加几解决问题教案(模板11篇)
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。大家想知道怎么样才能写一篇比较优质的教案吗?以下我给大家整理了一些优质的教案范文,希望对大家能够有所帮助。
加几解决问题教案篇一
1、学会获得有用的数学信息,并能正确运用连加来解决问题,知道连加算式的含义和运算顺序,能比较熟练的口算。
2、培养学生观察、比较和抽象概括的能力,以及应用所学知识解决实际问题的能力。
会获得有用的数学信息,并能正确运用连加来解决问题,知道连加算式的含义和运算顺序,能比较熟练的口算。
让学生用所学知识解决实际问题的能力。
讲解法、练习法
说一说、做一做、练一练
小黑板
一、铺垫练习,揭示课题(5分)
1、口算:
2+2+2= 3+3+3= 4+4+4=
5+5+5= 6+6+6= 7+7+7=
二、出示目标(1分)
1、学会获得有用的数学信息,并能正确运用连加来解决问题,知道连加算式的含义和运算顺序,能比较熟练的口算。
2、培养学生观察、比较和抽象概括的能力,以及应用所学知识解决实际问题的能力。
三、探索新知(14分)
出示主题图。
他们在做什么呢?
1、从这幅图中,你能获得哪些数学信息?
2、学生汇报,板书。
3、怎样求一共折了多少个星星呢?讨论
汇报板书6+6+6=18(个)
口答:他们一共折了( 18)个小星星。
这就是我们今天学的新课“用连加解决问题”
4、这道题为什么是用连加的方法来解决呢?
学生发言,说自己的想法。
5、跟踪练习:
妈妈买了3盒铅笔,每盒10支,一共买了多少支铅笔?
四、巩固练习 (10分)
课本第77页做一做。
五、课堂小结(1分)
今天,你们学会了什么? 学生说一说今天的收获
六、堂清练习(9分)
练习十八第1、2题。
板书设计:
用连加解决问题
6+6+6=18(个)
口答:他们一共折了( 18)个小星星。
加几解决问题教案篇二
在最近这段时间的教学中,呈现了很多问题,我也在积极地去改进自己的教学方式和教学心态。
第一个是有的学生数学基础很差,非常简单的推公式会卡在数学问题上,物理知识大体上没有问题,但是只要呈现推公式的题就不会,刚开始会很仔细的去讲数学的问题,随着次数的增多,我也很气愤,不知道怎么解决才好,便去请教指导老师,与老师交流后,我更深刻的理解了此刻学生处于的.阶段,因为初二大家刚接触物理,上半学期计算上的问题很少,这学期的难度跨度很大,大家刚开始数学物理只是结合,很多学生不能很好的运用数学知识去解答物理问题,需要时间让学生慢慢适应。
第二个问题是很多学生急于去做题,知识基础打得不坚固,计算上的难题不会出问题,反而概念上的简单问题有很多。我也发明了这种孩子很很简单因为一个很小的问题被绊住,解题思路并不清晰。我思量了很久,也和物理组的其他实习教师还有指导老师进行了讨论。指导老师先告诉我的是孩子好学是好事情,不能打击学生学习的积极性,然后再来解决问题。最后我总结了大家的建议并开始改进讲题的方式。不再直接把整个思路和答案教给学生,而是用提问的方式来引导学生的思路,用思路来代替直接的答案,并且通过提问侧面的来检测学生基础知识的掌握情况,可以很清晰的看出学生是哪一部分的知识出了问题并适时提醒他们去仔细阅读课本复习相关知识。
第三个问题是随着教学的进行,从开始压强到浮力的过程,知识的难度在慢慢加大,计算中用到的物理量越来越多,包括上一学期学到的密度,这一学期学到的压强重力浮力受力分析,上一次强调受力分析已经过去了将近半个月,学生们开始忽略这个力学问题中最重要的问题。很多孩子反馈题中的已知量越来越少,需要求的未知量越来越多,思路就很简单乱。我认为问题出在学生学了知识,但是不会运用,碰到实实在在的题的时候无从下手,不知道从什么地方开始突破。请教了指导老师,也结合了我做学生的时候的经验,总结出了大题的解决方案,从需要求的量入手,求它需要什么量,然后一句一句读题,题上从来都没有没用的信息,一句一句一个点一个点推出中间信息,最后求出未知量。强调后大家的反馈情况有好转。
最近一段时间的教学收获很多,很开心与学生一起成长!
