2023年分数的基本性质教学设计与反思(优秀13篇)
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
分数的基本性质教学设计与反思篇一
【教学目标】。
1.知识与技能:使学生经历探索分数约分的过程,初步认识到约分的含义。
2.过程与方法:使学生在已经了解了最大公约数和分数的基本性质之后,能应用分数约分的方法找到最简分数。
3.情感、态度与价值观:使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象、概括的能力,体验数学学习的乐趣。
【教学过程】。
(一)复习。
师:说一说上一节课学习过的分数的基本性质。
12/24师:那现在同学们有没有发现这些分数的分子和分母有什么规律?引导学生对相等的分数作比较发现分子分母都比原来的大。
(二)教学例3出示例3,找学生读题“你能写出和12/18相等,而分子、分母到比较小的分数吗?”师:好,那么就请同学们独立思考一下,看看能不能找出和12/18相等但分子分母都比它小的分数?要是可以找出的话,会有多少个呢,越多越好。(时间2分钟)师:想出来的小组成员之间交流一下,看看其他同学都想到了哪几个分数?是怎么得出来的呢?(时间2分钟)。
师:根据刚才的小组讨论哪位同学能说一说什么叫做约分吗?引导:题目求的是什么啊,与12/18相等,分子、分母都比较小的分数,所以约分应该怎么说?师:把一个分数化成同它相等,但分子分母都比较小的分数,叫做约分。(ppt)师:大家一起看着前面,把约分的含义读一遍。师:下面找几位同学来做一下,62页的第二题师:通过刚刚的做题,谁能告诉我,我们在约分时要注意些什么呢?(引导学生从含义入手)师:我们来看看同学们整理出来的约分时要注意的事情,1是约分好得到的分数要与原来的分数相等;2是约分后得到的分数的分子分母到要比原来的分数小。师:同学们继续来看屏幕上的这些分数,有一些是不是还可以继续约分啊?看60/45可以约分成12/9,那12/9是不是可以继续约分,所以,60/45能够约分成多少,谁来完整的说一说。
师:所以,我们再约分时要分子和分母同时除以一个数,那这个数就是分子和分母的?师:现在啊,我们知道了约分时要除以分子和分母的公因数,那么我们在进行约分时要怎样书写呢,看屏幕找同学来读一读,(ppt第一种约分方法)在约分时要把分子除以公因数所得的商写在分子的上面,分母除以公因数所得的商写在分母的下面,并把原来的分子、分母用“”划去。
(师:恩,当分子与分母不能再继续约分时它的值是最小的对不对,那分子和分母为什么不能继续约分了呢?有没有同学知道?)。
师:所以当分子和分母只有一个公因数1时,它的分子分母值是最小的,那么在数学领域里我们一般称这样的分数为最简分数。
师:刚刚我们又认识了一个新的定义,最简分数,找同学来复述一下什么是最简分数呢?师:通常,我们再约分时,都要约分成最简分数。
师:那我们再回过头来看看那之前做的那些题,是不是约分成了最简分数了,没有约分成最简分数的,自己在下面更改一下,我要找同学来说一下他的答案。
(ppt)。
1、约分后得到的分数要与原来的分数相等;
2、约分后得到的分数的分子分母都要比原来的分子分母小;
3、在约分时要把分子除以公因数所得的商写在分子的上面,分母除以公因数所得的商写在分母下面,并把原来的分子、分母用“”(手势比划)划去。
4、分数约分时都要约分成最简分数。
分数的基本性质教学设计与反思篇二
知识与技能目标:
数化成指定分母而大小不变的分数。
过程与方法目标:
学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。
情感态度与价值观目标:
激发学生积极主动的情感状态,体验互相合作的乐趣。
教学过程:
(一)创设情境,引发猜想。
视频1:小淘气分饼的情境。
有一天淘气做了3块大小一样的饼分给蓝猫、菲菲、霸王龙。蓝猫说:“我功劳最大,我要吃一大块。”菲菲说:“我要吃两块。”霸王龙抢着说:“我个头最大,我要吃3块。”淘气想了想便动手切饼满足了他们的要求,并向他们提问:“刚才,我把3个同样大小的饼,平均分成2份、4份、6份,分别给了你们1块、2块、3块,你们知道谁吃的多吗?”淘气的问题,立刻引起了他们的争论。
师:同学们,你们知道谁吃的多吗?
