练”
1.要求学生自由读题。
学生讨论后,要求他们各自列式解答。
3.根据学生在解答过程中的表现,相机提问:计算中有没有遇到什么新的问题?
学生提出问题后,引导他们自主阅读本页教材的底注,并组织适当的交流。
五、巩固练习。
1.指导完成练习一第1~3题。
做练习一第1题。
可以鼓励学生独立完成填空。如果有学生感到困难,可启发他们先画出相应的线段图,再根据线段图进行思考。
做练习一第2题。
先让学生说说对问题的理解,再让学生列式解答。可提醒学生把计算的商保留三位小数。
做练习一第3题。
先鼓励学生独立解答,再通过交流让学生说清楚思考的过程。
2.对比练习。
学生读题后先独立思考并列式计算,然后指名分析每题的解题思路。同桌间互相查看解答情况。
3.拓展题。
(1)爸爸买的股票“中国石化”上周五收盘价是20元,本周五收盘价是24元。“中国石化”本周上涨了百分之几?(用两种方法解答)。
六、全课小结。
七、布置作业。
1.课内作业:补充习题第1页。
求一个数比另一个数多(少)百分之几的实际问题。
例题1(线段图略)。
4÷16=0.25=25%125%-100%=25%。
六年级数学教案苏教版篇九
教学目标:
1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。
教学重点:理解题中的单位“1”和问题的关系。
教学难点:抓住知识关键,正确、灵活判断单位“1”。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)。
1、先说下列各算式表示的意义,再口算出得数。
12××。
2、列式计算。
(1)20的是多少?(2)6的是多少?
3、学生得出:求一个数的几分之几用乘法。
二、新知探究。
(一)课件出示自学目标。
1、通过学习掌握求一个数的几分之几是多少的应用题的解。
题方法并会分析数量关系。
2、知道解这类应用题的关键是什么?
3、知道如何找单位“1”。
(二)、教学例1。
1、课件出示自学提示。
(1)、正确理解关键句“我国人均耕地面积仅占世界人均耕地面积的”。
(2)、结合线段图理解题意,找到解题思路。
(3)、如何来理解单位“1”?(小组讨论,理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的是多少)。
(4)、在分析题意的基础上,学生独立列式、计算。
2、学生根据提示自学。
全班交流汇报:
2500×=1000(平方米)。
3、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。
4、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。
三、当堂测评。
练习四第2题、第3题。
学生独立完成,教师巡回指点,照顾差生。
小组内订正后。
四、课堂总结。
解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出关键句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)。
设计意图:
本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我紧扣分数乘分数的意义进行复习,并事先复习如“20的是多少?”的文字题,为解决与此相似的应用题做好准备。
由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。
六年级数学教案苏教版篇十
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2.能正确地计算圆柱的表面积。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点。
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点。
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程。
一复习旧知。
1计算下面圆柱的侧面积。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
2求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)。
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)。
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)。
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)。
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)。
(2)底面积:3.14×2×2=12.56(平方分米)。
(3)表面积:56.52+12.56=81.64(平方分米)。
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)。
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习。
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)。
2计算下面各圆柱的表面积。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)。
六年级数学教案苏教版篇十一
学习内容:完成课本第2~3页练习一第4至8题。
课堂目标:
1.帮助学生在不同的问题情境中巩固解决“求一个数比另一个数多(少)百分之几”问题的思考方法。
2.进一步明晰“求一个数比另一个数多(少)百分之几”与“求一个数是另一个数的百分之几”这两类问题的联系与区别,加深对解决相关问题的基本方法的思考。
教学准备:
教学光盘及多媒体设备。
教学过程:
一、复习引入。
二、完成练习一第4~8题。
1.完成第4题。
学生读题后独立解决。
交流,说说你是怎样解答的?解答第(2)题时还有别的方法吗?
比较这两题有什么不同?
