2023年高中数学教案(优质12篇)
作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么教案应该怎么制定才合适呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。
高中数学教案篇一
1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。
2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。
难点:识别三视图所表示的空间几何体。
观察、动手实践、讨论、类比。
(一)创设情景,揭开课题
展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。
(二)讲授新课
1、中心投影与平行投影:
中心投影:光由一点向外散射形成的投影;
平行投影:在一束平行光线照射下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:
正视图:光线从几何体的前面向后面正投影,得到的投影图;
侧视图:光线从几何体的左面向右面正投影,得到的投影图;
俯视图:光线从几何体的上面向下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规则:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;
高平齐:正视图与侧视图的高度相等,且相互对齐;
宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:
正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:
5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
(三)巩固练习
课本p15练习1、2;p20习题1.2[a组]2。
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)布置作业
课本p20习题1.2[a组]1。
高中数学教案篇二
了解双曲线的定义,几何图形和标准方程,知道它的简单性质。
【自学质疑】
渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。
2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是
3.经过两点 的双曲线的标准方程是 。
4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。
5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为
【例题精讲】
1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。
2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。
3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。
【矫正巩固】
1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。
2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。
3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是
4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。
【迁移应用】
2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。
3. 双曲线 的焦距为
4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则
5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 .
高中数学教案篇三
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
教学重点.难点
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
教学目标
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
2.过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3.情感.态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性.
1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学.
(一)创设情景,揭示课题
1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。
(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?
引导学生互相交流.与此同时,教师对学生的活动给予评价.
2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征
由此引出这节要学的内容。
设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫
(二)研探新知,建构概念
1.教师利用多媒体设备向学生投影出下面7个实例:
(1)1—20以内的所有质数;(2)我国古代的四大发明;
(3)所有的安理会常任理事国; (4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)国兴中学20xx年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这7个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.
4.教师指出:集合常用大写字母a,b,c,d,?表示,元素常用小写字母a,b,c,d?表示.
设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神
(三)质疑答辩,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.
3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.
4.教师提出问题,让学生思考
高一(4)班的一位同学,那么a,b与集合a分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.
如果a是集合a的元素,就说a属于集合a,记作a?a.
如果a不是集合a的元素,就说a不属于集合a,记作a?a.
(2)如果用a表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合a的关系分别是什么?请用数学符号分别表示.
(3)让学生完成教材第6页练习第1题.
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1a组第1题.
6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。
(四)巩固深化,反馈矫正
教师投影学习:
(3)试选择适当的方法表示下列集合:教材第6页练习第2题.
设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象
(五)归纳小结,布置作业
小结:在师生互动中,让学生了解或体会下例问题:
1.本节课我们学习了哪些知识内容? 2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。
作业:1.课后书面作业:第13页习题1.1a组第4题.
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种
呢?如何表示?请同学们通过预习教材.
高中数学教案篇四
知识与技能。
在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的.圆心半径,掌握方程x+y+dx+ey+f=0表示圆的条件。
过程与方法。
通过对方程x+y+dx+ey+f=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。
情感态度与价值观。
渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
重点。
掌握圆的一般方程,以及用待定系数法求圆的一般方程。
难点。
二元二次方程与圆的一般方程及标准圆方程的关系。
(一)复习旧知,引出课题。
1、复习圆的标准方程,圆心、半径。
2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?
高中数学教案篇五
3.进一步提高问题探究意识、知识应用意识和同伴合作意识。
问题的提出与解决。
如何进行问题的探究。
启发探究式。
研究方向提示:
1.数列{an}是一个等比数列,可以从等比数列角度来进行研究;
2.研究所给数列的项之间的关系;
3.研究所给数列的子数列;
4.研究所给数列能构造的新数列;
5.数列是一种特殊的函数,可以从函数性质角度来进行研究;
6.研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。
针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。
课堂小结:
1.研究一个数列可以从哪些方面提出问题并进行研究?
2.你最喜欢哪位同学的研究?为什么?