生:用分数表示出它们各吃了一块饼的几分之几。
视频2:出示三个分数:1/22/43/6。
(设计意图:创设情境引出三个分数。并让学生猜测这三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习兴趣)。
(二)小组合作探索新知。
1、小组合作,验证猜想。
(1)这只是大家的猜想,究竟谁吃得多呢?亲自分一分,验证你们的猜想。
学生操作验证――集体汇报交流――展示成果。
视频3:演示操作过程。
(2)既然他们分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?
(学生得出结论,三个分数相等)。
视频4:出示验证结论(1/2=2/4=3/6)。
(设计意图:利用折一折、画一画、比一比的实际操作环节,并通过媒体进一步演示让每一位学生都能从比较中,感性地认识到这里的三个分数是相等的。)。
分数的基本性质教学设计与反思篇三
1、让学生通过经历预测猜想——实验观察——数据处理—合情推理—探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3、培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
课件,五年级数学学具盒,计算器。
花果山上的小猴子最喜欢吃美猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均分成四块,分给猴1一块,猴2见了说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块,猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均分成十二块,分给猴3三块。
师:听到这里,你有什么想法吗?或你有什么话要说吗?
生1:我觉得孙悟空很聪明。
生2:我认为三只小猴分到的饼是一样多的。
生3:我认为猴王这样分很公平,第1只小猴分到了一只饼的1/4,第2只小猴分到了一只饼的2/8,第3只小猴分到了一只饼的3/12,这三只小猴分到的饼是一样多的。
(2)师:实验做完了吗?结果怎样?哪个小组先来汇报验证的情况?
组1:我们组把24根小棒看作单位“1”,平均分成4份,其中的一份有6根,就是1/4。平均分成8份,其中的二份有6根,就是2/8。平均分成12份,其中的3份也有6根,就是3/12。所以1/4=2/8=3/12。
组2:我们组把24个小立方体看作单位“1”,平均分成4份,其中的一份有6个,就是1/4。平均分成8份,其中的二份有6个,就是2/8。平均分成12份,其中的3份也有6个,就是3/12。所以1/4=2/8=3/12。
组3:我们把一个圆平均分成4份,取其中的一份是1/4,我们把同样大小的圆平均分成8份,取其中的两份是2/8,我们再把同样大小的圆平均分成12份,其中的3份用3/12表示,我们再把圆片的1/4、2/8、3/12叠起来是一样大的,所以1/4=2/8=3/12。(注1/4圆是学具中本来就有的,2/8是用两个1/4圆合在一起,3/12是用2个1/3合在一起)。
组4:我们组是这样验证的。我们把同样大小的长方形纸平均分成4份,其中的一份是1/4,取另外一张再平均分成8份,其中的两份是2/8,接着取另外一张继续平均分成12份,其中的3份是3/12,然后也叠在一起,大小一样,所以我组也认为1/4=2/8=3/12。
组5:我组与他们的验证方法都不一样,我们是计算的:1/4=1÷4=0.25;2/8=2÷8=0.25;3/12=3÷8=0.25。三个分数都等于0.25,所以1/4=2/8=3/12。
(1)师:既然三只小猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?(投影出示分饼图)。
板书1/4=2/8=3/12。
(2)你能从图上找到另一组相等的分数吗?
板书3/4=6/8=9/12。
师:黑板上二组相等的分数有什么共同的特点?学生回答后板书。
生:分数的分子和分母变化了,分数的大小不变。
师:我们今天就来共同研究这个变化的规律。
师:你们猜猜看,在这两组相等的分数中,分子和分母发生了怎样的变化,而分数的大小不变。
生1:分子和分母都乘以一个相同的数,分数的大小不变。
生2:分子和分母都除以一个相同的数,分数的大小不变。
生3:分子和分母都加上一……个相同的数,分数的大小不变。
生4:分子和分母都减去一个相同的数,分数的大小不变。
师:根据学生回答板书。
生:举一些例子来验证。
师:怎样举例验证呢?我们以其中的一个猜测来试试看好吗?我们选哪一个为好?
生:分子和分母都乘以一个相同的数,分数的大小不变。
师:好,我们就选这个,试试看。
学生以小组为单位进行尝试验证,教师作适当指导。
反馈:根据学生回答板书。
1/2=0.5。
1×2/2×2=2/4=0.5。
1×3/2×3=3/6=0.5。
师:看了这些小组的举例验证,能说明这个猜测有道理吗?
有什么要补充的吗?
