最新大数据查询 大数据会议心得体会(实用8篇)
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
大数据查询篇一
近年来,随着信息技术的快速发展,大数据已经成为了企业的核心竞争力之一。为了更好地了解大数据的最新发展趋势和应用案例,我参加了一场关于大数据的国际会议。在这次会议上,我学到了许多新的知识和见解,也深刻感受到了大数据对于企业和社会的重要性。在这篇文章中,我将分享我在大数据会议上的心得体会。
在会议的第一天,与会者们围绕着大数据的基本概念展开热烈的讨论。与会者们一致认为,大数据是指无法通过传统数据库和数据处理技术来处理和分析的数据集合。大数据具有三个特征:高速、多样和海量。高速指的是数据的产生、传输和存储速度都非常快。多样指的是数据的类型多种多样,包括结构型数据和非结构型数据。海量指的是数据的规模庞大,数以PB计数。正是由于这些特征,大数据的处理和分析对于传统的数据处理技术提出了新的挑战。
会议的第二天,与会者们重点讨论了大数据的应用案例。在不少企业中,大数据已经被广泛应用在各个领域。在市场营销领域,大数据帮助企业更好地了解消费者的需求和偏好,从而提供更准确和个性化的产品和服务。在金融领域,大数据可以帮助银行和保险公司识别欺诈行为,降低风险。在医疗领域,大数据可以辅助医生进行诊断和治疗,提高患者的治疗效果。这些应用案例无一不展示了大数据在不同领域的巨大潜力。
第三天的会议上,与会者们就大数据的隐私和安全问题进行了研讨。大数据的使用涉及到大量的个人隐私信息,因此保护用户的隐私成为了重要问题。与会者们一致认为,应制定更加严格的隐私保护法律和规定,加强数据保护措施,保障用户的隐私权益。同时,大数据的安全问题也备受关注。与会者们呼吁企业加强数据安全管理,提高数据安全意识,确保数据不被黑客攻击和泄露。
最后一天的会议上,与会者们总结了大数据对于未来发展的影响和挑战。与会者们一致认为,大数据将成为推动技术创新和经济发展的重要驱动力。然而,大数据也带来了一系列新的挑战,如数据的质量、隐私保护、数据安全等。与会者们呼吁管理者和决策者重视大数据,制定相关政策和法规,推动大数据的健康发展。
通过这次大数据会议,我对大数据有了更深入的了解。大数据不仅仅是一个热门词汇,更是一种技术革命和商业机遇。作为一个从业者,我们需要不断学习和更新知识,紧跟大数据的发展趋势。只有这样,我们才能在激烈的竞争中占据优势,创造更大的价值。
大数据查询篇二
4月6日,联合交通部科学研究院对外发布《第一季度中国主要城市骑行报告》。该报告以ofo出行大数据为参考,首次采用城市骑行指数作为评估指标,对北京、上海、广州、深圳、天津、南京、西安、杭州等20座国内一二线城市的共享单车发展水平进行评估排名。
可以发现,在单车使用水平、节能减排水平、健康贡献水平、停车设施水平、服务环境水平和社会文明水平六个方面,每个城市的表现各有不同。行业专家分析称,该报告对透视我国城市慢行交通发展现状、追踪共享单车行业发展、推动智能绿色城市建设事业起到参考作用。
18~45岁人群成共享单车主要用户西安广州最男人、天津昆明最均衡
报告显示,18~45岁人群成共享单车骑行的主力用户,占比接近90%,其中30岁及以下群体占比达到55%,30~45岁占比约35%。由此可见,共享单车的用户不仅覆盖年轻群体,也受到了中年群体的广泛认可和使用。
同时,在用户男女比例分布中,不同的城市区分为了两大派系。一个是以西安、广州为代表的五座城市成为了“最男人”的共享单车骑行城市,男性用户占比达到55.90%~59.70%,较高于女性用户。而以天津、昆明为代表的五座城市则成了“最均衡”的共享单车骑行城市,男女比例在48%~52%之间,可以说基本相差无几。但综合来看,女性用户占比能达到45%左右。
中国城市整体骑行水平53.6分空间巨大综合指数六大榜单昆明东莞上榜