加几解决问题教案篇三
1、使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、确定解题思路,并有效地解决问题。
2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:使学生理解并运用假设的策略解决问题。
教学难点:当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。
1.直接出示你知道吗?鸡兔同笼问题是我国古代的数学名题之一。它出自于我国古代的一部算书《孙子算经》。书中的题目是这样的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?师:你能理解这句话的含义吗?学生回答。
2.师说明:解答鸡兔同笼问题时,我们会用到一个新的解决问题的策略假设,同时要用到以前的策略画图或列表。教师板书:解决问题的策略假设。
1.教师出示题目:鸡和兔一共有8只,数一数腿有22条。你知道鸡和兔各有多少只?教师边出示边说明:为了解答方便,老师适当的改了几个数据。师:看到这个题目,是否觉得比较难?师:这样吧,我们用以前的一种策略画图来解决。师让学生上台画鸡或兔,当学生有疑问时,问:这样画鸡或兔是否很麻烦,能否用其他方法来代替?师应引导学生用圈来表示鸡或兔,用2脚与4脚区分鸡与兔。问:能不能马上确定鸡兔各有几只?因此,我们画图时不能马上画出几只兔几只鸡。师:这时我们可以假设全部是鸡或兔了。
分别板书:假设都是鸡假设都是兔。师:我们先来假设都是兔,兔有几条腿?我们就用短线段表示脚,请同学们把所有的脚都画上。数一数,一共有几条腿?为什么会多腿?(要求学生一定说出因为把鸡当成是兔)了多几只腿?一只兔比一只鸡多几条腿?师:因为每只鸡比每只兔少2条腿,所以我们每次拿走2条腿。要拿走几次,你是怎样算的?师:现在你能发现什么吗?现在兔有几只?鸡有几只了?你能否把刚才的过程表述出来?请同桌互说把刚才的过程表述出来。
师:刚才的过程我们还可以用式子表示,谁来说明?教师根据学生回答分别板书。84=32(条)。
表示实际多画了10条腿。4-2=2(条)。
表示一只兔比一只鸡多2条腿。102=5(只)。
表示鸡有5只。8-5=3(只)。
表示兔有3只。教师重点多次提问要求学生回答出每句话的含义。
教师小结:我们可以首先假设全部是兔,然后数出兔的腿与实际的腿的差距,因为一只兔比一只鸡多2条腿,所以看这个差距里有几个2,所求出的与假设相反的鸡,最后求兔。
兔的只数。
腿的条数。
和22条腿比较。
师根据学生的回答分别板书。
4442+44=24。
多了2条在这里多了2条,表明什么?按照刚才的假设兔4只太多了还是太少了?如何调整?如果在这里少了4条,表明什么?该如何调整?师小结:此种方法我们首先假设各有一半,然后按照这种假设算出腿的总数,根据与题意差距,合理地调整。
4、师:要知道我们所求的答案是否正确,我们还应检验,如何检验?教师根据学生的回答板书检验。
5、小结:刚才我们用了三种方法解答了鸡兔同笼问题,都是采用的假设法,可以假设一种全是,也可以假设另一种全是,还可以假设各有一半,在解答时,可以选择你比较喜欢的一种来解答。
1、师:刚才我们采用假设法解决鸡兔同笼,我们回到刚才的你知道吗。老师把题目转化了。出示题目。现在你会解决了吗?这样吧,行的话你们可以直接完成,不行的话半分钟后会出现提示,还是不行的话一分钟后可以两人或四人商量商量。学生独立解决,完成后要求学生检验。
2、交流时在实物转换仪展示学生作业,师提问学生每步的意义。
兔的只数182023。
腿的条数171512。
小结:对于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。
1、师:刚才我们解答了两道鸡兔同笼问题,知道了此类题目的方法,接下去老师来考考你。(出示例题)全班51人去公园划船,一共租了11条船。每只大船坐5人,每只小船坐3人。租用的大船和小船各有几只?学生独立完成,教师帮助有困难的学生。交流时要求学生说明理由。
2、师:现在你能归纳这种方法的解答过程吗?小结:于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。
加几解决问题教案篇四
1、运用画线段图的方法整理已知条件和问题,理解和差问题的解题思路,掌握和差问题的解题方法。
2、掌握画线段图分析问题的方法,感受画线段图的策略在分析问题中的好处,培养学生运用线段图进行分析问题的意识。
3、培养学生良好的逻辑思维能力,鼓励学生在合作交流中激发自主探究、创新的精神。
教学重点:理解和差问题的解题思路,掌握和差问题的解题方法。
教学难点:掌握画线段图分析问题的方法,培养学生运用线段图进行分析问题的意识。
教学准备:课件
一、谈话引入
1、课件出示:小明买3本故事书用了27元,小军买了5本同样的故事书需要多少元?
