2023年小数乘小数 教学反思 小数乘小数教后反思(十篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
小数乘小数 教学反思 小数乘小数教后反思篇一
一、深刻把握教学内容,指导教学设计。
小数乘小数的计算方法,教材中是这样归纳的,先按照整数乘法计算,看因数中一共有几位小数,再从积的右边起数出几位,点上小数点。在实际教学中,还有学生根据前面的小数乘整数的计算方法迁移归纳成,看因数中一共有几位小数,积(指未化简的)就是几位小数。
因此,本课的重点和难点都应当在于帮助学生发现和掌握因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数点的方法。而教法上更多的依赖旧知识的迁移类推,让学生自主发现和归纳。
二、创设有效的问题情境,促进算理形成。
1.创设什么情境?
《义务教育数学课程标准(实验稿)》提出“让学生在生动具体的情境中学习数学”。我们知道,数学的来源,一是来自数学外部现实社会的发展需要;二是来自数学内部的矛盾,即数学本身发展的需要。从这个角度出发,数学情境可以分为两种:生活情境,从生活中引入数学;问题情境,从数学知识本身的生长结构出发设置的情境。
所谓“有效“,数学课上的情境创设,应该能为数学知识和技能的学习提供支撑,能为数学思维的生长提供土壤,我们应当根据不同的教学内容,灵活的选择不同的情境。
苏教版教材以计算小明家的房间面积为情境,引出需要学习的小数乘小数的计算题,再让学生进行探索尝试。这样,虽然符合从生活中发现数学、应用数学及解决数学问题的要求,但情境本身的设置对于小数乘小数的算理推导过程,并无实质的作用。相反,小数乘小数,与小数乘整数比较,前者需要同时看两个因数一共有几位小数,而后者只有一个因数是小数,计算方法可以类推,算理本质上是一致的,都可以通过积的变化规律加以验证。所以,小数乘整数的计算方法是小数乘小数计算方法的推导基础,以此知识的生长点作为问题情境是可行的。
因此,本节课我对教材的呈现方式作了调整,首先通过小数乘整数的推理计算,引导学生弄清计算方法。再出示小数乘小数的题目,自主探索。在掌握方法后再去解决实际生活中的一些问题。
2.怎样让问题情境富有“吸引力”?
小数乘小数的最关键的地方是确定积的小数点的位置。适当弱化积的计算过程,重点突出寻找积的小数位数与因数的小数位数的关系,可以保证学生思维的高效性,也避免计算的枯燥无味的感觉。
因此,教学中不能简单的做题目、再总结,做题目、再总结的机械循环。我通过四次反复的出示根据整数乘法的积,确定小数乘法的积的小数点,每出现一次,都有新的要求,每完成一次,都有新的收获。
小数乘小数 教学反思 小数乘小数教后反思篇二
小数乘小数的计算方法,教参与教材是这样归纳的,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。其实质就是根据积的变化规律而归纳而成的。
首先,通过复习小数乘整数的方法,让学生小结出小数乘整数的方法其实就是利用了积的变化规律,如2.05x4的计算方法,把它们看成整数的乘法计算,然后看2.05有两位小数,积就要点上两位小数。想一想、议一议1.2x0.8那怎么计算呢?
学生掌握了小数乘整数的计算方法后,通过议一议、说一说在小组交流中大多数会利用积的变化规律进行推导,把1.2x0.8的因数1.2和0.8分别扩大10倍算出积是96,要使积不变,积就要缩小到96的1/100,所以1.2x0.8=0.96.在这个环节,学生初步感知了积的小数数位和因数的小数数位的关系,因数共有几位小数,积就要从右到左点上几位小数。
接下来,我出示两道计算6.7x0.3和0.56x0.04,让学生在利用0.8x1.2所得的方法进行计算,然后排列出0.8x1.2因数一共有位小数,积0.96也是两位小数,6.7x0.3中因数一共有两位小数,积也有两位小数,0.56x0.04因数一共有四位小数,积也有四位小数,从而在这些例子当中让学生进一步感受到了积的因数的小数位数的关系,进而学生很自然的就归纳出,小数乘小数的计算方法,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。
在知识的巩固过程中,突出竖式计算的书写格式,强调在计算时简要的说出计算的算理,如计算0.29x0.07时,要求学生不但要按书写格式书写,而且要求学生说出 0.29x0.07,先29x7计算出积,再看因数一共有四位小数,就从积的右边起点上四位小数,位数不够的添“0”补足。
在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘整数,效果还是比较好的!