2.完成第5题。
先让学生独立解答,然后组织交流和比较。
重点把第(2)、(3)题与第(1)题比较。
3.完成第6题。
指名学生读题,理解什么是“孵化期”。然后学生独立解答。交流检查正确率,帮助有困难的学生理解。
4.完成第7题。
学生读题,说说你是怎样理解的?
明确:“巧克力的价钱比奶糖贵百分之几”,就是“巧克力的价钱比奶糖多百分之几。”
学生解答后交流思考过程。
5.完成第8题。
学生独立解答。可以用计算器计算。完成后交流。
三、读读“你知道吗”
学生自主阅读。
交流:读完后你有什么想法?
突出单位1不同的两个百分数不能直接相减。
你还能举些有关百分点和负增长的例子吗?
四、拓展练习。
1.甲数与乙数的比是4:5,乙数是甲数的()%,甲数比乙数少()%。
2.一个长方形的长和宽各增加10%,面积增加()%。
五、全课小结。
六、练习作业。
1、作业:补充习题第2页。
六年级数学教案苏教版篇十二
学生可能说:
(1)把女生人数看作“1”——找单位“1”
(2)男生人数有这样的2份,女生人数有这样的3份。
(3)一共有这样的5份。
(4)女生比男生多1份——份数。
(5)男生人数占全班人数的2/5,女生人数占全班人数的3/5。
(6)女生是男生的3/2——分数。
小结:看到含有分率的信息,我们可以找单位“1”的量,也可从分数、份数等方面来考虑。
二、新授。
1、完整例题2:在这个信息前加上条件“六3班一共有50人”和问题“六3班女生有多少人?”
2、说明:这是一道分数问题,解决分数问题的常规思路是怎样的?请你用常规思路来解决这个问题。
3、学生独立完成,教师巡视指导。
4、指名交流解题思路。
5、提问:除了常规思路,这题还可以怎样解决?你是怎样想的?
6、学生独立完成,小组交流。指名交流。
学生可能想到:
(一)将关键句转化成份数来理解“女生有3份,男生有2份,一共是5份”
50÷(3+2)=10(人)10×3=30(人)。
(二)将关键句转化成分数来理解“女生占全班人数的3/5”
50×3/5=30(人)。
7、结合学生回答追问:为什么要将关键句转化成“一共有5份”、“女生是总人数的3、5”?而不转化成别的?体会不管转化成份数理解还是分数来理解,都要转化成和已知条件有关的信息。
8、小结:我们原来解题时,是把女生人数看做单位“1”,所以只能用方程(或除法)解答。今天我们学习了转化策略,就可以把单位“1”转化成题目中的已知量,这样就变成了一道求一个数的几分之几是多少的应用题,可以用乘法计算。(美术组人数是已知的,要求的是女生人数,找到女生人数和总人数之间的关系,就可以直接用乘法计算了)。
三、巩固练习。
1、练一练:学校美术组有35人,是合唱组人数的5/8。学校合唱组有多少人?
(1)你打算怎样转化?(合唱组的人数是美术组的几分之几?可以怎样列式解答?)。
(2)反思:为什么把美术组人数是合唱组的5/8转化为合唱组的人数是美术组的8/5。
(3)小结:在解决有关分数的实际问题时,只要把题目中的问题转化成已知条件的几分之几,就可以直接用乘法计算,使解题的方法变得简单。
板书:问题转化成已知条件的几分之几。
2、练习十四5:
(1)看图填空。
绿彩带。
红彩带。
绿彩带比红彩带短2/7,红彩带比绿彩带长()/()。
(2)一杯果汁,已经喝了2/5,
喝掉的是剩下的()/(),剩下的是喝掉的()/()。
3、练习十四6。
(1)白兔和黑兔共有40只,黑兔的只数是白兔的3/5。黑兔有多少只?
黑兔只数占白兔、黑兔总只数的()/()。
已经看的页数是没有看的页数的()/()。
4、只列式,不计算。(说说你是怎样转化的)。
(1)修一条长30千米的路,已经修的占剩下的2/3,已经修了多少千米?
(2)山羊有120只,比绵羊少1/6,绵羊有多少只?