(1)将题目中的信息整理到下面的表格中。
(2)分析表格中的信息,明确解题思路。
引导学生明确:可以先算出一本故事书多少元,再计算出5本故事书多少元。
(3)学生独立解答。
一本故事书:27÷3=9(元)
5本故事书:9×5=45(元)
2、谈话导入。
刚才我们采用了哪种解决问题的策略?(列表)
他的解决问题的策略,同学们想学吗?今天我们就一起来学习新的解决问题的策略。(板书课题)
二、交流共享
1、课件出示教材第48页例题1。
让学生读题,说说题目中的已知条件和所求的问题。
已知条件:小宁和小春共有72枚邮票;小春比小宁多12枚。
所求问题:两人各有邮票多少枚?
2、交流解题策略。
提问:想一想:这道题我们用列表的方法来分析,能找到解题思路吗?
学生交流得出:由于两人的邮票数量都是未知的,用列表的方法进行分析,不容易找到解题思路。
引导:接下来我们就来学习用画线段图的策略来分析这道题。
3、根据题意画线段图。
(1)提问:题目中有几个相关联的量?应该用几条线段来表示呢?学生回答后课件出示:
小宁:
多()枚()枚
小春:
(2)追问:你能根据题意把线段图填写完整吗?
让学生在教材的线段图上填一填,完成后组织汇报交流。
小宁:
多(12)枚(72)枚
小春:
4、看线段图,分析数量关系。
提问:观察线段图,想一想可以先算什么?
(1)学生独立观察思考后,小组交流讨论。
(2)全班交流解题思路。
汇报预测:
解题思路一:先算出小宁有多少枚邮票。两人邮票的总数减去12枚,等于小宁邮票枚数的2倍。
解题思路二:先算出小春有多少枚邮票。两人的总数加上12枚,等于小春邮票枚数的2倍。
5、学生独立解答。
引导学生选择一种自己喜欢的方法解答。
6、组织检验。
(1)提问:我们用什么方法进行检验?
(2)追问:检验要分几步进行?
(3)学生独立进行检验,并写出答案。
7、回顾反思。
引导:回顾解决问题的过程,你有什么体会?
先让学生在四人小组内说一说自己的体会,再组织全班交流。
8、交流讨论。
在之前的学习中,我们曾经运用画图的策略解决过哪些问题?
三、反馈完善
1、完成教材第49页“练一练”。
这道题和例题1相似,只不过要让学生自己从线段图中获取已知条件,通过这样的练习可以培养学生的读图能力。
2、完成教材第52页“练习八”第1题。
这道题也和例题1相似,但题目要求先把线段图补充完整,组织练习时要把重点放在线段图的画法上。
3、完成教材第52页“练习八”第3题。
这道题练习的重点应放在观察线段图、分析数量关系上,引导学生从线段图上看出下层图书的2倍就是60×2=120(本)
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
加几解决问题教案篇五
教学过程:
1.引入:刚才的游戏有意思吗?我们再来玩个游戏好吗?(课前游戏:你来比划我来猜)
2.要求:刚刚我们根据比划来猜测是什么事物,现在请同学们在纸上画出题目的意思。
4.从图中你能求出什么?
二、初步感知
1.出示第二关:中山路小学原来操场是一个长方形,长40米。在扩建校园时,长增加了20米,这样操场面积就增加了600平方米。原来操场面积是多少平方米?。
2.审题激需:你能想个办法让大部分同学都能理解题意顺利闯关呢?(画图)
3.看谁能把题目中的条件和问题都在图中表示出来?(1)学生画图, (2)对比交流:
4.现在图有了,你能根据图来求出原来操场的面积吗?
