找次品教学反思(汇总10篇)
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
找次品教学反思篇一
“找次品”是人教版数学五年级下册第七单元数学广角的内容。这节课中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。
在教学内容上安排了两个例题:例1通过利用天平找出5件物品中的1件次品,让学生初步认识“找次品”这类问题基本的解决手段和方法。例2的待测物品数量为9个,在实验上具有承前启后的作用。便于学生与例1的结果进行对比,从而总结出解决该问题的一般思路。
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。一方面注意让学生进行合作学习,小组交流,经历找次品的过程;另一方面注意引导学生体会解决问题策略的多样性。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。
(一) 情景的创设
通过身边生活实例,为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。设计这一环节,还是应该联系生活实际,这样可以更加激起孩子们学习的兴趣,让学生充分感受到数学与日常生活的密切联系。能使学生肯动脑、想参与、乐学习。
(二)难点转化, 降低教学起点
按照例题,本课例1是从5瓶钙片中找到次品,而我却让孩子们先从3盒木糖醇中找出次品,这样就降低了教学起点,孩子很容易的从3个中找到次品。那么在后面的5个、9个中找次品就容易多了。不会产生挫败感,增加成功的体验,使本课更容易进行。
(三)层层推进,符合小学生的认知规律
本课我让孩子们从3个中找出次品这比较简单,然后加深到从5个、9个中找次品,并且在9个中找次品的过程中渗入优化思想,让孩子们寻找优化策略,接下来让学生再用12进行验证,加深了学生的体验。整个教学过程注重让学生经历了探索知识的过程,使他们知道这些知识是如何被发现的,结论是如何获得的。在此过程中知识层层推进,步步加深,让孩子的推理能力慢慢地达到一定的高度,思维也不至于感到困难。
(四)、知识拓展 ,巩固提高
当学生通过例2发现把待测物品平均分成3份称的方法最好后,以此为基础让学生进行猜测:这种方法在待测物品的数字更大的时候是否也成立呢?引发学生进行进一步的验证、归纳、推理等数学思考活动,逐步脱离具体的实物操作,采用文字分析方式进行较为抽象的分析,实现从特殊到一般、从具体到抽象的过渡。这部分在备课时我进行了调整,将以前不能平均分成三份的教学挪到了下一课时。本节重点砸实,能平均分成三份的,怎样找出次品。总结出规律后,进行了相应的练习。增加了课后“你知道吗”中一部分内容。学生充分练习后已经能很熟练的运用最优方法解决问题、发现规律。
(五)运用多种教学方法,提高效率
在教学过程中,充分的运用了研究性学习的教学 方法,不把现成的答案或结论告诉给学生,而是试图创设出问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者,充分体现学生的主体地位。
找次品教学反思篇二
《找次品》是人教版小学数学五(下)数学广角的教学内容,这个内容的主要目的向学生渗透一种优化思想,同时培养学生的推理能力。第一次接触到这样的内容让我不知所措,连自己都看不懂的内容,学生能听懂吗?于是我认真的阅读了教材及教学参考书,在认真思考以后,确定了自己的教学方案。在教学过程中,我首先让孩子们明白两点:
第一、当物体放在天平的两端时会出现平衡和不平衡两种情况;
第二、要想通过天平的平衡与不平衡找到次品,那么天平两端的物体个数必须相同。
理解了这两点以后,首先和孩子们一起体会3个物品中找1个次品至少称几次能保证找到次品?并提问:还有几个也能1次就能找到次品?让孩子们知道2~3个物品只需要1次就够了。接着学习4个,首先问孩子们能不能1次就找到次品,孩子们回答能够。是呀,在运气好的情况下是能够找到的但是能不能保证找到呢?这样让孩子们在思考的过程中体会到了要考虑运气最坏的时候也能找到才叫要保证。就4个的分法就多了:(2,2)、(1、1、2),这两种分法都需要2次才能找到。接着教学8个,9个,都只需要2次就能保证找到,到了10个就需要3次了……,在教学的过程中,给学生建立模型:2~3个——1次,4~9个——2次,9~27个——3次,这样就能让孩子很快的确定称的次数,然后根据次数来确定的自己的方案,这样的话,学生确定方案时就不局限于一定要按照书上的方案:能平均分成3份的就平均分成3份来称,不能平均分成3份的:2组相等,另一组与之相差1,还有很多种分法。