6、思考题:
有两枝蜡烛。当第一枝燃去4/5,第二枝燃去2/3时,他们剩下的部分一样长。这两枝蜡烛原来的长度比是():()。
全课小结:今天这节课,我们学习了什么知识?你有哪些收获?
板书设计:
用转化思路解答分数除法应用题。
繁??
用方程解答:用乘法解答:
解:设女生有x人。
x+2/3x=35。
5/3x=3535×3/5=21(人)。
x=21。
答:女生有21人。
六年级数学教案苏教版篇十三
教学目标:
1、使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。
2、在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。
3、增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。
教学重点:税额的计算。
教学难点:税率的理解。
教学过程:
一、复习。
1、口答算式。
(1)100的5%是多少?(2)50吨的10%是多少?
(3)1000元的8%是多少?(4)50万元的20%是多少?
2、什么是比率?
二、新授。
2、税率的认识。
(1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率。一般是由国家根据不同纳税种类定出不同的税率。
(2)试说以下税率表示什么。
a、商店按营业额的5%缴纳个人所得税。这里的5%表示什么?
b、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?
3、税款计算。
(1)出示例5(课本99页)。
(2)理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)。
(3)要求“应缴纳营业税款多少”就是求什么?
(4)让学生独立完成?
4、看课本98页内容。读一读,什么是纳税?什么是税率?
三、练习。
1、巩固练习:练习三十二第4题。(要点:5%对应的单位“1”是营业额,7%对应的单位“1”是营业税。)。
2、依据第5题,学生各自发表意见。
六年级数学教案苏教版篇十四
1、使学生通过观察实物、动手操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。
2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。
1、由平面图形引到立体图形。
接着电脑演示由面到体的过程,揭示课题:“长方体的认识”。
2、引导学生认识什么是立体图形。
指出它占有一定的空间,像这样占有一定空间的物体的形状就是立体图形(电脑显示若干立体实物)。
问:这些物体的形状都是什么图形呢?在这里面哪些物体的形状是长方体的呢?
3、举例。
让学生举出日常生活中见过的长方体的物体实例。
师:要知道这些物体为什么都是长方体,就要研究长方体的特征。
1、出示例1:
(1)拿一个长方体的纸盒来观察:
长方体有几个面?从不同的角度观察一个长方体,最多能同时看到几个面?
指导学生从不同的角度观察学具,回答上面的问题。
(2)抽象图形。
说明:因为我们最多只能看到长方体的3个面,所以通常这样画长方体。
(师边讲边画长方体的直观图,注意要规范。)。
让学生上去指一指,图上哪3个面是我们能直接看到的?另外3个面在哪里?
2、认识长方体各部分的名称。
(1)教师结合直观图逐一向学生介绍棱和顶点,并及时在图中作出标注。
(2)同桌学生用手摸长方体纸盒,互相指出长方体的面、棱、顶点。
电脑分别显示面、棱、顶点这三个部分,加深印象。
3、长方体的特征。
出示:长方体有几条棱和几个顶点?它的面和棱各有什么特征?看一看,量一量,比一比,并在小组里交流。
学生四人一组讨论长方体有什么特点,讨论后自由发表自己的看法,教师引导学生总结长方体特点。
(1)面的特点。
长方体有几个面?谁能迅速的数出长方体的6个面?比较哪一种方法好?
长方体的6个面是什么形状的?还有不同看法吗?这两个面的位置是怎样的?(可结合拍手理解“相对”)。
(还可以出示预先准备好的纸盒让学生直观感受长方体的一种特殊情况,一般来说,长方体的每个面是长方形,特殊情况也可能有两个相对的面是正方形。)。
相对的面形状相同,大小一样,可以用这四个字(出示:完全相同)来代替。(电脑演示相对的面完全相同这个特点)。
(2)棱的特点。
长方体有多少条棱呢?谁能给大家介绍一种很快的数出这12条棱的方法?