报告显示,20第一季度中国城市整体骑行水平为53.6分,其中北京以84.3位居榜首,上海、成都分别以79.3分和65.1分紧随其后。除此之外,深圳、昆明、杭州、广州、南京、厦门、福州、武汉等八座城市也高于平均分,城市骑行水平较为领先。
而53.6的整体骑行水平虽然较满分100分来看属于偏低水平,但考虑到年初共享单车才迎来一波的快速发展,诸多方面尚不完善,例如城市停车设施的建设,北京、上海、杭州三城虽然达到13分以上,但其他20座城市停车设施平均得分仅为7.55分,远低于满分20分。未来,随着共享单车的健康发展、城市停车设施的建设、服务环境的提升等因素逐步完善,分数还将进一步上升。
报告同时给出“2017年第一季度主要城市六大榜单”,北京位列“停车设施相对完善”、“节能减排贡献最大”、“政府服务环境最好”三个榜单之首。昆明则成为“最爱骑共享单车的城市”,东莞成为“我骑行·我健康”的榜首城市。
城市文明程度杭州12.9分排第一20城q1累计骑行5.93亿公里
报告针对社会文明程度,对各城市对共享单车的友好度进行了评分,杭州市以12.9分排名第一,南京、西安分别以12.75和12.22排名第二第三,北京仅以9.94分排名第九。在服务环境水平评估中,北京以满分15分位列第一。近期,全国各地陆续出台了针对共享单车的管理办法,如上海出台了《共享自行车服务规范》,成都推出了《成都市关于鼓励共享单车发展的试行意见》。
报告显示,我国20座城市第一季度累计骑行5.93亿公里,相当于绕地球14794圈,日均累计骑行距离为659万公里,相当于地球赤道的164倍。不仅如此,20个城市第一季度人均累计骑行消耗热量6840千卡路里,相当于燃烧掉1.8斤脂肪。
共享单车缓解城市交通出行难问题
数据统计,从1995年至,随着民用汽车保有量从1040万辆攀升至1.9亿辆,自行车的.保有量却从6.7亿辆,急剧下降至3.3亿辆。汽车成为代步工具的同时,给城市交通和生态环境也带来了极大压力,城市居民的出行成本急剧上升。
专家认为,共享单车+公共交通的出行模式,正逐渐替代家用汽车+步行+公共交通的出行模式,快速发展中的共享单车正改善着我国城市居民的出行模式,也对我国交通新体系建设产生深远影响。
大数据查询篇三
随着科技的不断进步,大数据已经成为了当下最热门的话题之一。在信息化时代,数据已成为企业竞争力的重要驱动因素。作为大数据创新的从业者,我在实践中积累了一些心得体会,希望通过本文与大家分享。
首先,大数据创新需要全面的数据支持。在大数据时代,数据的价值不仅仅在于数量,更在于质量和多样化。企业需要收集各种类型的数据,包括内部流程、客户信息、市场调研、社交媒体等,以形成完整的数据体系。只有数据全面、真实,才能为创新提供有效的支持。所以,企业在进行大数据创新前,需要先建立起有效的数据采集和管理机制。
其次,大数据创新需要高效的分析方法。海量的数据需要符合人们的认知方式进行处理和分析,这是大数据创新的核心问题之一。人工智能和机器学习等技术的发展,为大数据的分析提供了全新的思路和方法。同时,还要结合具体业务场景,制定相应的数据分析模型,通过数据预测、数据挖掘等手段,实现对数据的进一步深度挖掘,为企业决策提供准确的依据。
第三,大数据创新需注重合规与保护。大数据的应用和创新需要遵守合法、合规的原则。企业在制定大数据策略时,首先要确保数据的合法性,防止侵犯用户隐私等问题。同时,要加强数据的安全防护,比如加密、权限管理等措施,以保护数据不受到未经授权的访问和使用。只有在安全和合规的情况下,大数据创新才能够持续发展。
第四,大数据创新需要跨界合作。大数据的应用涉及到众多领域,需要不同行业的专业人士进行跨界合作。比如,在金融领域中,可以通过与科技公司合作,整合金融和科技的优势,提供更好的金融服务。而在医疗领域,可以结合人工智能技术和医学专业知识,提高诊断的准确性。在跨界合作中,各方可以互相借鉴和融合,形成更加创新的解决方案。