这样的教学我感觉学生接受起来还是比较容易,孩子们也很感兴趣。
找次品教学反思篇三
《找次品》是人教版数学五年级下册第七单元数学广角的内容。本节课以找次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会缩小待测物品范围的优化策略。初步培养学生的应用意识和解决实际问题的能力。
传统设计一般是首先找5个零件中的次品(目标:在认识平衡与不平衡两种可能结果的基础上引导学生画框图,经历逻辑推理的过程);再找9个零件(目标:找到最优称法,形成猜想);然后称8个,27个,探索规律;最后称100个、243个零件(目标:继续学习化归方法,找到零件个数与称的次数之间的关系)。这种设计从过程来看体现了操作 ----猜测----验证 ---- 归纳 ----应用的教学思路,它的重点放在学生优化方案的比较上。这样设计有两个弊端。问题一:按这种单刀直入式进行研究,因学生的知识和方法储备不够、跨度过大,思维难以突然从方法多样性提升到最优化策略上来,学生的思维容易断层,探究会屡屡受挫,从而造成对此类问题的探究兴趣不足,影响学生思维的主动性。问题二:在9个物品中找次品的探究过程中,让学生猜想最佳策略:分三堆,每堆尽量同样多的规律,学生不容易找出来,再让学生举例验证更难。学生探究的多样化一方面暴露了学生的思考过程,另一方面也影响了学生对最佳策略的关注。如何通过优化策略的形成,提升学生的思维品质,高老师进行了如下的探索。
1、巧:游戏互动做铺垫--巧妙渗透优化思想
在学生的猜数过程中,高老师总让学生处于最不利的处境,除非他选择了最佳策略,否则猜的次数总是最多。高老师心中想的数不是固定的,是根据学生的猜在不断的变化,也就是说,一开始他心中并没有想好一个具体的数。让最不利发挥到极致时,学生就会最大限度地理解策略的重要性。通过找中间数,学生认识到运用缩小范围猜数可以提高效率 ,让学生在无意识的猜数游戏中感悟快速猜数的方法与策略。
2、趣:交流策略多样化---引出优化方法
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。我让学生用肢体模拟天平来进行实践探究,学生非常感兴趣。高老师放手让学生探究3个、5个测品中找一个次品,体现策略多样化,引出优化的方法,分三原则。图示法较为抽象,对学生来说不容易理解,教学时我根据学生的回答同步板书,即外显了学生的思维痕迹,又便于学生理解每项数据的含义,为后续的学习打下一定的基础。
3、实:打破常规设悬念---激起优化需求
如果说数学思想方法是可以传授的话,那教师肯定是把其中富有思考意义的东西机械化了,这样就失去了它应有的价值。所以渗透优化思想一定要让学生经历了自主体验和反思顿悟的过程。本节课高老师打破常规,让学生大胆猜测:如果有2187个测品中找一个次品,你认为至少称几次保证找到这个次品?要想解决这个问题,你觉得有什么办法?(把数据变小些,并举例研究。)激起学生优化需求,学生也从中认识到以退为进是一种很好的学习策略,为渗透化繁为简的数学思想走好了坚实的一步。
4、准:找准盲区巧点拨---形成优化策略
学生挑战在100个中找次品时,高老师及时点拨引导---------当遇到一个问题时,我们迈出第一步至关重要。结合课前游戏,借鉴缩小范围的策略。小组合作拟订第一步怎么办?的计划。当出现分2份和3份的对比分析时,我又适时提问导引:是不是分的份数越多越好呢?让学生在例证中归纳出将待测物品尽量等分成三份的规律来。用准时点拨为学生扫清思维盲区,为优化策略的形成搭桥铺路。
启示一:发展才是硬道理。在备这课时,高老师也考虑到用天平来操作演示,但由于现场条件的限制----没有准备现成的天平;同时又考虑到学生用天平来称在操作上也会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,在此处多用时间有喧宾夺主、影响主题的嫌疑,因此他在本节课中没有把实物天平带进课堂,而是让学生用自己的肢体演示代替天平操作。只要能让学生得到发展,删繁就简是很划算的。
启示二:万丈高楼平地起。解决再难的问题,丰实基础是至关重要的。为了让学生的思维顺利由方法的多样性转向最优化,高老师在教材例1之前增设在3个中找次品的环节,目的有二:
1、走实第一步。在这一环节中让学生重温天平的结构和用法,收集平衡与不平衡所反映的信息,为后续研究储备能量。
2、强化和预示方法。通过在3个中找次品的演练,引起学生思维方法的先入为主趋势,同时也顺应了学生的学习从模仿开始的习惯。要想学生的思维提升的更高,必须把思维的基础打得最牢。
思考二:这节课中,对于最佳策略的成因还有没有更好的、更有说服力的解释方法呢?
