最新分数乘整数教学反思与评价 分数乘整数教学反思(模板9篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
分数乘整数教学反思与评价篇一
这部分教材是在学生已学过整数乘法的意义和分数加法计算的基础上进行教学的。通过教学,我感触颇多:
1、导入新课时,引导学生涂色表示3个米,目的是让学生认识到求3个米可以用加法计算,也可以用乘法计算,再借助所列的加法算式初步理解分数与整数相乘的意义,并为引导学生探索分数与整数相乘的计算方法进行了知识结构上的铺垫。
2、通过交流与讨论,引导学生主动联系已有的知识经验进行分析、归纳和类推,×3=?进一步发展学生合情推理能力,体验探索学习的乐趣。
在解决例1的第(2)题时,我在处理算法多样化与算法优化时设计了88×8/11 =?的练习,让学生用两种方法计算,加强过程体验,学生通过亲身体验后,体会到过程约分比结果约分更简便且不易错,形成一种内在需求,优化算法。
存在不足:本课算理强调还不够,特别是练一练第1题,在学生独立完成后,我在组织交流时不够充分,只交流了学生的计算方法和结果,忽视了学生是如何涂出4个3/16的,后来我发现学生涂得方法很多,其实通过学生涂色写算式,可以沟通分数乘法和分数加法间的联系,进一步体会分数与整数相乘的意义,体会“求几个几分之几相加的和”可以用乘法计算的算理,我没有很好地把握教材这一练习设计的意图,没有敏锐地把握教学资源,很好地巩固算理。
分数乘整数教学反思与评价篇二
我所执教的《分数除以整数》是人教版第十一册30页的内容,本课是在学生学习了分数单位,分数乘法的意义,以及分数乘法计算方法的基础上进行教学的,通过教学可为学生理解分数除法的计算法则和应用题的数量关系,为学习分数四则混合运算打下基础。
我认为本节课的重点:使学生理解分数除法的意义和分数除以整数的计算方法。
难点:使学生学会分析分数除以整数的计算方法,并能运用法则正确计算。
关键:对除法算式意义的理解
1、知道分数除法的意义与整数除法意义相同
2、掌握分数除以整数的计算法则
1、培养学生的分析、比较和综合能力
2、引导学生根据已有的知识大胆的尝试,体验解决问题,多样性。
3、渗透转化的教学思考方法,培养学生的归纳概括能力。
苏霍姆林斯基曾说过:“引导学生能借助已有的经验去获取知识,这是最高的教学技巧之所在。”本环节的设计通过让学生动手操作、自主探究、合作交流等方式,体验了“探索——发现——验证——修改”的过程,通过一系列活动,使学生完成了知识的自我建构,同时也加深了学生对分数除以整数意义的理解,符合学生的发展需要。引导学生探索知识间的内在联系,培养学生自主学习和发展创新意识。
计算教学,把计算方法直接告诉学生,然后进行大量的训练。这样尽管也能让学生熟练掌握算法,但学生只知其然,不知其所以然。只能是机械模仿练习,但当我们给以一定的情境时,使问题生活化,用生活中的经历来学习数学,来理解推导分数除法的计算方法,既可以培养学生的学习能力和探究能力,促进学生的发展,也是课程改革理念在计算教学中的具体体现,同时也可提高学生学习效率。
分数乘整数教学反思与评价篇三
一、尊重学生的“数学现实”。
在教学分数乘整数之前,其实班里已经有不少学生知道了分数乘整数的计算方法。如果再按照一般的教学程序进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。于是在教学时,我提出:“为什么结果是9/10?为什么要把分子与整数相乘?”接下来的教学就引导学生带着“为什么”去探索。