(1)学生尝试,教师巡视。(2)讨论交流:
5.小结:从开始审题我们觉得有点困难,至现在大部分同学都能做出来,你有什么感受?(画图是解决问题的好办法,画图能帮助我们思考……)
三、再次体验
2.审题后问:长方形操场是怎样变化的?(宽减少)你能把宽减少在图上表示出来吗?
3.学生画图,尝试解答后交流:把题意表示清楚了吗?能指着图说一说自己是怎么想的吗?(可能会有几种方法,重点指出宽减少了,长不变,减少的长方形的长就是现在长方形的长。)
4.小结揭题:我们顺利闯过了第三关,你能谈谈画图对我们解决问题有什么帮助吗?(清楚地找到数量之间的关系)这就是我们今天学习的“解决问题的策略”之一画图(板书)。
四、深入体验
(一)第四关:
1.引入:应用画图的策略,我们来闯第四关。
2.分层出示:
(1)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场长增加了20米。这个操场面积增加了多少平方米?(学生口答,再出图列式)
(2)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场宽增加了15米。这个操场面积增加了多少平方米?(学生口答,再出图列式)
学生猜测。先独立画图,再讨论验证。(得出不是增加1200平方米,应该大于1200平方米)
到底增加了多少?学生解答后交流。(交流“整体”和“分块”两种思路)
3.反思小结:从用经验猜测,到画图验证,最后到解决问题,你有什么启发吗?
(二)第五关:
1.引入:第四关我们都闯过了,下面我们要挑战——第五关!
(1)审题后问:与第四关有什么区别?(一个是“同时”,一个是“或者”)
(2)学生画图解答后交流:(让学生指了图来说思路。重点交流长增加出来的长方形的长就是原来长方形的宽;宽增加出来的长方形的宽就是原来长方形的长)
五、全课总结
今天学习了“解决问题的策略”,你有什么收获?
加几解决问题教案篇六
例5是“运算定律与简便计算”单元的最后一个内容,主要讨论乘、加两级运算中常用的简便计算。教材将简便方法的讨论与实际问题的解决有机地结合了起来,着力引导学生将简便方法应用于解决现实生活中的实际问题,同时注意解决问题策略的多样化,从而发展学生思维的灵活性和解决问题的能力。
前测发现,学生大多可以自主设计两种以上的算法,包括“把各月看成相同天数列式计算”的方法;部分同学具有初步的策略选择意识。这表明学生有进行新学习的基础和优化算法的需要。
教材的例5较完整地展现了该类问题的思考、解决过程,甚至给出了两种算法,压缩了学生的探究性学习空间,也不全面。我们考虑,把生活中的一些素材引入本课以丰富学习材料,扩大自主探究的空间;同时,把“练习八”中的2、7两题作为学生应用简算知识、强化简算意识的练习。
1、进一步巩固关于加法和乘法的运算定律知识。
2、能运用所学的运算定律及相关知识,选择合适的简便方法解决实际中的问题。其中,对中上学生要求灵活掌握解决问题的多种方法,对中下学生只要掌握一两种即可,个别能模仿即可。
3、在情境中,通过观察、思考、尝试与交流,体会不同的简便方法,增强解决问题的策略意识。
2、多媒体课件:展示学习材料及数周数的方法。
3、月历表:供学生研究问题时使用。
通过讨论,明确第22次南极科考的起止时间。
自主探索“这次南极科考一共用了多少天”的简便方法。
准确解释自己的“研究成果”。
4、参与对多种方法的评价,优选出“自己的”最简方法。
2、多媒体课件:展示学习材料。
1、材料:课本p46第二题。
2、多媒体课件:展示学习材料。
1、材料:课本p47第七题。
2、多媒体课件:展示学习材料和组合图形(菜地)的分割、旋转、拼接。
1、能通过对月历表的观察,策划出解决问题的方法,并向大家交流。
2、能理解“运用乘法分配律列式计算”、“把各月看成相同天数列式计算”、“按周列式计算”等方法。
3、能按自己的尺度优选出最简方法。
加几解决问题教案篇七
解决问题(一)
解决问题
1、会解决有关小数除法的简单实际问题。
2、能探索出解决问题的有效方法,并试图寻找其他方法,能表达解决问题的过程。
前面我们学习了小数除法的计算,那么你会解决下面的问题吗?(板书课题)
1、先独立思考解答。
2、小组内交流,可以先算什么?
