去美国读计算机模板
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
去美国读计算机篇一
包括开发新型编程语言以实用高效地开发可靠的软件,计算机辅助语言学习,计算语言学,从初阶的打字理论,自动定理证明,语义学等发展到如今的基于语言的途径以解决计算机安全与分布式编程中的重大问题,语言应用,编程分析与优化等,可以从根本上提高软件可靠性与安全性。包含如下一些课题:
(1)程序语言设计和实现(programming language design and implementation):编译器优化(compiler optimization),语义(semantics),即时编译器(jit complier),域特定语言(dsl:domain-specific languages)。
(2)编程环境和工具(programming environments and tools):监控(monitoring),程序员搜索引擎(programmer search engines),基于模型的设计(model-based design)。
(3)程序分析和验证(program analysis and verification):模型检测(model checking),静态和动态分析(static and dynamic analysis),定理证明(theorem proving),实时系统的任务调度分析(schedulability analysis for real-time systems)。
与数据管理相关的所有方面,包括数据存储,数据检索,数据分析和视觉化,如为超大型数据组开发高效算法,为各种新型的应用领域建立大型的数据系统,也有与其他领域进行跨学科的研究,可应用的领域有电脑游戏设计,数据隐私与安全等。包括以下研究内容:
(1)数据库(database):数据模型,数据查询、集成,各种数据库系统的设计、实现等。
(2)数据挖掘(data mining):从数据中提取模式的处理过程。它在很多领域有广泛的应用,例如市场营销、监测、入侵检测和科学发现。数据挖掘和机器学习很相关,但是数据挖掘更关注实际应用。
(3)信息检索(information retrieval):研究如何提取各种媒体(文本、音频、视频等,目前的研究以文本居多)中的信息,同时还搜索与之关联的数据库和万维网。
(4)自然语言处理(natural language processing):构建一种可以分析、理解和生成自然语言的计算机系统。研究课题包含自动摘要(automatic summarization),语篇分析(discourse analysis),机器翻译(machine translation),命名实体识别(named entity recognition),自然语言生成(natural language generation)和语音识别(speech recognition)等。
图形学的研究包含对自然景象的建模和动画生成(modeling and animation of natural phenomena),计算拓扑学(computational topology),图形硬件的使用(graphics hardware utilization),渲染(rendering),网格处理和简化(mesh processing and simplification),形状建模(shape modeling),曲面参数化(surface parameterization)和可视化处理(visibility processing)等。
多媒体研究包括图像处理(image processing),视频处理(video processing),音频分析(audio analysis),文本检索和理解(text retrieval and understanding),数据挖掘和分析,以及数据融合(data fusion)。因为多媒体数据包含不同格式的数据(如文本,音频,视频),所以它的研究包含很多不同领域的技术和理论。