最后,大数据创新需要与时俱进。大数据的应用和技术发展非常迅速,一直处于不断演进之中。作为从业者,我们需要紧跟时代的步伐,主动学习新技术、掌握新方法,及时更新自己的知识储备。同时,要保持创新思维,敢于尝试新的想法和方法,不断挑战自己的极限。只有不断突破,才能破除旧有的思维框架,实现真正的创新。
总之,大数据的创新是一个动态的过程,需要全面的数据支持、高效的分析方法、合规与保护、跨界合作和时刻与时俱进。希望通过我的分享,能够为大家在大数据创新的道路上提供一些参考和启示。无论是企业还是个人,只有不断追求创新,才能在大数据时代中立于不败之地。
大数据查询篇四
在大数据时代的大数据管理形式不断发展过程中,给企业发展带来冲击非常巨大。因此,企业要根据我国信息技术不断发展的形式,对大数据管理框架进行全面的设计和创新,如图1所示。在大数据的处理的过程中,主要是围绕着数据资产进行管理的,同时对大数据时代的大数据管理制度,进行全面的规划行、设计、创新,这样对其它信息技术管理领域,提供了便利的条件。其实,大数据时代的大数据管理最主要的目的,就是将大数据的价值进行充分的展现。另外,在大数据时代的大数据管理框架不断创新的过程中,有效的实现了大数据共享等性能,不断扩大了大数据时代的大数据管理的内容,对我国现代化信息技术的发展,起到了重要的作用和意义。
2。2开发与内容的管理形式
在不断提高大数据时代的大数据管理形式的过程中,可以从两个方面进行,一是大数据开发管理,二是内容管理。其中大数据开发管理注重于大数据管理的定义,和管理解决策略,对其大数据的存在价值,进行有效的开发。换句话说,其实也就是在大数据时代的大数据管理的过程中,对其管理形式的开发,对大数据的功能和价值,进行充分的理解。
大数据时代的大数据管理中的内容管理是指:企业对大数据进行不断的获取、使用、存储、维护等工作活动。因此,传统的大数据时代的大数据管理形式,已经无法满足对这个时代发展需求。因此,在时代快速发发展的推动下,要对开发管理和内容管理,进行全面的创新和设计,对需要专门设定的管理形式,要给予高度的重视,可以利用的集合型的保存形式,进行全面的保存。
其实,大数据时代的大数据管理主要是为企业提供重要的发展方向,为企业提供重要的价值信息。大数据时代的大数据管理在数据应用和开发的过程中,起到了重要的衔接作用,也为我国信息技术的发展,打下了坚实的基础。
2。3对大数据架构进行全面的管理
在大数据时代的大数据管理的过程中,数据框架管理起到了重要的作用,并且与大数据开发的过程中,有很多相似的地方。在传统的大数据时代的大数据管理的过程中,对其数据的开发、处理、保存等形式,都受到了一定程度上的限制。因此,在对大数据时代的大数据架构管理的过程中,对其操作形式,进行了全面的管理创新,避免受到范围的限制。另外,随着大数据不断的增加,大数据构架管理可以根据大数据的用途,质量良好的应用形态。例如:社交网络等形式。
与此同时,在最近几年的发展中,大数据时代的大数据管理形式,也面临着新的挑战基机遇。以此,只有对大数据时代的大数据管理形式,对个人信息、隐私等进行全面的管理,避免个人信息、隐私等发生泄露、不对称等现象的发生,这样不仅仅企业在发展的过程中,提供了最大程度上的安全保障,也为大数据时代的发展,带来了新的发展篇章。
3结语
综上所述,大数据时代是信息技术时代不断发展的产物,不管对我国经济的发展,还是人们在日常工作、生活的过程中,都起到了重要的作用和意义。因此,本文对大数据时代的大数据管理发展的历程进行了简要的分析,并对大数据时代的大数据管理形式,提出了一些可参考性的建议,只有对大数据时代的大数据管理形式,进行不断的创新,对大数据时代的大数据管理框架,进行不断的构建,也只有这样的才能在最大程度上促进了我国信息技术的发展,也为我国各行各业的发展,提供了重要的发展方向,对我国经济的发展,也起到了推动性的作用。
大数据查询篇五