二、实现教学学习的个性化。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,我放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过在老师给的练习纸上涂色来得到结果;有的学生讲清了为什么将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果。由此我深深地体会到,包括教师在内的任何人,都不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。
三、对教材进行重组。
本节课时一节枯燥乏味的计算课,因此我利用乌龟和兔子进行智力比赛的方式来刺激学生求知解题的欲望,让孩子们在充满竞争和挑战的环境氛围下,不知不觉地完成书本上的基本练习。当然我也对教材的联系题目进行了重组和改编。如练一练第一题,我就把4个改成了3个,这样就使得这题避免约分,先解决不用约分的计算方法,再进行约分的教学。使整节课自然分成两部分来进行。
四、存在的一些问题。
本节课总体来说比较成功,课堂上的内容都比较顺利的完成了,但是在让学生体会先约分比较简单时,出现了些问题。在做完例题第二个问题之后,依然有不少学生依然觉得先计算好,于是我就出示了四道题目,其中最后一题数据较大,可以很好的引导学生得出正确的结论。但我现在觉得,如果在例题教学完之后就直接完成那个8/11×99,这样就更加直接了,学生立刻就能体会到先约分的好处了,那么再做其它需要进行约分的题目就方便了。
分数乘整数教学反思与评价篇四
《小学数学课程标准》中明确地指出,动手实践、自主探索与合作交流是学生学习数学的重要方式。在这节课中“动手操作”是学生在理解算理的思维过程中建立表象的必要手段。通过学生分一分、画一画,理解4/5和1/2的意义,同时感受到了结果2/5是怎样来的过程。学生在这一过程中,建立了2/5的表象,既可以表示4个1/5平均分成2份,也可表示求4/5的1/2是多少。通过这一过程,学生已经为后面算理的概括,提供了第一手、不可缺少的感性材料。
然后再出现“如果4/5 升果汁平均分给3个小朋友喝,每人喝多少升?”,让学生用上述方法来解决这一问题4/5÷3。引发认知冲突,从而得出第二种方法,也就是“分数除以整数(0除外),就是分数乘以这个数的倒数”。
让学生真正地从分数意义和分数乘法的意义上去理解分数除以整数的计算算理。其实也在渗透着一种“转化”的数学思想,让学生感受到在解决问题时,我们可以把一些新的问题转化成已有的方法来进行解决。而方法上的比较只是为了在方法上的取舍。
通过一节课的教学,课堂作业的反馈,本人发现,学生在做题目时会出现这样的错误,
一、除号变成乘号,但除数没有变成它的倒数。
二、分子和整数直接约分,计算。
三、把被除数和除数都变成了它的倒数,然后约分计算。
要针对以上错误情况,教给学生正确的计算方法。
分数乘整数教学反思与评价篇五
本节课我是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。具体说本节课有以下几个特点:
一、直观演示是学生理解分数与除法的关系的前提。
由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3块饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3块饼的就是张。把2块饼平均分给3个人,每人应该分得多少块?继续让学生操作,丰富对2块饼的就是2/3块饼的理解。学生操作经验的积累有效地突破了本节课的难点。
二、培养学生提出问题的意识与能力是培养学生创新精神的关键。
爱因斯坦曾说:提出一个问题比解决一个问题更重要。学生提出问题的能力不是与生俱来的,需要教师精心、具体的指导。本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。比如学生展示完自己的分法后教师启发学生提出问题:
a:你们是几块几块的分的?
b:每人每次分得多少块饼?
c:分了几次,共分了多少块?(就是3个块就是几块)
d:怎样才能看出是几块?