3、小组汇报,全班交流,说说不同的思路。再指名说说。
1、“做一做”
独立完成,全班交流。再指名说说不同的解题思路。
2、完成p343
师:你从此题中收集到了哪些信息?要解决什么问题?如何思考?
生先独立思考,再小组交流,汇报分析过程。
师小结,解答问题时要找准有直接关系的条件或信息。
3、独立完成p341、2、4,教师巡视,辅导学困生。
加几解决问题教案篇八
1、使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同的方法解决问题。
2、培养学生认真观察等良好的学习习惯,初步培养学生发现问题、提出问题、解决问题的能力。
3、通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
初步理解数学问题的含义,经历从生活中发现并提出问题、解决问题的'过程,会用所学的数学知识解决简单的实际问题,体验数学与日常生活的密切联系。知道小括号的作用,会在解决问题中使用小括号。
培养学生在实际生活中发现问题、提出问题、解决问题的能力。
实物投影、游乐园情境图。
一、情景导入,激发兴趣。
1、谈话:小朋友们你们去过游乐园吗?你最喜欢玩什么?
2、投影出示游乐园情境图,问:“我们看看图中的小朋友们在做什么?”把学生的注意力吸引到画面上来。
3、让学生观察画面,提出问题。教师适当启发引导:有多少人在看木偶戏?学生自由发言,提出问题。
二、合作交流,探索新知。
2、观察了解信息:从图中你知道了什么?
3、小组交流讨论。
(1)应该怎样计算现在看戏的有多少人?
(2)独立思考后,把自己的想法在组内交流。
(3)选派组内代表在班中交流解决问题的方法。
4、把学生解决问题的方法记录在黑板上。
方法一、22+13=35(人)35-6=29(人)。
方法二、22-6=16(人)16+13=29(人)。
5、比较两种方法的异同。明确两种方法的结果都是求现在看戏的有多少人,在解决问题的思路上略有不同。
6、把两个小算式你能写成一个算式吗?学生尝试列综合算式。
板书:(1)22+13-6(2)22-6+13。
交流:你是怎么想的?
7、小结。
[设计意图]:使学生在观察事情的发生、发展过程中明确条件,提出问题并自主解决。
三、练习巩固,应用实践。
1、练习一的第1题,让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生以启发。
2、练习一的第4题,让学生自己独立完成。汇报解决问题的思路时,教师结合题目的具体内容,适当渗透思想教育。
[设计意图]:让学生在交流、实践中掌握知识。
四、课堂总结。
加几解决问题教案篇九
1、学会获得有用的数学信息,并能正确运用连加来解决问题,知道连加算式的含义和运算顺序,能比较熟练的口算。
2、培养学生观察、比较和抽象概括的能力,以及应用所学知识解决实际问题的能力。
会获得有用的数学信息,并能正确运用连加来解决问题,知道连加算式的含义和运算顺序,能比较熟练的口算。
让学生用所学知识解决实际问题的能力。
讲解法、练习法。
说一说、做一做、练一练。
小黑板。
一、铺垫练习,揭示课题(5分)。
1、口算:
2+2+2=3+3+3=4+4+4=。
5+5+5=6+6+6=7+7+7=。
二、出示目标(1分)。
1、学会获得有用的'数学信息,并能正确运用连加来解决问题,知道连加算式的含义和运算顺序,能比较熟练的口算。
2、培养学生观察、比较和抽象概括的能力,以及应用所学知识解决实际问题的能力。
三、探索新知(14分)。
出示主题图。
他们在做什么呢?
1、从这幅图中,你能获得哪些数学信息?
2、学生汇报,板书。
3、怎样求一共折了多少个星星呢?讨论。
汇报板书6+6+6=18(个)。
口答:他们一共折了(18)个小星星。
这就是我们今天学的新课“用连加解决问题”
4、这道题为什么是用连加的方法来解决呢?
学生发言,说自己的想法。
5、跟踪练习:
妈妈买了3盒铅笔,每盒10支,一共买了多少支铅笔?