(学生没有答出0除外)。
师:谁能写出几个与1/3相等的分数。比一比谁写的多。
生回答,师板书1/3=2/6=3/9……。
师:这样写得完吗?
生:不能。
师:分子和分母是不是可以乘以所有的数。
生:0要除外。
师:为什么0要除外呢?
生:0不能做除数,也不能做分母。
师:我们已经用举例验证的方法验证了“分数的分子和分母都乘以一个相同的数分数的大小不变是正确的。那么,其它三个猜测是不是也是正确的呢?接下来我们每一个小组选取一个猜想进行验证。
学生自由选择,教师适当进行调配。
师:为了在研究中能够节约时间,我给大家提供了一些材料,你可以借助这些材料进行验证。当然,你有更好的方法也可以用。
学生小组合作进行研究,教师作适当指导。反馈交流。
小结。
师:看来在分数里,只有分数的分子和分母都乘或都除以相同的数(0除外)分数的大小不变,而分子和分母同时增加或者同时减少相同的数,分数的大小是会变的。这就是我们今天学习的内容。
师:你们认为性质中哪几个字是关键字。
生:“都”,“相同的数”,“0除外”
师:今天我们学习的分数的基本性质与我们以前学过的什么知识很相似。
生:商不变性质。
出示商不变性质。
师:分数的基本性质与商不变性质有什么相通的地方吗?
生:分数中的分子相当于除法中的被除数,分母相当于除法中的除数,分数值相当于商。
师:我们平时所学的有些知识和知识之间是有联系的。有时候与我们身边的事也是有联系的。
出示动画片断。(注孙悟空有一次因一时大意,被妖怪关在了一个金钵中,金钵能随孙悟空变大而变大,随孙悟空变小而变小,孙悟空出不来。)。
师:孙悟空为什么跑不出来,这与我们今天学的知识是不是有点相似。
[评析:数学中的。概念是比较抽象的,这样的设计可以帮助学生理解和记忆。同时也可以让学生体会到知识与生活中的一些现象是可以联系的。
例如自从一八四五年德国化学家霍夫曼发现苯之后,许多化学家绞尽脑汁要它的分子结构,然而对当时的人类从未想到环状的分子结构的存在,所以化学家们纷纷撞壁而相继放弃。一八六五年某个寒夜,已经研究多年不肯罢手的化学家库凯里在一整天徒劳无功的探索后,歪在火炉边打盹,意识滑入梦乡,然后,奇怪的事情发生了,他在梦中看见一大堆原子在眼前雀跃,其中有一群原子排成长长的链,在那儿扭动、盘卷,再仔细一看,啊!是一条蛇咬住自己的尾巴,而且得意洋洋地在他面前猛烈旋转!像被闪电击中,库凯里立刻惊醒,领悟到苯的分子结构是前人未曾梦想过的封闭环状,难怪那些持旧有的开放式链状观点来研究的专家通通碰了一鼻子灰。从此,化学研究也因为这个革命性的发现而进入新的里程碑。在那个看见蛇咬尾巴的梦境中,库凯里领悟到苯的环状结构式。
师:猴王运用什么规律来分饼的?你们会运用今天的知识来解答问题吗?
(1)书本试一试。
游戏(第一关:初露锋芒、第二关:勇往直前、第三关:再接再厉、第四关:大获全胜。每一关都有相应的练习题)。
师:今天我们学习了分数的基本性质,回忆一下,我们是怎样学的?
生1、我们是用举例的方法学的。
生2、我们是用验证的方法学的。
生3、我们是通过比较发现了规律。
师:是的,这节课我们在学习过程中,通过“猜想”、举例、验证等方式,概括得出了分数的基本性质并且运用这一知识解决了一些问题。
师:我这里还为大家准备了一个故事。(哥德猜想加陈景润的故事)。
师:你听了有什么启发吗?课后同学们可以互相讨论一下。
分数的基本性质教学设计与反思篇四
教学内容:人教版五年级数学下册57页内容。
教学目标:
知识与能力:使学生理解和掌握分数的基本性质,并能应用这一规律解决简单的实际问题。
过程与方法:能在观察、比较、猜想、验证等学习活动的过程中,有条理、有根据地思考、探究问题,培养学生分析和抽象概括的能力。
情感态度价值观:体验数学验证的思想,培养乐于探究的学习态度。
教学准备:多媒体课件、正方形纸、直尺、彩笔。
教学过程:
一、铺垫孕伏,温故迁移。
1.比一比:看谁算得又对又快。
2.说一说:商不变的性质是什么?