问题的提出针对性强,有利于学生把握数学的本质。
三、 用发展的思维去理解所学的知识,注重了知识的系统性。
数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对于0.7÷2=,部分学生会觉着的表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。
分数乘整数教学反思与评价篇六
在教《小石潭记》时,我做了以下尝试:选准突破口,带领学生进入小石潭的景,体会作者的感情。
一、以“画”为突破口,带领学生领略小石潭的美景。
每一首好诗总是“诗中有画,画中有诗”,而柳宗元的游记散文《小石潭记》同样是一幅极美的画。因此在教学中,我有意识地设计了这个环节“画小石潭”,让学生展开想像,画出自己心中的小石潭。学生为了要画好小石潭,就必须深入阅读谭文,以自己对课文的理解来构思画面。这样一来,既能提高学生主动品味课文的积极性,又能使学生真正地走进小石潭的情境中。而在“评画”的教学环节,学生一定要引用课文的原句,来评析每一幅画的优点与不足。这样,在评画的过程中,学生加深了对课文句子的理解,一个幽静清秀的小石潭的形象也逐渐清晰地展现在学生眼前,展现在学生的心中。柳宗元笔下的小石潭就不再是一个抽象模糊的影像了。
二、以“音乐”为突破口,引导学生体会柳宗的情。
《小石潭记》不仅生动地描写了小石潭美静秒的景沟,还抒发了作者贬官后孤忧愤之情。在这个教学环节中,我就以一首古筝乐曲为突破口,让学生在音乐中思考:这段乐曲能为课文朗诵配乐吗?因此,学生在听音乐的过程中,就得结合课文的写作背景及作者的身世去思考,去品评:这段乐曲表现怎样的感情?它与课文思想内容相吻合吗?它能体现作者的思想感情吗?在这里,音乐成为了一个媒介,在时缓时疾的古筝乐曲声中,不似乎看到了作者孤独的身影,触摸感受到了作者悲凉愤懑的心情。音乐拉近了学生与作者的距离,引导学生走进文中创设的情境,与作者的感情形成了共鸣。
《小石潭记》的教学设计,以“画”和“音乐赏析”作为突破口,力图给学生营造读出个人体验和感情的环境,给学生自由展示的空间,以达到景在画中现,情在曲中悟的目的。因此,只有善于找到突破口,才能更好地引导学生走进文本的深处。才能让散文教学更活,更美,更精采。
分数乘整数教学反思与评价篇七
把这次公开课选为《分数乘整数》这一内容,是因为上学年听了冬梅老师讲了若干遍《分数乘分数》,并一举在市名列前茅。我选了《分数乘分数》的.前一信息窗,内容相对来说比较简单。对此类课的教学思路有了一定的了解,感觉有信心上好这节课。
课堂上,我是按照事先设计好的方案一步一步地进行着。结果第一环节提出数学问题,根据已有的经验列出算式就出了问题,我提出:“‘求做一个风筝一共需要多少米布条?’其实就是求什么?”。一下子把孩子问在那里了。周折了一小会儿才开始列式计算了。紧接着第二个环节列式计算,并理解分数乘整数算式的意义还好。很顺利地进行到第三个环节学习计算方法。大部分学生都用分母不变,只把分子与整数相乘的方法计算的。我不失时机地启发学生思考:为什么只把分子与整数相乘呢?比比看谁的理由最充分。这时学生们都陷入了思考,带着“为什么”去探索。在课堂上迫不及待。积极主动地进行讨论,在理清算理的基础上通过课件演示总结出法则。这一环节我自己还比较满意。到了第四环节,通过法则指导计算,并学会简便方法约分时,又出问题了,学生不理解为什么约分后的分子相乘分数的大小还不变,一直在那里纠结,足足耽误了将近十分钟的练习时间。
通过评课,同行们给我找明了问题的关键:
1、教师在第一环节的提问绕圈子了,不要问学生“要求这个问题就是求什么?”直接让学生列式解答即可。在列式的基础上让学生自己发现6个相加可以写成×6的形式,从而明白分数乘整数的意义。
2、在探究算法的过程中,应当与算理相融合,一位同学探究说出算理和算法以后,应该结合课件再多找几个学生强化一下,这样落实面才会更广一些。
3、当学生提出对于约分环节的不理解时,教师不要急于解释,可让其在练习的基础上验证一下,或告知其下课后继续研究,一定不要把时间浪费在与个别学生纠结一些价值不大的问题。教师要有主观能控力。
4、分数的书写顺序要注意标准。
听了大家伙的建议,自己感觉很有道理,不再去邻班讲一次真对不住朋友们提出的这些大好建议。感谢教研组的评课,各路高手就像是一位位神医,帮我查找到这节课的各种病症,只不过要想医治成功还需要“患者”的努力。
分数乘整数教学反思与评价篇八
教学片段:
师:把4/5米平均分成两份,每份是多少米?
生:4/52=2/5(米)
师:你们认为他做得对吗?
生:对
师:谁能说说你是怎样想的?又是怎样计算的?
生1:我是由分数乘法的法则类推出来的,我想2也就是2/1,我用分子除以分子的商作分子,分母除以分母的商作分母,所以4/52=2/5。
师:有不同的想法吗?