如果有学生是分组来数的,可以结合长方体铁丝框架数一数。想一想:每组有几条棱?每组4条棱的位置是怎样的?相对的棱有什么特点?(长度相等)(电脑显示棱的特点)。
(3)顶点的个数。
长方体有几个顶点?你是怎样迅速数出来的?
(4)概括长方体的特征。
**让学生看着自己的长方体纸盒说说长方体的面、棱、顶点各有什么特征。
**小结:长方体是由6个长方形围成的立体图形。它有12条棱,8个顶点。一个长方体的面可以分为3对,相对的面完全相同;长方体的棱可以分为3组,每组4条,相对的棱长度相等。
4、学习长、宽、高。
(1)问:相交于同一顶点的3条棱的长度都相等吗?
指出:长方体相交于同一个顶点的这三条棱的长度,分别叫做长方体的长、宽、高。通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(师边讲边标注)。
(2)学生选择一个长方体实物,量出它的长、宽、高。
5、认识正方体的特征。
(2)学生交流后,让他们小小组去探究。
(3)全班交流。
6、讨论长方体和正方体的关系。
(1)观察比较:长方体和正方体有哪些相同点?有哪些不同点?
明确:正方体是一种特殊的长方体。由于正方体的12条棱长度都相等,所以它的棱的长度不分长、宽、高了,就叫做棱长。
(2)选择一个正方体实物,量出它的棱长。
7、小结:今天我们一起来研究了长方体和正方体的特征,请同学们打开课本看第10—11页的内容。
1、练习一第1题。
看图说出每个长方体的长、宽、高各是多少。
结合第3个图形再说说这个长方体的面的形状有什么特别之处。
2、练习一第2题。让学生说一说。
3、练习一第3题。让学生仔细观察后回答各问题,并说说怎么看出来的。
明确:这个长方体前后的两个面是正方形,其余的4个面是完全相同的长方形。
4、练习一第4题。
先让学生判断摆出的这几个几何体分别是长方体还是正方体,再让学生互相指一指每个几何体中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。
5、练习一第5题。
学生独立完成后交流。
通过这节课的学习,你有什么收获?
师:这儿有一个关于长方体特征的顺口溜。大家可以轻声读读。
出示:
长方体立体形,8顶6面十二棱;
棱分长、宽、高,每组四条要记好;
6个面对着放,对应面都一样。
在家里找一个自己喜欢的长方体玩具或物体,仔细观察一下它的面、棱、顶点;或是找一些材料自己做一个长方体并涂上或画上喜欢的图案。
六年级数学教案苏教版篇十五
1、让学生学会运用转化的策略,用简便的方法解决有关分数的实际问题。
2、让学生在学习过程中加深对转化策略的认识,增强策略意识,培养的灵活性。
掌握用转化的策略解决分数问题的方法,增强策略意识。
根据具体问题,确定转化后要实现的目标和转化的具体方法。
一、看谁的联想最多?
出示:男生人数是女生的2/3看到含有分率的句子,你能想到些什么?
学生可能说:
(1)把女生人数看作“1”——找单位“1”
(2)男生人数有这样的2份,女生人数有这样的3份。
(3)一共有这样的5份。
(4)女生比男生多1份——份数。
(5)男生人数占全班人数的2/5,女生人数占全班人数的3/5。
(6)女生是男生的3/2——分数。
小结:看到含有分率的信息,我们可以找单位“1”的量,也可从分数、份数等方面来考虑。
二、新授。
1、完整例题2:在这个信息前加上条件“六3班一共有50人”和问题“六3班女生有多少人?”
2、说明:这是一道分数问题,解决分数问题的常规思路是怎样的?请你用常规思路来解决这个问题。
3、学生独立完成,教师巡视指导。
4、指名交流解题思路。
5、提问:除了常规思路,这题还可以怎样解决?你是怎样想的?