随着科技的飞速发展和信息化时代的到来,大数据已经成为企业创新和发展的重要支撑,使得企业能够摆脱传统的经验和直觉,通过数据的分析和挖掘来指导决策。在我个人的实践过程中,我深有体会地发现,大数据创新是一个灵活的过程,需要经验丰富的团队、科学的方法和良好的数据基础。下面将从这三个方面详细阐述我在大数据创新中的心得体会。
首先,经验丰富的团队是大数据创新的核心。从数据的收集、清洗、处理到模型的构建、算法的运用,都需要团队中的每个成员发挥专业知识和技能。在我所参与的大数据创新项目中,我们的团队由数据分析师、数据科学家、工程师和业务专家组成。数据分析师能够深入了解数据的特点和业务需求,进行有效的数据分析和挖掘;数据科学家能够运用统计学和机器学习的方法构建预测模型,提供有针对性的建议;工程师能够将模型转化为实际应用,实现数据的可视化和自动化;业务专家则更贴近实际运营,能够将大数据创新与业务策略有效结合。团队成员之间的密切合作和相互补充,使得大数据创新能够得以顺利推进和落地。
其次,科学的方法是大数据创新的基石。大数据创新不仅仅是凭直觉和经验作出决策,而是通过科学的方法来进行数据的分析和模型的构建。在大数据的处理过程中,我们需要遵循一整套科学的流程,包括问题定义、数据收集、数据清洗、数据分析和模型应用。首先,我们要明确问题的背景和目标,确立大数据分析的目的和范围;然后,通过各种途径多角度地收集数据,包括传感器、互联网、应用程序等,从而形成全面的数据集;接下来,对数据进行清洗和预处理,去除噪声和异常值,使得数据更具可比性和可信度;然后,我们可以运用统计学、机器学习和人工智能等方法,对数据进行分析和建模;最后,将模型转化为实际应用,为企业的决策提供支持。通过科学的方法,我们可以准确地分析问题,发现潜在的商机和风险因素,为企业提供有效的决策依据。
最后,良好的数据基础是大数据创新的保障。大数据的质量和数量直接影响到分析和建模的准确性和可行性。在大数据创新中,我们需要关注数据的来源和真实性,确保数据的质量。同时,我们还需要拥有大量的数据量,以便进行足够的样本量和样本空间的分析,避免过拟合和欠拟合的问题。在我参与的项目中,我们经常需要从各种信源中收集大量的数据,包括用户日志、传感器数据、市场调研数据等。只有拥有这些数据的基础,才能实现对用户行为、市场趋势等的深入分析和挖掘,为企业的创新和发展提供支持。
综上所述,大数据创新是一个灵活的过程,需要经验丰富的团队、科学的方法和良好的数据基础。在实践过程中,我们需要注重团队的合作和沟通,以及科学的分析和建模方法,才能实现数据的有效利用和创新。未来,随着大数据技术的不断发展和应用场景的扩大,大数据创新将会在企业发展中发挥越来越重要的作用。我们需要不断学习和总结经验,不断追求创新和突破,为企业带来更大的发展机遇。
大数据查询篇六
第一段:引言(150字)
大数据共享是指在互联网时代,采集、存储和分析各种类型的数据,为社会经济发展提供基础数据支持的一种重要模式。在大数据共享的背景下,个人、企业、政府、科研机构之间实现数据的共享和交流成为一种普遍现象。在个人的实践中,我深切感受到了大数据共享所带来的好处和体会到了其中存在的挑战。
第二段:大数据共享的好处(250字)
大数据共享的好处是不可否认的。首先,大数据共享能够提高数据的利用效率。通过数据共享,不同的组织可以分享彼此的数据资源,避免了重复采集和处理数据的工作,节省了时间和成本。其次,大数据共享有利于挖掘潜在的商业价值。通过汇总和分析大量的数据,可以发现市场的趋势、用户的需求,并为企业提供精准的决策支持。此外,大数据共享还可以促进创新和合作。不同领域之间的数据共享可以促进不同学科的交叉融合,产生新的创新思路和解决方案。
第三段:大数据共享的挑战(250字)