古希腊数学家毕达哥拉斯说过,在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。从高老师的数学课中,我们领悟到了这样的理念:通过数学学习,领悟数学思想和方法,提升学生的思维品质。
找次品教学反思篇四
《找次品》是人教版小学数学五年级下册第七单元《数学广角》的教学内容,这个内容的主要目的向学生渗透一种优化思想,同时培养学生的推理能力。上这样一课,是对自己的一次挑战。备课初衷我认为这一课,是在学习新课标后:从“双基”到“四基”,从“两能”到“四能”,我的新理念能得到充分的应用的一课。对基本思想的认识,这里的思想方法,不是前几年的教学实验“数学思想方法”这里指的是支撑数学科学发展的思想,核心在于数学推理、数学建模。如何让学生获得数学思想,关键要让学生经历概念的抽象过程。而《找次品》一课恰恰能把这一理念应用得淋漓尽致。
正如荷兰数学教育家弗赖登塔尔所说“真正的数学家——常常凭借数学的直觉思维做出各种猜想,然后加以证实。”因此,小学数学教学中我们要重视猜想、验证思想方法的渗透,以增强学生主动探索,获取数学知识的能力,促进学生创新能力的`发展。本节课我就让学生经历了“探究—猜想—验证—推理—归纳”的过程。从3瓶探究中建立找次品的基本模型,然后通过自主探究获得8、9瓶称的次数最少的方案,进而猜测最简方法,为了验证这一猜想,就必须再用一个例子去试验,然后归纳得出结论。学生通过经历知识的形成过程,不仅获得了数学结论,更重要的是逐步学会了获得数学结论的思想方法——猜想验证,提高了主动探索、获取知识的能力,增强了学好数学的信心。
新课标指出:推理能力的发展应贯穿于整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理包括合情推理和演绎推理在本节课教学中两者都有具体体现。在学生独立探究、观察后发现,在找次品次数最少的这些方案中都把待测物品分成3份,于是得出结论,要使找次品次数最少,就要将待测物品分成3份。这一过程属于合情推理。而在对总结的结论用8瓶和9瓶进行小组验证这一环节中,又恰恰运用了演绎推理。两种推理功能不同,却相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。学生在尝试总结运用找次品最优策略的过程中发展了推理能力。
对学生而言,所谓数学的基本活动经验是指:围绕特定的数学课程教学目标,学生经历了与数学课程教学内容密切相关的数学活动之后,所留下的,有关数学活动的直接感受、体验和个人感悟。基本活动经验是学生的亲身经历。让学生获得基本活动经验,本质上让学生经历数学活动直观,但必须建立在学生亲身经历和感知的基础之上。本节课中我首先让学生独立动手实践、集体探究等。但由于时间关系,学生活动及讨论的时间偏少,但我和学生的心情一样愉快,因为学生有了探索的欲望和一定的解决问题的能力,这也是我最大的收获。
这节课也存在不足,由于是40分钟课,组织学生动手操作与合作交流不够充分:如果是60分钟课,在独立探究和小组验证活动中我会增加2—3分钟以便学生充分感知寻找最优策略的必要性;并且在独立研究后我会用4—6分钟,让学生逐一说明10个小球、11个小球找到次品的方法,这样以学带教,从而实现“教师为了不教”的教学境界,达到促进学生自主学习的根本目标。
总之,这次活动给我了一次很好的锻炼、成长的机会,使我找到了自身努力地方向!我深信,只要我们摸清学生的学情,找到他们的现有知识起点,不断改变教学方式,使他们乐学、爱学、好学,定会为学生和自身成长铺垫出一条坚实之路!