6、学生独立完成,小组交流。指名交流。
学生可能想到:
(一)将关键句转化成份数来理解“女生有3份,男生有2份,一共是5份”
50÷(3+2)=10(人)10×3=30(人)。
(二)将关键句转化成分数来理解“女生占全班人数的3/5”
50×3/5=30(人)。
7、结合学生回答追问:为什么要将关键句转化成“一共有5份”、“女生是总人数的3、5”?而不转化成别的?体会不管转化成份数理解还是分数来理解,都要转化成和已知条件有关的信息。
8、小结:我们原来解题时,是把女生人数看做单位“1”,所以只能用方程(或除法)解答。今天我们学习了转化策略,就可以把单位“1”转化成题目中的已知量,这样就变成了一道求一个数的几分之几是多少的应用题,可以用乘法计算。(美术组人数是已知的,要求的是女生人数,找到女生人数和总人数之间的关系,就可以直接用乘法计算了)。
三、巩固练习。
1、练一练:学校美术组有35人,是合唱组人数的5/8。学校合唱组有多少人?
(1)你打算怎样转化?(合唱组的人数是美术组的几分之几?可以怎样列式解答?)。
(2)反思:为什么把美术组人数是合唱组的5/8转化为合唱组的人数是美术组的8/5。
(3)小结:在解决有关分数的实际问题时,只要把题目中的问题转化成已知条件的几分之几,就可以直接用乘法计算,使解题的方法变得简单。
板书:问题转化成已知条件的几分之几。
2、练习十四5:
(1)看图填空。
绿彩带。
红彩带。
绿彩带比红彩带短2/7,红彩带比绿彩带长()/()。
(2)一杯果汁,已经喝了2/5,
喝掉的是剩下的()/(),剩下的是喝掉的()/()。
3、练习十四6。
(1)白兔和黑兔共有40只,黑兔的只数是白兔的3/5。黑兔有多少只?
黑兔只数占白兔、黑兔总只数的()/()。
已经看的页数是没有看的页数的()/()。
4、只列式,不计算。(说说你是怎样转化的)。
(1)修一条长30千米的路,已经修的占剩下的2/3,已经修了多少千米?
(2)山羊有120只,比绵羊少1/6,绵羊有多少只?
6、思考题:
有两枝蜡烛。当第一枝燃去4/5,第二枝燃去2/3时,他们剩下的部分一样长。这两枝蜡烛原来的长度比是():()。
全课小结:今天这节课,我们学习了什么知识?你有哪些收获?
板书设计:
用转化思路解答分数除法应用题。
繁简。
用方程解答:用乘法解答:
解:设女生有x人。
x+2/3x=35。
5/3x=3535×3/5=21(人)。
x=21。
答:女生有21人。
六年级数学教案苏教版篇十六
教学内容:教材55页的例2和练一练,练习十二的第3--5题。
教学目标:使学生经历探究根据给出的方向和距离在平面上画出相关物体的位置的方法,并能根据给出的方向和距离在平面图上准确画出相关物体的位置。
重点难点:帮助学生进一步理解和掌握用方向和距离在平面图上表示物体位置的方法。
教学准备:教学光盘。
教学过程:
1、出示以灯塔为中心的平面图。
(1)以灯塔为中心,灯塔的上、下、左、右分别表示什么方向?
相机指出:东——e西——w南——s北——n。
(2)在图上指出北偏东、北偏西、南偏东、南偏西的方向。
2、如果知道灯塔北偏东40°方向20千米处是清凉岛,你能在图上表示出清凉岛的吗?这节课我们就研究根据给出的方向和距离在平面图上准确画出相关物体的位置的方法。
1、明确清凉岛的位置。
(1)题目中告诉我们清凉岛在哪里?
(2)你能在图上指一指清凉岛的大致位置吗?
自己在图上指出来,并和同学交流一下。
2、探究操作。
(1)怎么在图上画出清凉岛的位置呢?
在小组中讨论后全班交流。
使学生认识到要先画出表示方向的射线,再确定灯塔到清凉岛的图上距离。
(2)怎么画出北偏东40°的射线?
各自用量角器在图上画一画,边画边思考:应该怎么摆放量角器,怎么看量角器上的度数?
