最新3的倍数的特征教案通用
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?又该怎么写呢?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。
3的倍数的特征教案篇一
教材19页内容,能被3整除的数的特征。
使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。
三疑三探教学模式
课件等。
一、设疑自探(10分钟)
(一)基本练习
1、能被2、5整除的数有什么特征?
2、能同时被2 和5整除的数有什么特征?
(二)揭示课题
我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)
(三)让学生根据课题提问题。
教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)
(四)出示自探提示,组织学生自探。
自探提示:
自学课本19页内容,思考以下问题:
1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。
2、能被2、3整除的数有什么特征?
3、能被2、3、5整除的数有什么特征?
二、解疑合探(15分钟)
1、检查自探效果。
按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。
2、着重强调;
一个数各个数位上的数字之和能被3整除,这个数就能被3整除。
三、质疑再探(4分钟)
1、学生质疑。
教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?
2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)
四、运用拓展(11分钟)
(一)学生自编习题。
1、让学生根据本节所学知识,编一道习题。
2、展示学生高质量的自编习题,交流解答。
(二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。
1、判断下列各数能不能被3整除,为什么?
72 5679 518 90 1111 20373
2、58 115 207 210 45 1008
有因数3的数:( )
有因数2和3的数:( )
有因数3和5的数:( )
有因数2、3和5的数:( )
让学生说说怎么找的。
(三)全课总结。
1、学生谈学习收获。
教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。
2、教师归纳总结。
学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。
能被3整除的数的特征 一个数各个数位上的数字之和能被3整除,
这个数就能被3整除。
3的倍数的特征教案篇二
出示一组数: 5、6、14、18、25、27、36、41、90 提问:谁能判断出哪些是3的倍数? 指名回答后再出示:1540、2856、3075 提问:谁能很快判断出哪些是3的倍数? 师:我能很快判断出这些数中2856和3075都是3的倍数。 谈话:你们会想这些是老师预先算好的。你们可以考考老师,不管你报一个什么数,我都能很快判断出来,你们愿意来试一试吗? 学生报数,教师回答,并把是3的倍数的数板书在黑板上,再让学生用计算器验证。 谈话:你们一定在想:老师你有什么窍门吗?有啊!你想知道吗?让我们一起来探索3的倍数特征吧!(板书课题:3的倍数特征)
师:你能猜一下3的倍数有什么特征吗?
生1:3的倍数的个位上可能都是奇数。
生2:3的倍数的个位上可能是3、6、9。
师:大家的这些猜想是否正确呢,你准备如何来研究?
生:我们还是应该先找一些3的倍数,通过观察、猜想、举证、归纳的过程进行研究。
1.在筛选数据、观察激疑中揭示新的探索思路
师:好,我们一起来把百数表中3的倍数都找出来吧。 (师生一起将百数表中3的倍数圈起来,见下图。)
师:通过观察你有什么想法?
生1:3的倍数的个位上不一定是奇数,例如42、36。
生2:3的倍数的个位上也不一定是3、6、9,例如12、45。
师:通过观察,同学们刚才的猜想全都被否定了。那就再看看,有没有别的特征呢? (学生观察后,表示找不到特征。)
师:这样的观察很难直接发现3的倍数的特征,看来我们要寻找新的研究思路。课前每个同学都准备了一个计数器,如果我们用计数器拨出一些3的倍数,再进行观察研究,又将会有什么发现呢?
2.操作观察,初步发现
师:请每个同学在刚才找出的3的倍数中任意选一个,用计数器把它拨出来,并记录下拨这个数用了几颗数珠。 (学生按教师的要求进行操作。)
师:说一说,你拨了哪个数,用了几颗数珠?
生1:我拨的是15,用了6颗数珠。
生2:我拨的是36,用了9颗数珠。
生3:我拨的是99,用了18颗数珠。
师:观察这几个同学拨3的倍数所用数珠的颗数,你能发现什么?
生:所用数珠的颗数都是3的倍数。
师:这会不会是巧合呢?是不是其他的3的倍数也是这样呢?观察你所拨出的3的倍数,再看看小组内其他同学所拨的数,是不是也是这样?(学生观察、交流。)
师:你们研究的3的倍数,所用数珠的颗数全都是3的倍数吗?
生:是的。
师:很好,这个发现很重要。看来我们的研究已经有了一点进展了。我们发现在计数器上拨3的倍数,所用数珠的颗数 都是3的倍数。
3.逆向思考,完善认知 师:一个数不是3的倍数的数,所用数珠的颗数究竟是不是3的倍数呢?