找次品教学反思篇五
新教材中的“数学广角”一直是教师感叹难教、学生感觉难学的内容,这次“找次品”也不例外。为了让学生低起点,拾级而上,我将例1单独作为一课时来教学。反思本课教学,有成功也有困惑:
想快捷准确地解决此类型问题,教师可以用五分钟左右的时间向学生灌输结论性的解题方法,即每次尽量将物品平均分成3份(如不能平均分时,也应使每份的相差数不大于1),然后用大量时间让学生进行巩固练习,强化这种方法。这样的教学虽然短时高效,但却只重结论,忽视了学生探索精神的培养。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者,研究者,探索者,而在儿童的精神世界中,这种需要特别强烈”教学中教师是学生学习的组织、引导者、合作者,而非知识的灌输者,因而对一个问题的解决,不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,让学生在积极思考、大胆尝试、主动探索中,获取成功并体验成功的喜悦。为此,我给予学生充足的时间去独立探索、尽量地显现他们的不同称法,最后通过对比发现结论。如我首先安排了从2~8个零件中找次品,采取学生动手实践、小组讨论、猜想探究的方式教学。要求学生说出各种找次品的方法,从而让学生感受解决问题策略的多样性;其次安排了9个零件,通过小组合作交流,的学习方式。并要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。如分几份最好?每份几个最好?引导学生发现把零件分成3份称的方法最好,进一步认识“找次品”这类问题 ,探索解决问题的最优方法。
品分成3份,1、1、2,后面也应按前面格式写明“天平两边各放1个”,接着按平衡或不平衡分析,这样思维才能完整体现。经过自己的修改,我将树形图改为如下格式:
我通过在两个数字下划线的方式代表“将这两堆物品分别放在天平两边”,这样既减少了文字,又方便最后统计次数。每种情况,最后只需数一数共划了多少条横线即可,既准确、又形象。
其一、找次品的题目一般都是求“至少称几次就一定能找出次品”,在使用树形图记录中,是否必须在最后标明谁是次品。即上图是否必须像这样写:
找次品教学反思篇六
执教《找次品》一节课时,在导入环节,我用孩子们最常见的事物——“口香糖”引入课题,既与本课内容相关,又能提高孩子们的兴趣,从而引出“次品”。
在探索新知环节中,我让孩子从易到难,从3瓶口香糖中找出一瓶次品,然后为了让学生对所学知识产生浓厚的兴趣,我设置了一个环节:让电脑大屏滚动起来,最后停在哪个数字上,就从那个数字的口香糖中找出一瓶次品,最后电脑停在了19683瓶上,学生的兴趣陡然升高。此时老师告诉孩子们,像这种情况我们可以利用“化繁为简”的数学思想来解决类似问题,作为老师,不仅要对学生“授以鱼”,更要“授以渔”,让学生学会解决数学问题的方法。接着从6瓶、9瓶口香糖中找出一瓶次品,其中在从9瓶口香糖中找次品时,我设计了一个小组合作的活动,旨在让孩子自己在动手的过程中发现找次品的规律,发现规律后再从27瓶、81瓶、243瓶、729瓶、2187瓶、6561瓶、19683瓶口香糖中找次品,当学生发现从19683瓶口香糖中至少9次就能找出一瓶次品时,孩子们的.情绪立即达到了高潮,也加深了对新知的理解。接着我设计的是让学生发现问题:当待测物品数不是3的倍数时又该如何找次品?引导学生得出当待测物品数平均分成3份后余一瓶或余两瓶时如何放就不影响我们用天平找次品,在这个环节的设计上,旨在让学生养成勤动脑、细观察的好习惯。最后,我设计的是让学生口述出找次品的最优化策略,目的在于培养孩子的总结表达能力。
在接下来的练习环节中,通过孩子们感兴趣的闯关模式,练习由易到难,让孩子们本节课所学的知识在练习中得到升华。
执教过这一节课后,感到存在的不足是:
1、学情把握不准,准备不充分。在小组合作时,学生对待测物品分份数时,不大胆,导致老师提示过于明显。
2、对教学时间把握不好。
找次品教学反思篇七
一、尽量体现教材意图。
《找次品》是新课标人教版教材五年级下册数学广角中的内容,优化时一种重要的数学思想方法,可有效地分析和解决问题。本单元主要以“找次品”这一操作活动为载体,让学生通过观察、实验来体会解决问题的多样性,在此基础上,通过推理的方法运用优化解决问题的有效性。