指名上黑板画,注意引导学生正确摆放量角器。
让学生说说画表示方向的射线时要注意什么?
(3)怎么确定灯塔到清凉岛的距离?
图中告诉我们这幅图的比例尺是多少?表示什么意思?
各自计算后指名汇报:20÷5=4(厘米)。
追问:为什么用20÷5就是图上距离了?
引导学生在图上标出清凉岛的位置,并与同学交流。
3、试一试。
(2)各自独立完成。
(3)组织全班交流,重点交流画南偏西30°方向的射线的方法和所确定的位置。
1、讨论“练一练”
(1)看图说一说:图上熊猫馆在猴山的什么方向,距离是猴山多少米?孔雀园呢?
自己先算一算实际距离,然后与同座位的同学说一说。
汇报交流:熊猫馆在猴山的什么方向?距离猴山多少米?怎么算出来的?连起来怎么说?
孔雀园呢?
引导学生说出:熊猫馆在猴山北偏西60°方向120米处。孔雀园在猴山南偏东35°方向90米处。
(2)蛇馆在猴山南偏西45°方向150米处。怎么在图上表示出它的位置。
各自在图上画出表示南偏西45°方向的射线,再算出图上距离,最后标出蛇馆的位置。
练习后交流思考的方法和具体的画法。
2、讨论练习十二第3题。
(1)出示题目,理解题目所包含的信息。
(2)飞机a在机场的什么位置?
各自在图上表示出来,然后汇报交流。
六年级数学教案苏教版篇十七
3、面动成体如果把这本数学书看成是一个长方形,那么它是怎么运动的呢?(旋转)板书。旋转后形成了一个圆柱体,也就是说:面动成体。
大家能举出生活中的这些现象吗?
小结:看来点动成线,线动成面与面动成体在我们的生活中随处可见。(课件)这节课我们就来研究面的旋转。
二、新课。
1、以前我们学习过那么平面图形?(学生回答老师贴图)。
2、这些平面图形旋转后会形成什么立体图形呢?请大家先想一想,猜一猜并和同桌说一说。
3、大家刚才说得对不对呢?现在我们来动手做一做。每组的黑袋子里有一些平面图形,请大家选择好以哪条线动轴旋转后贴在圆棒的双面胶处,然后旋转,最后把你的发现记录在汇报单上。
4、小组活动,操作记录。
5、同学们,我们就做到这,谁来汇报一下。学生汇报,老师贴图。
哪个小组还有补充?
根据刚才这些同学的汇报,你又想说些什么?
a、不同的平面图形,旋转的立体图形是不一样的。
b、不同的平面图形,也能旋转出同样的立体图形。(正方形和长方形、圆和半圆直角三角形和等腰三角形)。
c、同一个平面图形,按照不用的边为轴,旋转出的立体图形也是不一样的。
6、小结:看!同一个长方形以不同的轴旋转可以形成圆柱体。象三角形和梯形以不同的边为轴可以旋转出不同的立体图形。(课件)。
7、在这些立体图形里有我们比较熟悉的圆柱体和圆锥体。现。
在请大家打开书进一步来了解它们。谁来说说它们有什么相同点和不同点?(相同点:都有一个曲面和一个底面,不同点圆柱体上面也是一个底面,而圆锥体上面是一个顶点。圆柱体有无数条高,而圆锥体只有一条。)。
8、在我们生活中哪些物品是圆柱体哪些物品是圆锥体呢?学生举例,相机指出各部分名称。
三、练习。
看来同学们对圆柱体和圆锥体已经很熟悉了,那接下来薛老师可要考考大家了!
1、实物判断:是不是圆柱体?说明理由.
2、教材四页习题。
3、开放题。
a、下列图形旋转后会形成哪个立体图性?
b、下列哪个塞子既能塞住甲盒又能塞住乙盒呢?
四、总结。
同学们,看!我们的数学世界多么丰富多彩啊!简单的动就将这些平面图象变成了我们熟悉的立体图形,今后让我们继续多观察、多操作去探索数学世界的奥秘吧!