小数乘小数 教学反思 小数乘小数教后反思篇三
这是学生第一次接触小数乘法,我大胆改变教材没有使用课本上的情景图,安排了复习积变化的规律,通过例1,让学生在解决实际问题的过程中掌握小数乘整数的计算方法,之后安排了一些练习巩固。而在实际的学情中,有大部分学生都会算小数乘法,知道当成整数计算,然后点上小数点,但对于为什么要这么算,竖式的写法还很模糊这一现象,我想如果按照教材的编排进行,这样的问题没有挑战性,学生不会感兴趣,于是从以下几个方面安排:
在教材中积变化的规律是复习,我在教学中却将当它是新知,引导学生发现规律,体验发现的乐趣。充分理解一个因数不变,另一个因数扩大(缩小)多少倍,积就会扩大(缩小)相同的倍数。引导学生直接运用这个规律计算出0.3×2,同时运用小数乘整数的意义进行验证,感受规律的正确性。
有了前面对算理的理解,当遇到用竖式计算3.85×59时,学生不再感到困难,但要他们说出为什么这么写,部分孩子还是不能理解,所以我抓住小数点为什么不对齐了引导学生思考,我们已经将3.85扩大100倍,计算的是385乘59了,所以根据整数乘法的计算方法计算,而不是小数乘法了,最后还得将积缩小100倍。
小数位数的变化是本节课的一个难点,因此我为这个安排了两个练习,一个是推算小数的位数,二是判断小数的位数,在判断小数的位数后选择了两题让学生计算,认识到并不是积的小数的位数和因数的小数位数都是一样的。
在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘整数,而让我觉得困惑的是,在前面这一部分我让学生发现规律,运用规律去口算,然后去笔算,一切都在我的安排之中,教学的过程是流畅的,顺利的引导学生进行知识的迁移和扩展,学生掌握的情况也是很好的,但过多的暗示是否束缚了学生的思维,如果不铺垫,直接出示小数乘整数的问题让学生思考,对于培养学生的思维能力是否好些?
课的下半部分,学生对计算已经不感兴趣了,有几个孩子已经开小差了,事后调查得知,他们觉得问题太简单了,就是积的小数位数的问题,只要移动小数点位置就行了,计算没有什么多大意思.学生说得是实话,最近学的都是计算,都是讨论计算方法,而计算方法的发现有时不需要让他们经历发现、探究的过程,更多的是老师的提醒和告诉,充满好奇心的孩子怎么喜欢被动的接受呢。看来计算的教学还需要教师将练习的形式变的丰富些,吸引学生的眼球和大脑。
小数乘小数 教学反思 小数乘小数教后反思篇四
本节课的内容是在学生掌握了小数乘整数的基础上进行教学的。通过对比建立新旧知识间的联系,学生学得比较轻松,正确率也较高。
在知识障碍出引发学生的思考,着力解决当两个因数都是小数时,积怎样处理点小数点。通过复习小数乘整数的内容,让学生进一步明确计算方法,特别是小数点的处理。在新知学习中,着重让学生观察因数的小数位数与积的小数位数之间有什么关系,从而得出因数中一共有几位小数,就从积的右边数出几位点上小数点。
1.列竖式时出现了点错小数点的现象,有的只关注第一个因数的小数位数,有的只关注第二个因数的小数位数,从而出现了虎头蛇尾的错误频出。
2.计算出错仍是学生计算的拦路虎,该进位不进位,该对齐数位不对齐。
1.加强计算的练习,特别是加强口算题卡的练习,强化口算能力。
2.加强学困生的辅导,在课堂上多关注,多留给他们答题的机会。
小数乘小数 教学反思 小数乘小数教后反思篇五
小数乘小数的计算方法,教材这样归纳:先按照整数乘法计算,看因数中一共有几位小数,再从积的右起数出几位,点上小数点。在实际教学中,有学生根据前面小数乘整数的计算方法迁移归纳成:看因数中一共有几位小数,积(指未化简的)就是几位小数。这两种说法实际上是一致的,都可从由积的变化规律中得出,因此,本课的重点和难点都应当在于帮助学生发现和掌握因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数点位置的方法。
关键在于适当弱化积的计算过程,突出寻找积的小数位数与因数的小数位数的关系,以保证学生思推的高效性,也免计算时的枯燥无味的感觉。而教法上更多地可以依知识的生长结构近移类推,让学生自主发现、归纳和掌握。
小数乘小数是第一单元的一个教学重点,它是学生在学习了小数乘整数的基础上进行教学的。我以为这一知识学生已有了一定的基础,只要重点掌握了小数乘法的算理,学起来应该是比较轻松的,可事实大大出乎我的意料。