四、巩固练习(10分)。
课本第77页做一做。
五、课堂小结(1分)。
今天,你们学会了什么?学生说一说今天的收获。
六、堂清练习(9分)。
练习十八第1、2题。
板书设计:
6+6+6=18(个)。
口答:他们一共折了(18)个小星星。
加几解决问题教案篇十
教学目标:
1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值,解决问题的策略教案。
2、在对解决实际问题过程的不断反思中,感觉“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
教学重点:让学生体会替换策略的优越性。
教学难点:对替换前后数量关系的把握。
教学过程:
一、创设情景导入:
有谁带了钢笔吗?
老师真是健忘啊,今天忘了带钢笔,谁能借老师用一下?
要不这样吧,有谁愿意让老师用一枝铅笔来换你的钢笔?(学生困惑)。
(严肃,让学生觉得真换)。
怎么啦?(学生说说)。
是啊!
那你倒是说说看希望老师拿几枝铅笔,你才肯和我交换?
为什么?(老师:成交!)。
用铅笔换钢笔依据。
板书:十枝铅笔---------换(黄色粉笔写)---------一支钢笔(价格相当)。
那你说说看为什么非要老师用十支铅笔才肯换呢?
(引导学生说出价钱差不多)。
紧接板书:价格相当。
十枝铅笔和一支钢笔价格相当,这正是公平交换的前提和依据。
板书:依据。
二、温故知新:
课件打开到曹冲称象图片。
(他用什么替换了什么?)。
你能联系上面情节讲一讲它替换的依据是什么呢?
(鼓励性评价:真聪明)。
石头和大象的重量相同作为替换的依据。
那曹冲是怎样来保证石头和大象的重量相同呢?
板书:一堆石头---------替换----------一头大象(重量相同)。
曹冲称象的故事给了我们这样一个启示:替换确实是一种解决问题的行之有效的方法。今天我们就来继续学习解决问题的策略之。。。对,替换。
板书:添上----替换两字。
三、协作创新。
曹冲是三国时期的人物,谈到三国,大家一定都知道赤壁大战吧。这场著名的战斗主要是在水上进行的。
三国时期的水上兵器比较多,有走舸,艨艟,斗舰和楼船等等,教案《解决问题的策略教案》。
(简略介绍其中的走舸和楼船。)。
题目看不清楚的话,可以拿出老师发给你们的纸,上面也有。
生一起读题。
你知道了哪些信息?
这道题目能用“替换”的策略解决吗?
接下来请同学们按照题目下面的要求,来亲身体验一下替换。
同桌合作:
1用什么替换什么?(把题目中替换的双方圈一圈)。
2替换的依据是什么?(在题目关键句的下面画一画)。
3替换前后的数量关系各是什么?(分别把替换前后的数量关系写一写,也可以用图画或者线段图表示)。
小组交流:
知道怎么替换了的同学请举手。
你们在替换的时候,有没有想到替换有什么好处啊?
请你在四人小组里面和同学交流一下。看看同学们是不是想的都和你一样?
1替换有什么好处?
2你替换的方法和其他同学完全一样吗?
结合课件画面讲解,板书。
一艘楼船--替换--5艘走舸(每条走舸乘坐的士兵数量是楼船上士兵人数的1/5)。
课件展示:
替换前。
(10走舸与1楼船横排,出示数量关系:10艘走舸和1艘楼船上一共装了105名士兵)。
替换后。
(15走舸,出示数量关系:15艘走舸一共装了105名士兵)让学生计算。并讲一讲过程(数量关系)。
(注重:有什么不同的见解):还有其他的替换方法吗?(课件要可以在两种方法间自由切换)。
两种方法都讲解完后,让学生说说替换的好处。
四、巩固立新:
俗话说得好:兵马未动,粮草先行。
这个问题还能用替换的策略解决吗?
请学生说说如何替换?
板书:一条运粮船----------替换----------(一辆马车+15袋)。
让学生在自备本上用自己喜欢的方式画一画。
实物投影展示替换方法。(最好选文字和图画各一份)。
数学是需要简洁和凝练的,看赵老师怎么来做。。。
强调计算的时候是个倒推的过程,是先减还是先除,不能忘记什么?