开展研究性学习,培养问题解决能力。
一、对“研究性学习”和“问题解决”的认识研究性学习是一种与接受性学习相对应的学习方式,泛指学生主动探究问题的学习。研究性学习也可以说是一种学习活动:学生在教师指导下,在自己的学习生活和社会生活中选择课题,以类似科学研究的方式去主动地获取知识、应用知识、解决问题。
“问题解决”(problemsolving)是美国数学教育界在二十世纪八十年代的主要口号,即认为应当以“问题解决”作为学校数学教育的中心。
问题解决能力是一种重要的数学能力,其核心是“创新精神”与“实践能力”。在数学教学活动中开展研究性学习是培养问题解决能力的主要途径。
二、“问题解决”课堂教学模式的建构与实践以研究性学习活动为载体,以培养问题解决能力为核心的'课堂教学模式(以下简称为“问题解决”课堂教学模式)试图通过问题情境创设,激发学生的求知欲,以独立思考和交流讨论的形式,发现、分析并解决问题,培养处理信息、获取新知、应用知识的能力,提高合作意识、探究意识和创新意识。
(一)关于“问题解决”课堂教学模式。
通过实施“问题解决”课堂教学模式,希望能够达到以下的功能目标:学习发现问题的方法,开掘创造性思维潜力,培养主动参与、团结协作精神,增进师生、同伴之间的情感交流,形成自觉运用数学基础知识、基本技能和数学思想方法分析问题、解决问题的能力和意识。
(二)数学学科中的问题解决能力的培养目标。
数学问题解决能力培养的目标可以有不同层次的要求:会审题,会建模,会转化,会归类,会反思,会编题。
(三)“问题解决”课堂教学模式的教学流程。
(四)“问题解决”课堂教学评价标准。
1.教学目标的确定;
2.教学方法的选择;
3.问题的选择;
4.师生主体意识的体现;
5.教学策略的运用。
(五)了解学生的数学问题解决能力的途径。
(六)开展研究性学习活动对教师的能力要求。
高中数学教案篇六
(2)进一步理解曲线的方程和方程的曲线。
(3)初步掌握求曲线方程的方法。
(4)通过本节内容的教学,培养学生分析问题和转化的能力。
求曲线的方程。
计算机。
启发引导法,讨论法。
【引入】。
1.提问:什么是曲线的方程和方程的曲线。
学生思考并回答,教师强调。
2.坐标法和解析几何的意义、基本问题。
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何,解析几何的两大基本问题就是:
(1)根据已知条件,求出表示平面曲线的方程。
(2)通过方程,研究平面曲线的性质。
【问题】。
如何根据已知条件,求出曲线的方程。
【概括总结】通过学生讨论,师生共同总结:
分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:
首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:
(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;
(2)写出适合条件的点的集合;
(3)用坐标表示条件,列出方程;
(4)化方程为最简形式;
(5)证明以化简后的方程的解为坐标的点都是曲线上的点.
上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正。
下面再看一个问题:
【小结】师生共同总结:
(1)解析几何研究研究问题的方法是什么?
(2)如何求曲线的方程?
【作业】课本第72页练习1,2,3;
高中数学教案篇七
熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。
掌握两角和与差的正、余弦公式,能用公式解决相关问题。
教学重难点。
熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。
两角差的余弦公式。
用-b代替b看看有什么结果?
高中数学教案篇八
教学内容:
整十数加一位数及相应的减法。
教学目标:
1、让学生经历两位数加、减一位数的口算方法的探索过程,能比较熟练的进行口算。并了解加、减发算式中各部分的名称。
2、在根据数的组成探索口算方法的过程中,体会知识间的内在联系,发展思维能力和口算能力。
3、培养用数学的观念看周围的事物的意识,培养同学之间的相互合作、交流的态度。
教学重难点:
两位数加、减一位数的口算方法。
教学准备:
课件。
教学过程:
2个十和5个一合起来是(),8个十和4个一合起来是()。95里面是由()个十和()个一组成。81里面有()个十和()个一。
1、出示32页情景图。
2、提问:你能从图中获得哪些数学信息?能提出一个数学问题吗?
学生回答:梳理问题。
(1)一共有多少个桃?
(2)一共有34个桃,去掉框里的30个,还剩多少个桃?
3、怎样列式?
(1)先想一想。
(2)小组交流。
小组内交流自己的算法。
(3)指名小组汇报。
结合学生回答小结:根据看图,数出来的;用小棒摆出来的;根据数的组成来思考的。34+4就是把3个十和4个一合起来,是34;34-30就是从34里去掉3个十,还剩4个一,是4。
4、解答“试一试”。
提问:4+30等于多少,你又可以怎样算?
(1)先想一想。
(2)小组交流。
小组内交流自己的算法。
(3)指名小组汇报。
4个一和3个十和起来是34;因为30+4=34,所以4+30=34。
谈话:“34-4”你会算吗?填在书上,并轻声地说说你是怎样想的。
指名回答,结合学生回答适当补充。
5、介绍算式中各部分的名称。
(1)介绍加法算式中各部分的名称。
谈话:每个小朋友都有自己的名子,在每一个算式中每个部分也都有各自的名子。在加法算式30+4=34中,相加的两个数都叫做加数。两个加数相加的结果叫做和。
(2)介绍减法算式各部分的名称。
(3)指名说出算式4+30=34,34-4=30中各部分的名称。
1、“想想做做”第1题。
(1)出示图,让学生说图意。
(2)根据图意,列出四个算式。
(3)说说每道算式表达什么意思。
2、“想想做做”第2题。
先独立完成,再说说怎样想的?
提问:根据60+3=63你能想到其他三个算式吗?