二、尽量体现“数学味”。
数学味或者说数学化是现在数学课堂提倡的理念,是我们所追求的。那么,怎样体现出数学味呢?怎样运用数学的眼光观察与认识生活中常见的数学问题呢?教师在本节课作了一些努力,例如:出示5件物品,找出其中的一件次品。让学生经历多次观察、比较、分析,在师生之间的交流和互动中,加强横向与纵向数学化的过程,使学生能从找次品的具体实例中初步了解蕴含其中的一些简单信息。
三、尽量体现方法渗透。
本节课中教者还力图渗透一些基本的学习方法,观察、比较、分析、猜测等方法贯穿整节课。我觉得,如果单单让学生获得一些有关找次品的知识似乎意义不大,而日常生活中的很多问题也不可能在一节课中一一认识,只有具备了一双善于发现的眼睛和一颗乐于探索的心,才能更多更好的学会找次。
找次品教学反思篇八
《数学课程标准》指出:“有效地数学学习活动不能单纯地依靠模仿和记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此在进行《找次品》的教学时,我主要是通过学生动手实践、自主探索、合作学习等方式,来凸显数学建模和优化思想。
教材的编排是先分析从5瓶钙片中找一瓶次品的方法和次数,初步认识找次品的基本方法,然后再来分析在9个零件中找一个次品的方法和次数,这时进行优化,并且延伸10、11个零件怎么分?有效地数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,因此,我通过从3瓶木糖醇中找一瓶次品——5瓶木糖醇中找一瓶次品——9瓶木糖醇中找一瓶次品——8个玻璃球中找一个次品这样的教学过程。使学生在3瓶中建立利用天平找次品的根,在5瓶中对找次品的方法进行建模,在9瓶中感受方法的多样性,及时进行优化:这种平均分成3份称的方法,所称次数最少,最后在8个玻璃球中进一步优化方法:在利用天平找次品时,首先要把物品分成3份,能平均分时就平均分,不能平均分时就尽量平均分,这样,所称次数最少。通过这样的课堂教学,既符合学生的认知规律,又能优化教学过程,从而提高课堂教学的有效性。
用天平实物进行试验,可能会出现诸多问题:学生看不太清楚,实验效果不明显;每一次称时,都需要对天平进行调节与处理,麻烦且费时。但在本节课中,又必须要借助直观演示,帮助学生建模和推理。因此,在教学中,我让学生利用天平模型来直观演示和操作,这样不仅可以节约课堂教学时间,同时又训练学生的逻辑推理,提升学生的数学思维能力,为后面脱离具体的实物操作,实现从具体形象思维到抽象逻辑思维的过渡奠定了良好的基础。
语言是思维的载体,简洁、准确的叙述操作和推理的过程,是本节课的一个重点。因此,在学生的实践操作中,我要求学生边摆边说,从而训练学生从具体到抽象的能力和语言表达的能力。在学生的叙述过程中要求语言尽量简洁,如:在天平的两个托盘里各放2瓶,可以说成2,2一称等。通过这样一系列的训练,学生的表述会更清楚,语言会更简洁、准确,学生的思维也会更加的完整、快捷,从而提高了整节课的教学效率。
从以往的教学中发现,本课容量大,时间紧,很不容易完成预定教学任务。因此在实际教学中,根的建立,方法建模时,要求学生要简洁、准确的叙述操作和推理过程,在后面教学中,就直接利用已经发现的结论,不再重复、累赘的叙述。例如:27(9,9,9)第一次9,9一称,然后再从9个里面找次品,就直接利用前面的结论。
“找次品”是五年级下学期数学广角里的教学内容,属于一节思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。这节课我在认真分析教材的基础上,并根据学生的认识规律和思维方式进行了设计,反思整节课。
接到期末考试的时间,确实有点紧,在请教有经验的老师怎样讲的前提下,直接让学生讨论找次品的最优方法。学生说:“分组法最省时间。”我直接说:“好!下面讨论怎样分组最优方案。”
“我总结出来了,分成三份。”
“当待测物品的数量是3的倍数时,把待测物品平均分成三份,能保证用最少的次数找出次品。要平均分成三份哦!”
“说的很到位,谁还有补充。”
“当待测物品的数量不是3的倍数时,也把待测物品分成3份,每份个数尽可能接近,使多的一份与少的1份只相差1。”
“补充的很全面,把樊静祎与刘懿贤的加起来就是找次品的规律。”
“好,下面咱们来实战一下!”