然而,大数据共享也面临着一些挑战。首先是数据隐私和安全问题。在数据共享的过程中,个人的隐私可能会被泄露,个人信息的滥用也可能会引发社会问题。其次是数据质量问题。不同组织的数据质量参差不齐,如果直接使用不准确、不完整或者不一致的数据,可能导致错误的决策。最后是数据共享的社会认可度问题。由于数据共享涉及到个人隐私和商业利益等重要问题,导致公众对于大数据共享持有怀疑态度,需要建立起有效的监管机制和法律法规,才能确保数据共享的顺利进行。
第四段:解决大数据共享的挑战(250字)
针对大数据共享所面临的挑战,我们需要采取相应的措施来解决。首先是加强数据安全和隐私保护。建立完善的数据安全管理机制,加强对个人隐私的保护,同时鼓励用户自愿共享数据,确保数据共享符合合法合规的原则。其次是提高数据质量和标准化。加强数据质量控制,制定统一的数据标准和规范,改善数据的完整性和准确性。最后是加强法律法规的制定和监管。加强对于数据共享的监管,制定相关法律法规,明确数据共享的责任和义务,增加法律的约束力和透明度。
第五段:结论(300字)
在大数据共享的过程中,我们应该充分认识到其所带来的好处和挑战,并采取相应的措施加以解决。大数据共享能够提高数据利用的效率,挖掘商业价值,促进创新和合作。但同时也面临着数据隐私和安全、数据质量和社会认可度等挑战。通过加强数据安全和隐私保护、提高数据质量和标准化、加强法律法规的制定和监管等措施,我们能够更好地推进大数据共享的发展,为社会经济的发展提供更好的支持。只有解决了挑战,大数据共享才能够真正发挥其潜力,为构建数字化、智能化社会做出更大贡献。
大数据查询篇七
数据,对于我们现代社社会来说,已经是再熟悉不过了。大量化(volume)、多样化(variety)、快速化(velocity)和大价值(value)。这四个v就是大数据的基本特征。每天我们都不得不和数据打交道,比如我们平常所说得“眼观六路,耳听八方,”就是生活中一个很好的的收集数据的例子。还有,在我们平时的学习中,我们对于一些学习上的数据的整理等等。可以说,数据已经成为了我们的影子一样,无时无刻的在我们的身边活动。
拿到《大数据》这本书时,吸引我的不是书评的内容,而是书的封面上的一句话“除了上帝,任何人都可以用数据说话。”也就是说,上帝可以不用数据来说话,但是,作为一个平常人,我们做事,言论等都必须用数据来说话。用数据论来证我们的观点正确性。
那么数据真的就是那么重要吗?其实不然,数据果真有那么的重要。作者在书中大量应用世界头号强国美国的例子来说明美国是如何利用数据以及数据在美国人的利用下,是如何造福美国人的。使得美国人走上了民主、发展的道路。书中还引用了大量的利用数据的案例,以及利用数据会有什么样的后果。当然,作者在书中也很明确的表达了自己观点,也就是数据要被人利用,利用的好了,造福人类,否则,祸害无穷。
毫无疑问,我们正处在一个真正意义的大数据时代。但是,大数据浪潮的来龙去脉如何?数据技术变革何以能推动政府信息的公开、透明和社会公正?又何以给我们带来无限的商机,既便利又危及我们每个人的生活?《大数据》给了我们一个很好的答案。在拿到徐子沛《大数据》时,与其说这是个新概念,还不如说就是一个现实。信息技术的迅速发展和普遍应用,存储能力的膨胀,网络传输的便捷,必然产生巨大的数据量。即使是一个公司,经过多年的积累,产生的数据也是惊人的。每天繁多的数据,这就是要求企业要很好地存储数据,利用数据通过数据,使得数据说话,提升企业的业绩和知名度。
对于一个企业来说,比较实际的倒是关注一下企业微观大数据,如何充分利用现有的、能够得到的和自己创造的数据,采用《大数据》里提及的新技术、新方法、新理念,筛选、组织、关联、分析,精细化管理和挖掘数据,探索规律性的东西,指导企业活动。尽可能多的获取数据,首先是要有心,对于公司员工来说,随时随地注意收集客户数据、需求数据、产品数据、市场数据、资源数据等,经过整理,把它变成公司的数据资产;然后是要有据,信息与数据最大的不同,就是数据是能够度量或者确定的信息,不能“毛估估”,收集数据要精细化,要准确;其次要有序,数据需要存储,更加需要整理,单个数据没有很大意义,静止的数据也没有很大意义,有价值的数据是流动的、与其他数据交互作用的。