由于对难点问题——积的小数点的位置处理得不到位,所以在课后练习中,学生出现错误的现象比较多:
1.方法上的错误。例如在教学例3(2.4×0.8)时,学生能流利地说出先将两个因数分别乘10。这样积想当于来100,为了使积不变,最后还要将积除以100;但是在计算的过程中,学生不能将算理与方法结合起来,不能正确地解决积的小数点的问题,
2.计算上的失误。
(1)部分学生在积的末尾有0时,先画去0再点小数点;部分学生在遇到因数是纯小数或因数中间有0时,还要将0再乘一遍。
(2)因数的数位较多时,个别学生直接写出得数(如4.8×0.24的竖式下直接写出152,没有计算的过程),做完竖式,不写横式的数等,面对学生出现的这样那样的错误,我不得不重新开始审自已的课堂,审视自已的教学,并对此进行了深刻的反思。
小数乘小数 教学反思 小数乘小数教后反思篇六
在学习了旧知小数乘整数的基础上,本课意见通过学生的自主探索与发现解决以下几个数学问题:
1、理解并掌握小数乘小数的计算方法,并能正确计算。
2、在探索计算方法的过程中,培养初步的推理能力及抽象概括能力。
3、进一步体会数学知识之间的内在联系,感受数学探索活动本身的乐趣,增强学好数学的信心。
本节课的教学重在渗透比较的思想,在比较中找出新知旧知的联系,在比较中找到解决问题的策略,在比较中发现小数乘小数算理、归纳计算方法。
1、在求阳台面积与房间面积比较时,进行了知识迁移,让学生比较这两道算式的异同,以及与小数乘整数的异同,从而得出小数乘小数的计算法则:计算过程按整数乘法计算。因数中一共有几位小数,积就从右往左数几位,点上小数点。
2、求总面积两道算式的比较,引出把整幅图看成一个大的长方形进行计算比较简便。
通过学生的当堂作业反馈发现学生在计算小数乘小数时基本能正确在积中点出相应的数位。少数错因在于乘法计算不过关。因此学生的乘法计算还是要过关。另外,相关的变式练习还是要多多训练。学生的倒退意识不强。比如在给248×35=8.68的因数点小数点时,学生们注重表面现象——积是两位小数,忽视了积末尾隐藏的'0,也就是说,实际上积应该是三位小数,只是小数末尾的0划去了。所以,学生在掌握了基本算法之后,教师还要有意识地培养学生的观察与审题能力,有效发现题目的深层意图,避免掉入小陷井。
小数乘小数 教学反思 小数乘小数教后反思篇七
《小数乘小数》这部分内容对五年级的学生来说有点难度,它主要考察学生的运算能力和细心程度。在上完这节课后,我进行了认真的反思,给我的启发:
1、要处理好怎样点小数点。
我认为书上的例3、例4、例5这3道例题可以统一到一个知识点来教学。在教学时,教师要先让学生回顾整数乘整数的方法,然后在此基础上,扩展到小数乘小数,把小数也看成是整数,这样每位学生都会做整数乘法,最后,在指导学生在积上应怎样点小数点,这是关键,也是教学难点,要强调整个一道乘法算式中共有几位小数,在积中就点几位小数。其中的道理也要让学生明确,把小数看成整数,是先扩大几倍,最后也要缩小相同的倍数,所以要在积中点几位小数。但在学生实际练习中,我也发现了有一小部分学生小数点仍点错,究其原因,不难发现学生不会数小数点,他们把小数的乘法与加法混淆在一起,因此,教师要对这些学生再复习一下小数加法的方法。这样,每位学生都会点小数点了。
2、在教小数乘法中要结合生活实际创设情境,解决实际问题。
在上例3时,要结合学校的宣传栏,让学生先用米尺去量一量宣传栏的长、宽,再让学生想一想,怎样去配宣传栏上的玻璃,学生马上知道要通过乘法计算来确定玻璃的大小。
这节课设计的意图是力求让学生通过“探索”,自主地发现规律。教师再作适当的指导。
我想我现在的立足点就是在日后的家常课中,一点一滴的拾起,新理念,新课堂,希望自己在不断的反思中一路走好。
小数乘小数 教学反思 小数乘小数教后反思篇八
本节课的目的是引导学生利用小数乘整数的计算的经验,再次用转化的方法,把小数乘小数转化成整数乘法来计算。
先以换玻璃的活动引入小数乘小数的学习,其作用是:
1、提供小数乘小数的生活素材。由计算长方形玻璃的面积引入两个因数都是小数的乘法计算,让学生感受到生活中许多问题的解决离不开小数乘法。
2、引起认知冲突。当学生列出1.2×0.8的算式来求长方形玻璃面积时,问题油然而生。两个因数都是小数,怎么计算?