让学生把小状元拿出来,开始做!由于刚才讲的快,所以让学生说答案的时候必须说思路。
没有想到,孩子们掌握的这么好!心里窃喜。
找次品教学反思篇九
新课程数学五下教材在数学广角中安排了“找次品”这一内容的教学,其目的是通过“找次品”这一探索性操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养学生观察、分析、推理以及解决问题的能力,同时也让学生感受到数学与日常生活的密切联系。基于以上认识在进行“找次品”这一内容的教学时,对教材进行了处理,以求更好的促进学生的思维发展。
教学过程中我放弃的了教材中以3个物品、5个物品再到9个物品的研究顺序,将其改为3个物品、4个物品、8个物品、9个物品进而扩展到10个、27个物品中找次品的研究。操作过程简述如下:
1.探究3个物品中如何寻找轻的一个,利用学会已有的知识经验,充分发挥学生的想像和思维能力,在体验了找次品方法的多样性后,以用天平称作为实践操作,第一次优化找次品的方法,使学生得出找次品用天平称最方便。并在教师的指点下完成数字化的分析方法:
平衡1次3(1、1、1)
不平衡1次
2.利用不同的分法探究出4个物品中找一个次品的方法,在学生实践操作和数字化的分析过程后,质疑利用天平称找次品时,一般要将物品分成几分?两份还是三份?引出用较大数量来进行研究的必要性,并随机引导学生用数字化的方法去研究8个物品中的次品应如何找。当学生得出方法后,将学生的所有方法罗列在学生面前,利用观察让学生发现数据大时分两份的方法次数不是最少,第二次优化找次品的方法,是学生初步得出用天平称找次品时一般要分成三份,两份在天平上、一份在天平外。但同时有给学生制造一个悬念:同样分三份,有些称的次数少,有些却反而更多?激起学生进一步探究的欲望。
3.以9个物品为例继续研究,第三次优化找次品的方法。在关注学生用数字化的形式来分析问题的同时,反馈出学生的解题方法,几关注解题策略的多样化,又为方法的优化提供可做分析的蓝本。(其中部分方法不做全面展示)
9(4、4、1)4(1、1、2)2(1、1)3次
9(3、3、3)3(1、1、1)2次
9(2、2、5)5(2、2、1)2(1、13次
9(1、1、7)7(1、1、5)5(1、1、3)2(1、1、1)4次
而后教师重点指导交流:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?从而得出平均分能够保证找出次品且称的次数最少这一结论。随机使学生产生不能平均份的数量应该怎样处理的问题,引导学生观察刚才8个物品找次品的方法,思考其中分三份的几个情况?从中发现“利用天平找次品,如果待测物品的数量不能平均分成3份时,我们要尽可能的使每一份的数量差不多,其中必须有两份要一样多,另一份的数量尽可能与之接近。”最终优化找次品问题的解题策略。
回顾前面找次品的研究,让学生发现在3个物品中找只要1次,4个物品中找只要2次,8个、9个物品中找也只要2次。并猜想5个、6个、7个物品中找的话,要用几次才可以了?并进行分析验证,得出在4个到9个物品中找一个次品只要用天平称2次的结论。随后让学生研究10个和27个物品中找一个次品的次数,既做为前面所学知识的巩固练习,又让学生进一步探究找次品的规律,得出相应的结论。
《找次品》数学教学反思
这节课,我连试教合在一起,一共上了3次,但是每一节的教学任务都没有,这到底是什么原因呢?针对各位老师对我的评课意见和自己的想法,对这节《找次品》进行如下的教学反思:
这节课以“找次品”这一操作活动为载体,让学生通过观察、猜测、实验等方式感受解决问题的策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力。
在课前谈话环节,我用分过的一瓶七彩糖和没分过的七彩糖进行对比,从而引出“次品”这一概念,让学生从这两瓶中找出次品,根据学生的回答,引出用天平称。这一环节,我感觉上还好。
但是在学生示范了从3个物品中,只要称1次就可以找出次品这个环节后,我不应该重复学生的示范过程,而是应该呼应此环节的开始部分,让学生思考从2个物品中只要称一次就可以找出1个次品,为什么从3个物品中也只要称一次?这个道理不应该由我来说,而是应该让学生自己想明白找次品的基本原理。