生2:我是这样想的,4/5米是4个1/5米,把4个1/5米平均分成2份,每份是两个1/5米,也就是2/5米,所以4/52=2/5(米)。
生3:4/5除以2就是把4/5米平均分成2份,求1份是多少,1份也就占总数的1/2,根据求一个数的几分之几是多少,用乘法计算,所以我能转化为分数乘法,4/52=4/51/2=2/5(米)。
师:你们对这三种方法都认可吗?
生:(一致点头)认可。
师:(点头微笑)你们觉得哪种方法更好?
生4:第一种方法不好,如果是4/53就不能除了。
师:看来第一种方法不具有普遍使用性,是吗?
生5:第二种方法也不能计算4/53类似的问题。
(此时教室里变得鸦雀无声,同学们陷入了思维的沉静,沉默片刻之后)
生6:老师,我有办法使第一、二种方法都具有普遍使用性,我根据分数的基本性质把被除数的分子、分母同时扩大3倍,不改变除数的大小写成4/53=(123)/15=4/15。
师:你的想法太有创意了,谢谢你的精彩回答。
生7:我认为这种方法还是不太好,如果是4/53/7,按这种方法计算就太麻烦了。
师:大家赞同这点意见吗?
生:同意。
师:此时你们想想,用什么样的语言来概括分数除以整数的方法?
生:
反思:
在这个教学片段中,我没有一味地执行教案,而是以学定教,因势利导地利用生成性资源进行了教学,才使学生创造出了绚丽的思维景观,由于生1的回答,才便于我搅动学生思维的涟漪,使学生原有的知识、经验接受到了挑战,从而促使学生去探究、去创造,以寻求新的答案,就使得学生的思维进一步深化。有人喜欢循规蹈矩,由分数乘法的法则类推出分数除以整数的计算方法,用分子除以分子的商作分子,分母除以分母的商作分母;有人喜欢标新立异,得出4/5除以2就是求4/5的1/2是多少;有人喜欢提出疑问,在用第一、二种方法能解决4/5除以2时,竟然提出这两种方法都不能解决4/53;也有人喜欢追准不舍,生2在曲折不平处奋力向前,一波未平,一波又起地掀起了思维的波澜,他根据分数的基本性质来解决问题。如此循环往复,一步步地逼近真理,一次比一次飞溅起更高的思维浪花。
此时,我由衷地佩服他们这群创造课堂亮丽风景的学生们,细细琢磨,不过是给了学生随心所欲的自由,结果创造就成了水到渠成的事。看来,学生是金子,只要我们把主动权还给他们,充分发掘他们自身的潜能,允许学生用自己的大脑思考,用自己的嘴巴表达,就能发出思想的光芒。
分数乘整数教学反思与评价篇九
这节课的教学目标是分数除法的意义以及分数除以整数的算理和计算方法。本节课为使学生理解分数除法的意义,我先对整数除法进行了复习。从整数除法迁移到分数除法,在例题教学中,通过让学生画一画,折一折,在具体操作中理解分数除以整数。在理解分数除以整数的算理时,我创设了折纸的操作活动,让学生大胆猜想,在学生猜想后,我放手让孩子用自己的方法来验证,然后全班交流。学生操作时,先要求学生在草稿本上画一画,再让学生折纸,在折纸时学生出现两种折纸的方法。
一种竖着折,即平均分成两份;一种横着着,即转化为求这张纸五分之四的二分之一。在共同交流的同时,我有意识的选择竖着折的这种先讲,让学生明白为什么是分子除以2;再问学生有没有不同的,再请学生上前讲,通过学生的讲解和我的引导让学生理解了为什么可以乘以除数的倒数。
在用不同方法解决了问题后,让学生选择自己喜欢的一种并说明理由。然后出现除数3的这种,按第一种方法做,行不通;按第二种方法能够顺利解决。进一步让学生明白除以一个数等于乘以它的倒数。学生感知第二种方法是最优的选择。
虽然本节课学生明白了意义,知道了算理,达成了目标,但本课仍存在着明显的不足之处:如在学生自主探究与合作交流时以及学生展评时没有给学生更多的表达空间,总结方法及优化时应放手让学生去多说,学生在计算时出现错误时,让学生具体说说错误的原因,不要急于进行下一阶段内容。这是我在今后的课堂教学中应该注意的问题。