3、“想想做做”第3题。
先独立完成,再说说是怎样想的,集体核对结果。
4、“想想做做”第4题。
根据表中第一行的名称说说左表用什么方法计算,右表用什么方法计算。
5、“想想做做”第5题。
先了解“相邻数”是什么意思,再写数交流。
6、“想想做做”第6、7题。
先说说每题中的.已知条件和要求的问题。
再自己独立完成。
同桌交流并说说是怎样想的。
高中数学教案篇九
【知识与技能】。
在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+dx+ey+f=0表示圆的条件。
【过程与方法】。
通过对方程x+y+dx+ey+f=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。
【情感态度与价值观】。
渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
【重点】。
掌握圆的一般方程,以及用待定系数法求圆的一般方程。
【难点】。
二元二次方程与圆的一般方程及标准圆方程的'关系。
三、教学过程。
(一)复习旧知,引出课题。
1、复习圆的标准方程,圆心、半径。
2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?
高中数学教案篇十
重点是组合的定义、组合数及组合数的公式;
难点是解组合的应用题.。
(一)导入新课。
(教师活动)提出下列思考问题,打出字幕.。
[字幕]一条铁路线上有6个火车站。
(1)需准备多少种不同的普通客车票?
(学生活动)讨论并回答。
答案提示:
(1)排列;
(2)组合。
[评述]问题。
(二)新课讲授。
[提出问题创设情境]。
(教师活动)指导学生带着问题阅读课文。
[字幕]。
1.排列的定义是什么?
2.举例说明一个组合是什么?
3.一个组合与一个排列有何区别?
(学生活动)阅读回答.。
(教师活动)对照课文,逐一评析.。
设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境。
【归纳概括建立新知】。
(教师活动)承接上述问题的回答,展示下面知识.。
(学生活动)倾听、思索、记录。
(教师活动)提出思考问题。
[投影]与的关系如何?
(师生活动)共同探讨.求从个不同元素中取出个元素的排列数,可分为以下两步:
第1步,先求出从这个不同元素中取出个元素的组合数为;
第2步,求每一个组合中个元素的全排列数为。
根据分步计数原理,得到。
[字幕]公式1:
公式2:
(学生活动)验算,即一条铁路上6个火车站有15种不同的票价的普通客车票。
(三)小结。
(师生活动)共同小结。
本节主要内容有。
1.组合概念。
2.组合数计算的两个公式。
(四)布置作业。
1.课本作业:习题103第1(1)、(4),3题。
3.研究性题:
(五)课后点评。
3.能组成(注意不能用点为顶点)个四边形,个三角形.。
探究活动。
解设四人分别为甲、乙、丙、丁,可从多种角度来解。
高中数学教案篇十一
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;。
1、教学重点。
理解并掌握诱导公式、
2、教学难点。
正确运用诱导公式,求三角函数值,化简三角函数式、
1、教法。
2、学法。
3、预期效果。
(一)创设情景。
1、复习锐角300,450,600的三角函数值;。
2、复习任意角的三角函数定义;。
3、问题:由,你能否知道sin2100的值吗?引如新课、
高中数学教案篇十二
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法。
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观。
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪。
(一)创设情景,揭示课题。
1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知。
1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)。
2.棱柱的何两个平面都可以作为棱柱的底面吗?
3.课本p8,习题1.1a组第1题。
5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化。
练习:课本p7练习1、2(1)(2)。
课本p8习题1.1第2、3、4题。
五、归纳整理。
由学生整理学习了哪些内容。
六、布置作业。
课本p8练习题1.1b组第1题。
课外练习课本p8习题1.1b组第2题。
(1)掌握画三视图的基本技能。
(2)丰富学生的.空间想象力。
2.过程与方法。
主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观。
(1)提高学生空间想象力。
(2)体会三视图的作用。
重点:画出简单组合体的三视图。
难点:识别三视图所表示的空间几何体。
1.学法:观察、动手实践、讨论、类比。
2.教学用具:实物模型、三角板。
(一)创设情景,揭开课题。
“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
(二)实践动手作图。
2.教师引导学生用类比方法画出简单组合体的三视图。
(1)画出球放在长方体上的三视图。
(2)画出矿泉水瓶(实物放在桌面上)的三视图。
学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本p10,图1.2-3)。
请同学们思考图中的三视图表示的几何体是什么?
(2)你能画出圆台的三视图吗?
(3)三视图对于认识空间几何体有何作用?你有何体会?
教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。
(三)巩固练习。
课本p12练习1、2p18习题1.2a组1。
(四)归纳整理。
请学生回顾发表如何作好空间几何体的三视图。
(五)课外练习。
1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。
2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。
(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法。
学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观。
(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
重点、难点:用斜二测画法画空间几何值的直观图。
1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规。
(一)创设情景,揭示课题。
1.我们都学过画画,这节课我们画一物体:圆柱。
把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知。
1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图。
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法。
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体abcd-a’b’c’d’的直观图。
教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。
(2)投影出示几何体的三视图、课本p15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。
4.平行投影与中心投影。
投影出示课本p17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。
5.巩固练习,课本p16练习1(1),2,3,4。
三、归纳整理。
学生回顾斜二测画法的关键与步骤。
四、作业。
1.书画作业,课本p17练习第5题。
2.课外思考课本p16,探究(1)(2)。