师:请同学们任意找一些不是3的倍数的数,把它们在计数器上拨出来,看看所用的数珠究竟是不是3的倍数。 (学生按上述方法操作、交流。)
发现:不是3的倍数的数在计数器上拨出它发现所用数珠的颗数也不是3的倍数。
师:我们的研究又有了新的进展。到现在为止,我们研究了100以内的3的倍数,发现所用数珠的颗数都是3的倍数;也研究了100以内不是3的倍数的数,发现所用数珠的颗数都不是3的倍数。也就是说,100以内的数,如果在计数器上拨它,所用数珠的颗数是3的倍数,这个数就是3的倍数。
4.拓展研究,深化认知
师:有了前面的研究,你是否认为我们研究出的结论对所有的数都适用呢?
师:如果是比100大的数呢?在计数器上拨出它是这样吗?请同学们任意找一些比较大的3的倍数、以及不是3的倍数的数再进行研究。
师:注意,要任意想一个。
师:你想的这个数是不是3的倍数呢?你现在知道吗?
生:不知道。
师:怎么才能知道呢?
生:只要把它除以3就可以了。
师:同学们可以用计算器算一下,先确定一下你想的数是不是3的倍数。 (学生用计算器进行验证。)
师:请每一小组的同学将自己所拨的数放到一起观察。3的倍数的放在一边,不是3的倍数的放在另一边。
师:通过研究,现在你有什么想法?
生:在较大的数里,3的倍数所用数珠的颗数也是3的倍数;不是3的倍数的数,所用数珠的颗数也不是3的倍数。
师:通过研究,现在我们可以说……
生:一个数,在计数器上拨出它所用数珠的颗数是3的倍数,这个数就是3的倍数。
5.初步应用,归纳特征
师:现在如果给你一个数,不做除法,你怎样很快地判断它是不是3的倍数?
生:看在计数器上拨这个数要用几颗数珠。如果数珠的颗数是3的倍数,那么它就是3的倍数,否则它就不是3的倍数。
师:好,我们就来试一下吧。75。
生:我用计数器拨了,75要用12颗数珠,12是3的'倍数,所以75是3的倍数。
师:203。
生:203不是3的倍数,因为要用5颗数珠,而5不是3的倍数。
师:老师发现有的同学没有拨计数器,也判断对了。再来一个吧,看谁判断得最快! 111。
生:111是3的倍数,因为要用3颗数珠,3就是3的倍数。
师:刚才同学们都没有拨计数器,不拨计数器也能判断吗?你是怎样想的?
生:只要把每个数位上的数加起来就是所用数珠的颗数,所以不拨出来照样可以判断。
师:同学们想到的办法真好,连计数器都可以不用了。既然这样,下面我们就用这样的方法继续来判断一些数。 (师生继续做了几次判断3的倍数的练习。)
师:现在让你再来说说3的倍数具有怎样的特征,你会怎么说呢?
生1:一个数每个数位上的数的和是3的倍数,这个数就是3的倍数。
生2:3的倍数,各个数位上数的和是3的倍数。
学生完成课本第72页,想想做做1、2、3。
师:每个同学手里都有0到9十张数字卡片,你能任意选3张卡片,摆出一个3的倍数吗?
师:用你选的3张卡片还能摆出不同的3的倍数吗?一共能摆出几个?
师:你能在你摆的数的基础上再加上一些卡片,使摆出的数还是3的倍数吗?想一想,如果加一张怎样加?两张呢?三张呢?……
师:你最多能用到几张卡片摆出一个3的倍数?
师:当十张卡片全都用上时,我们就摆出一个比较大的3的倍数。你能去掉一些卡片,让这个数依然是3的倍数吗?
生1:3、6、9可以去掉。
生2:0也可以去掉。
生3:7和8可以一起去掉,因为加起来是15。
师:刚才的练习有没有给你什么启发?现在让你判断一个数位较多的数是不是3的倍数,你会怎样做?
生1:可以先将各位上是3的倍数的数去掉后再判断。
生2:如果数位上某两个数相加的和是3的倍数,也可以先将这些数去掉后再判断。
师:用你们的方法判断下面这些数是不是3的倍数:369639693,13693692,121212127,182754。
师:通过这堂课的学习,你知道老师上课之前所用的敲门是什么吗?
师:你能用我们今天所学的研究方法去研究一下其他数的倍数的特征吗?
生:能!
师:好,老师就给同学们留一个课后探究的作业。
探究作业:研究问题:9的倍数有什么特征?
研究方法:找数一观察一猜想一举证一归纳。
研究工具:百数表、计数器、计算器。
把研究成果与同学或老师分享。