高三数学知识点归纳总结题型三篇(优质)
总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,让我们一起来学习写总结吧。怎样写总结才更能起到其作用呢?总结应该怎么写呢?以下是小编收集整理的工作总结书范文,仅供参考,希望能够帮助到大家。
高三数学知识点归纳总结题型篇一
2.判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”;
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;
(3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”;
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;
(5)夹在两个平行平面间的平行线段相等;
(6)经过平面外一点只有一个平面和已知平面平行。
高三数学知识点归纳总结题型篇二
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合
1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的`根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。
高三数学知识点归纳总结题型篇三
一个推导
利用错位相减法推导等比数列的前n项和:sn=a1+a1q+a1q2+…+a1qn-1,
同乘q得:qsn=a1q+a1q2+a1q3+…+a1qn,
两式相减得(1-q)sn=a1-a1qn,∴sn=(q≠1).
两个防范
(1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.
(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.
三种方法
等比数列的判断方法有:
(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈n_),则{an}是等比数列.
(2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈n_),则数列{an}是等比数列.
(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈n_),则{an}是等比数列.
注:前两种方法也可用来证明一个数列为等比数列.