3.想一想:分数与除法有怎样的关系?
4.猜一猜:除法中有商不变的规律,分数中是否具有类似的规律?
二、设疑激趣,探究新知。
(一)故事激趣,引出分数。
说出自己从故事中听到的分数。
(二)小组合作,直观感知。
1.折一折:拿出三张同样大小的正方形纸,分别用对折的方法平均分成2份、4份、8份。
2.画一画:画出折痕所在的直线。
3.涂一涂:
(1)给平均分成2份的正方形纸的.其中的1份涂上颜色。
(2)给平均分成4份的正方形纸的其中的2份涂上颜色。
(3)给平均分成8份的正方形纸的其中的4份涂上颜色。
4.比一比:比较3张正方形纸涂色部分的大小。
5.议一议:和同伴说说自己的想法。
(二)观察比较,探究规律。
1.这三个分数的分子、分母都不同,分数的大小却相等。你能找出它们之间的变化规律吗?请同学们四人一组,讨论这个问题。
2.汇报交流。
3.启发点拨。
通过从左往右观察、比较、分析,你发现了什么?
引导学生小结得出:分数的分子、分母同时乘相同的数,分数的大小不变。
那么,从右往左看呢?
让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。
(三)独立尝试,运用规律。
1.学生独立思考,完成例2。
2.反馈交流,订正点拨。
3.小结:我们可以运用分数的基本性质把一个分数化成分母不同但大小不变的分数。
三、达标检测,内化提升(见《达标测试题》)。
四、总结收获,评价激励。
这节课你有什么收获?你对自己的哪些表现比较满意?
板书设计:
分数的基本性质教学设计与反思篇五
2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
归纳性质。
(一)创设情境,引起学生参与兴趣。
1、猴王变戏法(学生模仿复习):
除法式子变形。
分数与除法变形。
2、教师出示三只可爱的小猴图片,奖励听故事:
有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成两块,分给第一只小猴一块,第二只小猴见到说:“太小了,我要两块。”猴王就把第二块饼平均切成四块,分给第二只小猴两块。第三只小猴更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切6块,分给第三只小猴三块。
同学们,你知道哪只猴子分得的多吗?(哪只猴子分得的多?让学生发表自己的意见)。
(二)探究新知。
1、动手操作、形象感知。
请同学们拿出三张相同形状同样大的纸,把每张纸都看作一个整体。动手折出平均分的份数2份、4份、6份,动笔把其中的1份、2份、3份画上阴影,再把阴影部分剪下来,将剪下的阴影部分重叠,比一比记录下结论。
分数的基本性质教学设计与反思篇六
学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中务必把教师的教变成学生的学,务必深入研究学法,建立探究式的学习模式。教师应调动学生的学习用心性,向学生带给充分从事数学学习的机会,帮忙学生在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。所以我在教学分数的基本性质是这样设计:
1、学生在故事情境中大胆猜想。
透过创设“老爷爷分地”的`故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。
2、学生在自主探索中验证。
在学生大胆猜想的基础上,教师适时揭示猜想资料,并对学生的猜想提出质疑,激发学生主动探究的欲望。整个教学过程以“猜想dd验证dd完善”为主线,每一步教学,都强调学生自主参与,透过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。
3、让学生在分层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮忙学生理解概念,并全面了解学生掌握新知识的状况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。
教学目标。
变的分数。
3、经历观察、操作和讨论等学习活动,体验数学学习的兴趣。
教学重点。
教学难点。
教学过程。
一、故事导入。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到了这块地的2/6。老三分到了这块的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提飘过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。(你明白,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?)我们就带着这个问题学习新的资料吧。
二、自主探究,发现新知。
(1)请学生看三张纸条,分别平均分成4份、8份、12份,并涂好颜色,如果把每张纸条都看作单位“1”,请学生把涂黄色部分用分数表示。(课件显示)。
(3)你得出什么结论?(3/4=6/8=9/12)。
请同学们观察这组分数:它们的分子不一样,分母也不一样,为什么他们的大小相等呢?
板书:分数的分子和分母同时乘相同的数,分数的大小不变。
(5)从右向左看,分数的分子和分母有什么变化?分数的大小呢?你又得出什么结论呢?
板书:分数的分子和分母同时除以相同的数,分数的大小不变。
(6)从上面的观察我们能够发现:在分数中有什么规律?