接下来的从4个物品中找1个次品环节,此环节的教学目标是让学生能够用数学的方式来表示找次品的教学过程。我采用学生边说找次品的过程,我随机板书。由于多媒体的黑板离学生比较远,而这节课要板书的内容比较多,所以我写的字相对很小,这些种种原因,大多数学生对我在黑板上写的数学方式,并不是十分理解,虽然对着黑板又引导学生把找次品的过程又说了一次,但亡羊补牢的效果已经不明显了。在学生说方法时,我不应该随机板书,而应该跟学生点明,由于随着物品数目的增多,找次品的过程就更加地繁琐,所以要采用一种新的表现方式,从而引出用数学方式来表示找的过程,边回想刚才学生找次品的方法,教师边随机板书,也边介绍怎么样用数学方式来表现。
由于用数学方式来表示找次品的过程这一环节落实地很不到位,导致下面的环节的`瘫痪,所以学生从8或9个物品找出次品,在小组内探索花的时间很多,集体反馈时花的时间也很多,但学生都只是还停留在口头表达层次上,并不能用数学的方式很好地表达出来。
一堂课要想上得成功,必须环环相扣,每一个教学环节都必须落实到位。这三次的上课,也让我深刻地体会到,作为一个老师,是整节课的引领人物,教学节奏的把握尤其重要,这是我今后教学应该尤其要注意的,高段教学的节奏该怎样把握呢?以后要多听听高段老师的课,多学习他们教学时节奏地把握,哪里该讲,哪里不该讲。
找次品教学反思篇十
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。
一、创设情景 通过身边生活实例,为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。以前的视频画面距离学生的生活较远,孩子们兴趣不大。集体备课时大家建议这一环节,还是应该联系生活实际,这样可以更加激起孩子们学习的兴趣,让学生充分感受到数学与日常生活的密切联系。
二、难点转化 降低教学起点,按照例题,本课例1是从5瓶钙片中找到次品,而我却让孩子们先从3个药瓶中找出次品,这样就降低了教学起点,孩子很容易的从3个中找到次品。那么在后面的5个、9个中找次品就容易多了。不会产生挫败感,增加成功的体验,使本课更容易进行。
三、层层推进 本课我让孩子们从3个中找出次品这比较简单,然后加深到从5个、9个中找次品,并且在9个中找次品的过程中渗入优化思想,让孩子们寻找优化策略,接下来让学生再用12进行验证,加深了学生的体验。整个教学过程注重让学生经历了探索知识的过程,使他们知道这些知识是如何被发现的,结论是如何获得的。在此过程中知识层层推进,步步加深,让孩子的推理能力慢慢地达到一定的高度,思维也不至于感到困难。
四、知识拓展 当学生通过例2发现把待测物品平均分成3份称的方法最好后,以此为基础让学生进行猜测:这种方法在待测物品的数字更大的时候是否也成立呢?引发学生进行进一步的验证、归纳、推理等数学思考活动,逐步脱离具体的实物操作,采用文字分析方式进行较为抽象的分析,实现从特殊到一般、从具体到抽象的过渡。这部分在集体备课后我进行了调整,将以前不能平均分成三份的教学挪到了下一课时。本节重点砸实,能平均分成三份的,怎样找出次品。
总结
出规律后,进行了相应的练习。增加了课后“你知道吗”中一部分内容。学生充分练习后已经能很熟练的运用最优方法解决问题、发现规律。通过今天教学实际来看,效果更好一些。五、教学方法 在教学过程中,充分的运用了研究性学习的教学方法,不把现成的答案或结论告诉给学生,而是试图创设出问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者,充分体现学生的主体地位。 不足之处:
1、由于时间关系,在研究从9个和12个中找次品时,学生小组交流的时间不够充分,汇报时有些方法,没有反馈。
2、板书设计本课板书很难设计,很抽象,不容易使孩子们理解,因此我在设计板书时,在第一次试讲的基础上进行了简化。用下划线来代表天平,上面的两个数字代表托盘两边的物品数量,这样就更形象一些,让孩子们也更容易理解一些。但改过之后,分析天平两边出现的两种情况,不如以前清楚、易懂。究竟哪种方法更利于学生理解,希望大家一起来探讨。