一个大杂烩的数据库,在需要时让人找不到北,没有任何意义。再次,需要技术支持,大量的数据如何检索,如何关联,单靠人脑是不行的,需要建立基于特定理论的数据处理系统来分析管理。对于一个企业,最理想的是建立一个类似人类神经系统的数据管理系统,采用各种信息终端采集内部和外部信息,通过分析、归纳、筛选,形成管理数据,某些数据可以成为系统的“本能”,一旦触发能够自动做出反应;某些数据可以成为组合信息提交大脑综合分析,作出决策和反应。数据应该为人服务,这是一条基本原则。在大数据时代始终发挥人的主观能动性,采用先进的理念和技术驾驭数据,让人们生活更方便,工作效率更高,劳动强度降低,为社会创造更多的物质财富和精神财富。
在中国,统计部门提供的数据,是各级政府部门和广大人民群众了解国家社会经济发展和人民生活状况主要渠道。只有真实可靠统计数据,才能使政府决策有的放矢,人民了解国家经济与人民生活的真实状况。如果统计数据虚假不实,就会误导政府和人民,让政府失信于人民。因此,我们一定把握好数据的生命线—质量关,确保给国家和人民提供准确、真实、可靠、无误的数据。
二、如何高效有序地收集数据?
收集数据的目的是为分析利用数据。通过数据分析挖掘数据背后隐含的经济规律及有利于提高效率、改进工作的因素,提高政府管理、决策和人民生活水平,实现“用数据改进管理”。因此,作为统计人,不仅要做好数据收集的及时有效和真实正确,更重要的是要善于分析利用数据,写好专业分析报告,发现问题、支撑决策、评估绩效的目的。
此外我们还可以看到不少政府机构或者其他一些组织也在开始大数据解决他们遇到的一些问题。在本书的最后一章,作者告诉了我们大数据可能带来的坏处。如:通过大数据可能我们的个人各种信息、隐私会很容易地被大数据的拥有者找到,这些信息,可能被政府用来监管我们等;通过大数据可以预测可能发生的事,或者预测我们人个人本书即将做的行为,书中有个例子:警察通过大数据分析得出一个人即将可能犯罪,并把它逮捕了,但事实上这个人现在并没有犯罪。也许这就限制、约束了我们个人的自由。
看完这本书,颠覆了自己之前的一些想法: 以前我们认为错误的数据是没有用,我们需要保证统计的数据的准确性,但是在大数据中,错误的数据也是有用的,它和其他所有相对正确的数据一起构成了整体,也就算不了什么了。我们同样可以从这些数据中得出比较正确的预测和分析。google利用人们搜索的关键字来预测和判断某个地区是否发生流感,google通过分析这个地区的人们搜索和流感有关的词的数量等来分析得出。google 从互联网抓取数以亿记的各种语言、各种翻译水平的翻译结果,使用其翻译出来的准确率比那些微软使用正确的词库翻译出来的句子准备率更高。我自己的感想是,其实大数据无处不在,只要我们细心,我们就可以挖掘出身边的那些大数据,并做一些有意义的是,就像书中说的那样,我们不需要强求每条数据都那么真实准确,但是从大量的数据中我们就可以得出相对准备的结果。未来成功的公司必定是是那些拥有大量数据、并使用那些数据为大众提供服务的公司。
大数据查询篇八
在大数据时代的大数据管理的人员管理形式,不断发展和改革的过程中,计算机的软件和硬件都得到了有效的提高,磁盘、磁鼓等储存软件,得到了全面的普及和发展。同时,在在不断发展的过程中,计算机将大数据的组成形式,叫做大数据文件,并且在大数据文件上就可以直接的取名字,直接的进行查看,这对大数据的管理,无疑不是一个新的发展的起点。在大数据时代的大数据文件管理的过程中,由于大数据长期的保存在外面的,这样在对的大数据处理、分析、查找、删除、修改等操作的过程中,提供了极大程度上的'便利,其对其操作的程序,也具有特点的要求。但是,在文件管理的过程中,由于共享性能较大,数据与数据之间缺乏一定的独立性,对其管理和维护的费用和时间较大,这样往往工作效率提高,不能被广泛的使用。