板书:分数的分子和分母同时乘以或者除以相同的数,(0除外)分数的大小不变。
(7)在这个规律中,要注意什么?为什么?(0除外)如:3/4你怎样理解“同时”,“相同”这些词语?看例子(演示课件)。
三、练习巩固。
1、练一练决定并改错,讲评。
2、你此刻会解释阿凡提为什么会笑了吗?
四、小结。
五、布置作业:(略)。
教学反思:
本节课我觉得比较成功之处在于透过多种形式,让学生对分数的基本性质的构成过程有一个比较深刻的理解,个性是透过两个例子帮忙学生理解“同时”、“相同的数”、“0除外”等词,但也有许多不足之处,一些细节的方面没有注意,个性是在时间的控制方面,课前没有定好每个环节的时间,没有到达预计的教学效果。
分数的基本性质教学设计与反思篇七
学习内容分析:
“分数的基本性质”是九年义务教育小学数学北师大版五年级上册第三单元的内容。它是在学生学习了分数的意义、分数大小的比较、商不变的性质、分数与除法的关系的基础上进行的,为以后学习约分、通分做准备。
学习者分析:
学生已掌握了分数的意义和商不变的性质,已具备一定的动手操作的能力和分析、概括能力,能用分数表示图形的阴影部分,已具备一定的合作交流的意识和经验。
教学目标:
1:经历探索分数基本性质的过程,理解分数基本性质;
2:能运用分数基本性质解决简单的实际问题;
3:经历猜想、验证、实践等数学活动,合作学习能力得到提高,并进一步体验数学学习的乐趣。
教学重点:
经历主动探索过程并发现和归纳分数的基本性质。
教学难点。
设计意图:
“分数的基本性质”在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一,以前我曾经听过几节这样的课,感觉学生都比较容易理解,觉得这知识不难,用不着老师多讲了,也就使整节课显得有点单调,枯燥,基于以上原因,我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。
教学过程。
一、复习旧知,引入新课。
1、直接写出得数:
(1)18÷6= (2)120÷40= (3)2÷3=—。
180÷60= 12÷4=10÷15=—。
2、你能从前两组题中回忆起商不变性质吗?(被除数和除数同时扩大或缩小相同的倍数,商不变。)。
3、你能根据第三组题说出分数与除法的关系吗?根据分数与除法的关系,将商不变性质中的被除数、除数、商分别改为分子、分母、分数值后又怎么说?()(分子和分母同时扩大或缩小相同的倍数,分数值不变。)分数中是否真有这样的规律呢?这节课我们就来探讨这个问题。
(通过上述知识的复习,为下面沟通商不变性质与分数基本性质的联系作准备。)。
二、小组合作,探究新知。
1、折一折,画一画。
师:请同学们拿出准备好的三张长方形纸片。
要求:1)将三张同样大小的长方形纸片,分别平均分成4份、8份、16份。将第一张的3份画上阴影,第二张的6份画上阴影,第三张的12份画上阴影。
2)用分数表示阴影部分,
3)将阴影部分剪下来进行比较,看看能发现什么?
2、汇报。(师将一份学生作品贴在黑板上),
请这一同学谈谈发现:通过比较,三幅图阴影部分面积一样,因而三个分数一样大。(师板书三个分数相等的式子)。
3、师出示例2的三幅图,
4、请学生写出表示阴影部分的分数,再观察三幅图阴影部分面积,同样得出三个分数一样大的结论。
3、算一算。
2)学生先独立思考,后小组里讨论交流想法。
3)汇报。小组派代表汇报,教师根据汇报适当板书。
(通过折一折、画一画,培养学生的动手操作能力,同时给学生提供充分的感性材料,丰富他们的生活经验又可以激发学生的学习兴趣。)。
三、概括性质,揭示课题。
1、师:哪位同学能用一句话把大家发现的规律概括出来呢?