3、借此对学生进行爱护公物,保护校园环境的教育。
让学生在自主的探究与合作学习中理解小数乘小数的算理,1.2扩大到它的10倍是12,0.8扩大到它的10倍是8,计算后的结果是96平方米,这个过程表述的虽然不如教科书呈现的那么简单,但它代表了相当一部分学生的解题思路,要给予及时的评价和鼓励。
小数乘小数 教学反思 小数乘小数教后反思篇九
教材小数乘小数的计算方法,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。而在实际的教学当中,我分为以下三点进行:
通过复习小数乘整数的方法,让学生小结出小数乘整数的方法其实就是利用了积的变化规律,如2.05×4的计算方法,把它们看成整数的乘法计算,然后看2.05有两位小数,积就要点上两位小数。想一想、议一议1.20×8那怎么计算呢?
学生掌握了小数乘整数的计算方法后,通过议一议、说一说在小组交流中大多数会利用积的变化规律进行推导,把1.2×0.8的因数1.2和0.8分别扩大10倍算出积是96,要使积不变,积就要缩小到96的1/100,所以1.2×0.8=0.96.在这个环节,学生初步感知了积的小数数位和因数的小数数位的关系,因数共有几位小数,积就要从右到左点上几位小数。
通过一道0.8×1.2得出一个较为浅显的表象,因而我这里是这样处理这个环节的,我不急着去归纳,而是出示两道计算6.7×0.3和0.56×0.04,让学生在利用0.8×1.2所得的方法进行计算,然后排列出0.8×1.2因数一共有位小数,积0.96也是两位小数,6.7×0.3中因数一共有两位小数,积也有两位小数,0.56×0.04因数一共有四位小数,积也有四位小数,从而在这些例子当中让学生进一步感受到了积的因数的小数位数的关系,进而学生很自然的就归纳出,小数乘小数的计算方法,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。
1、突出竖式计算的书写格式,强调在计算时简要的说出计算的算理,如计算0.29×0.07时,要求学生不但要按书写格式书写,而且要求学生说出0.29×0.07,先29×7计算出积,再看因数一共有四位小数,就从积的右边起点上四位小数,位数不够的添“0”补足。
2、突出口算为小数乘法简便运算打基础。
如在课堂上布置了多种常用的、常见的口算,这样不但进一步加深了小数乘小数的计算方法,而且为小数乘法的简便运算作了一个很好的铺垫。
在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘小数,效果还是比较好的!
小数乘小数 教学反思 小数乘小数教后反思篇十
本节课的内容基于整数乘法上,而进行有关计算的课程,我按以下步骤进行教学。
教材并没有归纳小数乘小数的法则,参考人教版这样归纳:先按照整数乘法,计算看因数中一共有几位小数,再从积的右边筛骨出几位,点小数点。在教学中,还有学生根据前面的小数乘整数的计算方法迁移归纳成:看因数中一共有几位小数,积就是几位小数。向学生指出,如果积是未化简的情况,这个方法可以使用。因此,本课的重点和难点都应当在于帮助学生发现和掌握。因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数的位置的方法。关键在于适当弱化积的计算过程,突出寻找积的小数位数与因数的小数位数的关系,避免学生出现计算枯燥无味的感觉。
教学方法上,更多地可以依赖知识的结构间的迁移类推,让学生自主发现归纳饿掌握。
首先复习铺垫,沟通联系,由36×28=1008,3.6×28,让学生观察,题目是怎样变化的?那么积的小数点应点在哪里?
最后总结一句口诀:
一算、二数、三点点。
最后是自主实践,先由一两个错题,通过让学生找错,说理由,进一步深化理解。
总之这节课我紧紧抓住积的变化规律来引导学生理解确定积的小数的位置的方法,关注了学生思维的有效生长。