课件演示思考过程。
同桌之间互相说说:替换前后的数量关系分别是什么?
学生自己列算式解答。
请学生说说替换的好处。
五、博古通今:
学校阅览室为了让大家能阅读三国的故事,进了3套《四大名著》和8本《三国演义》,一共花费了410.4元。每本《三国演义》比每套《四大名著》便宜31.2元。分别求《三国演义》和《四大名著》的单价。
学生独立完成。
让一学生上黑板进行板演(力求作出示意图)。
全班交流。
引导学生把四大名著换成三国演义。
并让学生体会把三国演义换成四大名著虽然也可以计算,但是比较繁琐。
六、自编自演:
大家家里都买过名著没有?小红她也想买些书来阅读,所以她就把平时的零花钱都放到储蓄罐里储存起来。
请大家开动脑筋,根据5角硬币1元硬币储蓄罐三个词语,抽象出一道可以用替换策略解决的应用题。(可适当加上数据条件)。
七、课堂小结:
今天我们学习了什么?你准备以后经常使用这个策略吗?说说原因。对于这个策略,你有什么要提醒在座的各位同学的呢?经验也可以。
加几解决问题教案篇十一
教材第69页例3及相关题目。
1.结合具体情境认识与圆相关的组合图形的特征;掌握计算此类图形面积的方法,并能准确计算。
2.在解决实际问题的过程中,通过独立思考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。
3.结合例题渗透传统文化教育;通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。
掌握计算组合图形面积的方法,并能准确计算。
对组合图形进行分析。
多媒体课件。
学生活动(二次备课)。
课件出示例3中的雕窗图案。
1.观察一下,这两种设计图案有什么联系和区别?每个图案中的圆和正方形有什么关系?都是由正方形和圆组成的,但左边是外方内圆,正方形的边长等于圆的直径;右边是外圆内方,圆的直径等于正方形的对角线的长。
2.理解题意。如果两个圆的半径都是1m,求出正方形和圆之间部分的面积。抽象成我们学过的数学图形就是:思考:怎样求正方形和圆之间部分的面积?先想一想,再同桌交流。左图求的是正方形比圆多的面积,即用正方形的面积减去圆的面积。右图求的是圆比正方形多的面积,即用圆的面积减去正方形的面积。
3.分析解答。知道两圆的半径,就可以求出它们的面积,关键是求正方形的面积。观察图可知,左图正方形的边长等于圆的直径,由此可求面积;右图正方形的边长不知道,不能直接用公式求面积,可以将正方形看成两个底是圆的直径,高是圆的半径的三角形。学生自己计算,集体订正。
4.回顾反思,理解算法。师:如果两个圆的半径是r,结果又是怎样的?结合图形算一算。学生分小组探究、汇报结论。想一想:当r=1时,和前面的结果一致吗?代入看看。小结:不管圆的大小如何改变,外方的正方形与圆之间的面积都是半径平方的0.86,而内方的正方形与圆之间的面积都是半径平方的1.14倍。
四、巩固练习。
完成教材第70页做一做。
五、拓展提升。
求下面各图中阴影部分的面积。
(1)3.14×52÷2-5×2×5÷2=14.25(cm2)(2)12×12÷2-3.14×(12÷2)2÷2=15.48(cm2)。
六、课堂总结。
通过本节课的学习,你有哪些收获?你还有哪些问题?七、作业布置教材练习十五第9、11题。
观看欣赏美丽的图片。教师根据学生预习的情况,有侧重点地调整教学方案。观察两个图案,找出组成两个图案的基本图形,并找出它们的特点关系。先独立思考再交流、分析后可得:其实就是求图中阴影部分的面积。以小组为单位进行讨论计算。
板书设计。
2×2—3.14×12。
右图:3.14×12-。
×2×1。
×2=4-3.14。
=3.14-2=0.86(m2)。
=1.14(m2)。
(2r)2-3.14×r2=0.86r2。
3.14×r2×2r×r×2=1.14r2。
成功之处:本节课设计让学生经历观察思考、分析推理等学习活动,解决问题,提高学生对数学的好奇心和求知欲。不足之处:对组合图形的面积的计算没有进行回顾和总结。教学建议:教学时在每个环节结束后让学生进行总结或说一说感受,使知识能够得到沉淀。