2、师:像右边那样列式行吗?=,为什么?你能将刚才概括出的规律修正一下吗?(出示分数的基本性质,全班齐读一遍。)。
3、师小结:刚才我们所说的就是分数的基本性质,它在课本第四十三页,请同学们翻开课本看一看,你有哪个地方要提醒大家注意的,请在课本上用笔标示出来。(全班再齐读一遍)。
(让学生概括分数的基本性质,培养学生的概括能力,通过分子分母同时乘以0,引导学生发现分母为0,分数没有意义,以培养学生思维的缜密性,同时回应前面的复习练习。)。
三、解释应用,强化认知。
2、第43页试一试。
3、练一练。第44页第4题。
4、判断对错。
(1)分数的分子和分母都乘或除以相同的数,分数的大小不变。 ( )。
(2)把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。 ( )。
(3)3/4的分子乘3,分母除以3,分数的大小不变。 ( )。
(4)10/24的分子加5,要使分数的大小不变,分母也必须加5。 ( )。
4、数学游戏“你说我对”(图略)。
(利用以上练习,运用所学的知识解决实际问题,提高解决问题的能力,培养应用意识。)。
四、小结回顾,评价激励。
这节课你有什么收获?运用分数的基本性质解决问题时要注意什么?
(复习所学知识和方法,加深认识,深化主题)。
五、布置作业,拓展延伸。
1、课本第44页第1、2、3题。(巩固所学知识)。
分数的基本性质教学设计与反思篇八
1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
3、较好实现知识教育与思想教育的有效结合。
理解和掌握分数的基本性质,并运用分数的基本性质解决问题,进一步加深分数与除法之间的关系。
板书有关习题的幻灯片。
一、复习。
1、出示。
在括号里填上适当的数:
指名说一说结果,并说一说你是根据什么填的?
二、课堂练习:
1、自主练习第4题。
学生先独立做,教师巡视,并个别指导,集体订正。
教师板书题目中的线段,指名让学生板演。
在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)。
怎样找出相等的分数?
让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?
然后要求学生在书上把这几个相应的点找出来。指名板演。
2、自主练习第5题。
先让学生独立做,教师巡视。个别指导。
指名说一说你的结果,并说一说你是根据什么填的。重点要求学生说清楚利用分数的基本性质来进行填空。
教师根据学生的回答选择几个题目进行板书。
3、自主练习第6题。
先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。
集体订正。指名说一说自己的计算过程和结果。
教师根据学生的回答选择几个题目进行板书。
4、自主练习第7题。
学生独立做。教师要求有困难的学生分组讨论,教师个别指导。
集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。
5、自主练习第8题。
学生先独立做。
分数的基本性质教学设计与反思篇九
1、让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3、培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
一、故事情景引入。
好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。
同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。
讨论完了请举手。
生甲:“我觉得不公平,小红分得多。”
生乙:“我觉得小明分得多。”
生丙:“我觉得公平,他们三个分得一样多。”
师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”
二、新授。
师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”
请你们把这三张圆片叠起来,比一比大小,看看怎么样?
生:“三张圆片一样大。”
1.师:“下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”
首先,请在第一张圆片上表示出它的1/3;
再在第二张圆片上表示出它的2/6;
然后在第三张圆片上表示出它的3/9。
好了,大家动手分一分。(教师巡视指导)。
2、师:“分完了的请举手?
老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)下面请哪位同学说一说,你是怎么分的?”
生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”师:“那九分之三又是怎么得到的呢?大家一起说。”
生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。”(学生说的同时,教师操作,分完后把圆片贴在黑板上。)。
3、师:“同学们,观察这些圆的阴影部分,你有什么发现?”
小结:原来三个圆的阴影部分是同样大的。
师:“现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)。
生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”
师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”
分数的基本性质教学设计与反思篇十
1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
3、较好的实现知识教育与思想教育的有效结合。
一、创设情景。
师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。
二、新授。
师:同学们想了很多好的方法,哪个小组愿意汇报一下?
生2:我们组是用折纸的方法来验证的。我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)。
同学们现在小组内总结一下,什么是分数的基本性质?
(学生认真讨论)。
师:同学们汇报一下你们的讨论结果。
三、自主练习巩固提高。
课本第80页1、2、3、题。
其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。
第2题二生爬黑板板演,第3、4题学生自做。师巡视指导。
分数的基本性质教学设计与反思篇十一
分数的基本性质是在学生已掌握了商不变的性质之后,并在分数的意义基础上进行学习的,经过观察,合作探究总结出分数的基本性质,为以后学习约分和通分打基础,在教学中我注重“过程与结果的结合”,“合作学习与自主学习”的结合,“创设情境与创新精神”的结合,巧妙地创设问题情境,让学生产生迫不及待地要求获取新知识的情感,再经过拓展外延,从具体事例中抽象出事物的内在规律,这一环节重点在掌握了学生的认识规律基础上,强调知识的来源,让学生自我挖掘规律,掌握数学知识产生的内在规律,激发起学生进取思维的动机。经过小组的合作以及教师的引导,发现规律,总结规律,促进了学生相互帮忙,相互启迪,相互促进,发挥了讨论交流的作用,提高了学生学习的本事。经过有目的的基本练习、巩固练习、综合练习,学生进一步加深了对新知的强化了学生运用新知解决实际问题的本事,使学生构成了必须的技能技巧。
教学一开始,我以唐僧给三个徒弟分饼而引出谁分得多与少,激发学生的学习兴趣,让他们以最大的热情投入到解决生成单上的问题。由于时间有限,我先让学生独立完成生成单,生成单的第一个问题比较简单,是在以前学习的基础上而设置的。经过预习对于第五个问题大部分学生都能总结出来。而中间三个问题是本节课的重点。在学生独立做后我让学生分成大的小组去探讨、去交流生成单的重点三个问题。最终学生在讨论、交流和展示的时候教师在中间加以重点强调,来凸显本节课的教学难点。从而以学生的主体行为实践了整个学习活动。从师生交流活动中体现了对分数的基本性质的在认识,学生的“知识技能”、“过程与方法”、以及“情感态度与价值观”全面获得了大丰收。经过教学过程能够看出,本节课所设计的三单比较全面能突破教学重难点,具有阶梯性,教学过程及环节贴合一案三单的教学,尤其是让学生成为课堂的主人,成为学习的主人,体现出新形势下的教育理念。还有,课堂中对小组评价及个人评价形式新颖,能激发学生学习的欲望,充分保证小组学习的进取、高效和彰显学生的个性。
当然,还存在一些不足。比如,课题太笼统,没有体现出本节课的教学重点。在教学过程中,在重难点的处理上没有对学生重点强调。从这一点上不难看出,在备课的过程中没有吃透教材。还有,数学强调的是学练结合,在本节课对学生没有进行练习。当然,以上的不足我会在以后的实验中努力改善,我相信有同志的帮忙,和领导的支持,我的教学会更加出色。
分数的基本性质教学设计与反思篇十二
教科书第38页例2、例3,第39页“练一练”,练习七第1-4题。
1、通过自主探索认识真分数和假分数,能判断一个分数是真分数还是假分数,理解假分数与真分数之间的关系,体会用假分数表示数量的合理性,加深对分数意义的理解。
2、培养学生的观察、比较和分析、推理等思维能力。
理解和掌握真分数和假分数的意义。
正确理解假分数的意义,会用假分数表示数量。
要以学生对分数单位的理解为基础,通过涂色的操作,使学生经历假分数的`产生过程,理解假分数与真分数的内在联系,体会用假分数表示数量之间关系的合理性、科学性。
教师准备教学光盘;学生准备水彩笔。
一、复习准备。
1、什么叫做分数?什么是分数单位?
2、你能说出一些分数,并说明这个分数表示什么意义吗?
二、教学新课。
1、认识真分数和假分数。
(1)出示例2。
学生涂色表示相应的分数。
要表示5个1/4,该怎样涂颜色?明确:用一个圆最多只能表示4个1/4,表示5个1/4要用两个圆。5个1/4就是5/4。
通过刚才的涂色,你有什么发现?
当涂色部分不满1个单位时,分数的分子比分母小;涂色部分正好满1个单位时,分数的分子和分母相等;涂色部分超过1个单位时,分数的分子比分母大。
(2)教学例3。
出示例3,学生涂色。
要表示每个分数,各要涂几个1/5?分别用了几个圆?你有什么发现?
(3)分数分类。
比较例2、例3中的这些分数,你能给它们分一分类吗?说说你是怎样分的?
(4)认识概念。
分子比分母小的分数叫真分数。分子和分母相等或者分子大于分母的分数叫假分数。
和1相比,谁大,谁小?
你能分别举几个真分数或假分数吗?
你能再说说真分数、假分数的意义,特点吗?
2、练习。
(1)做"练一练"第1题。
请学生说一说分别把什么看做单位“1”?
(2)做"练一练"第2题。你是怎么判断的?
(3)判断。(说说你判断的理由)。
真分数一定小于假分数。
假分数都大于1。
小于7/8的真分数只有6个。
三、课堂练习。
1、练习七第一题。
学生独立描点。
真分数集中分布在0和1之间的这一段上,而假分数则分布在从1开始向右的部分,进而体会到真分数都小于1,假分数都大于1。
2、练习七第二题。
3、练习七第三题。
4、练习七第四题。
独立完成。
学生说说是怎样比较他们的大小的?
四、小结。
这节课学习了哪些内容?什么是真分数和假分数?
结合具体的分类引出真分数和假分数的概念,安排比较合理自如,既突出了学生的自主学习和个性差异,又体现了知识间的内在逻辑。教学中通过“放”与收的结合,突出了学生的自主性。这一内容学生掌握得不错。
教学例题时,让学生自主对两个例题中出现的分数进行分类并说说分类的理由进而引出真分数和假分数的定义非常顺理成章。
在此我还增加了一个环节,让学生验证一下真分数和假分数的数值与1相比的大小情况,学生发现:真分数都小于1,假分数都大于或等于1。这对学生以后分数的大小比较十分有利。
分数的基本性质教学设计与反思篇十三
根据课程标准的要求,基于对教学内容的把握,本课时我确定的教学目标为:
1.理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2.通过猜想、验证、归纳、总结等活动,经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。
3.在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣。我确定本目标的依据有三点:
一是基于对课程标准的理解。
《义务教育数学课程标准(2011年版)》在学段目标的第二学段指出学生要“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程”。
二是基于对教材的认识。
《分数的基本性质》是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
三是基于对学情的认识。
作为旧课新上,如何让学生在重新学习的过程中对学习活动任然保持浓厚兴趣,从探究活动中得到新的发展,上出数学味,上出新意,我在思考。本节课常规的是创设情境,在情景中提炼出等式,最终形成性质。因此在教学时,我没有从具体的情境入手,而是从思考一连串的问题开始,通过实验、猜想、验证、结论,从等式的验证上升到规律的发现和归纳,经历定律由特殊到一般的归纳推理过程,在这个过程中积累数学经验、渗透数学思想、掌握数学方法。
据此,我将教学重点确定为:通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程。教学难点确定:理解和掌握分数的基本性质。
课程标准指出教师要关注已有的知识经验及认知水平,发挥组织者、引导者、合作者的作用。本节课我综合采用了引导发现法、启发式教学法,直观演示法,组织学生经历实验、猜测、验证、得出结论的过程。
学生是学习的主体,学生的学习活动应该是生动的、活泼的、富有个性的,因此,在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法,引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。
本着让学生“主动参与、乐于探究、学有所得”的理念,结合五年级学生的认知水平和年龄特点,结合教材的编排意图和学情特点,我设计了如下教学环节:
1.联系旧知,质疑引思。
2.自主操作,验证猜想。
3.知识应用,巩固提高。
4.回顾总结,完善认知。
环节一:联系旧知,质疑引思。
“疑是思之始,学之端。”思考这样一连串的问题,目的是唤醒学生已有的知识经验;迅速地点燃孩子们求知欲望;引发学生的数学思考,为主动探究新知识积聚动力。
环节二:操作体验,概括规律。
1.观察发现,提出猜想。
通过找与1/2相等的分数,思考证明方法,观察等式,发现规律,于是提出猜想。
2.举例操作,验证猜想。
课标指出“学生应当有足够的时间和空间经历观察、实验、猜测、推理、验证等活动的过程”。本节课验证环节,将“分子分母怎样变才使得分数的大小不变”设定为研究的关键点,然后围绕这一关键点让学生展开了操作、感悟、分析、推理等一系列的数学活动,引导学生通过比较全面的大量的例子来验证结论,在观察、实验、猜测、验证的活动中发展合情推理能力。让学生试着用数学的思维去思考,体验如何运用新旧知识间的联系和迁移去分析和解决问题,培养学生好学善思的良好品质。
3.概括性质,深化理解。
通过观察算式,经历由特殊到一般的归纳推理,发现分数的基本性质。
4.运用规律,完成例2。
尝试运用发现的规律,解决问题。
环节三:知识应用,巩固提高。
在有层次的练习过程中,形成技能,发展学生的智力,达成本节课的教学目标,突出重点,突破难点。本节课,我设计了两个层次的练习。一是点对点的基础练习,二是灵活运用所学知识解决生活中实际问题。
环节四:回顾总结,完善认知。
通过回顾,梳理所学的知识,提炼数学方法,联系新旧知识,使学生的认知结构得到补充和完善。
有人说的好,教育是一门永无止境的艺术,我知道这节课还有很多不足,恳切的希望各位能给予我更多的宝贵建议,有了你们的帮助我一定收获更多,成长更快。