《不含括号的混合运算》教案反思(模板3篇)
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?下面是小编带来的优秀教案范文,希望大家能够喜欢!
《不含括号的混合运算》教案反思篇一
苏教版四年级上册第30页的例题,完成第31页的“想想做做”。这部分内容是在学生学习过含有同一级运算(如只有加、减法或只有乘、除法)的两步式题,也学过一些含有两级运算(如乘加、乘减但都是乘在前面的)两步式题基础上,教学的重点应是引导学生把已有的知识进行迁移,知道在含有乘法和加、减法的算式里要先算乘法,再算加、减法。
例题呈现的是简单的购物场景,共有两个问题,第一个问题,在学生列出分步算式的基础上,引导把两个一步计算的算式合成综合算式,使学生体会综合算式的含义,并根据数量之间的关系尝试计算,理解运算的顺序;第二个问题,则引导学生直接列出综合算式,帮助学生联系数量关系理解其运算顺序。在此基础上,总结出含有乘法和加、减法混合运算的运算顺序。
练习先安排一些基本的练习,帮助学生巩固乘法和加、减法混合运算的运算顺序:再通过一些有针对性的改错题和比较题帮助学生整合已学过的混合运算的各种情况,提高运算技能;最后让学生运用所学的知识解决一些简单的实际问题。
教后反思:
教完这节课后,我觉得学生知识点已掌握,感觉还可以。可是当我改到一位学生的作业时,我发现他出现了这样的错误:
25+18×6 50—20×3
=43×6 =30×3
=258 =90
这些错的地方不就是这节课的教学重点吗?上课时,不是总结得很清楚了?我努力回忆我的教学过程,我的确在两方面有了疏忽了。
第一、练习题的单一。比较一下今天学生所接触的练习题,大部分题都是从左到右的计算方法,如:32÷4×8
18×6+25
20÷4+5等,只有少量的类似38+4×15的题,难怪学生会做错了。看来虽然我在备课时知道这节课的重点是什么,但在实际操作时,我没有把握好重点,类似25+18×6
50—20×3这些题练习太少了,学生在遇到这些题时,还是根据已有的经验,不能熟练运用今天所学的知识。可是当我回头又把想想做做中的题看一遍时,在第4题,“比一比,算一算”中,这类题可以巩固学习的要点,但在实际上课时,我没有时间让学生去做这道题,那我的时间又用到什么地方呢?我想是在这节课的第一个环节,为了结合书上的情景图,联系生活实际,我把书上的例题,变成了生活情景,说老师去买东西,我的学生也非常可爱,当我说到“我买了4本笔记本,每本5元,”话还没落,
就听见“老师你买得太贵了,一本笔记本最多2元…”“不对,最多3元”…学生们就开始争论起来了,等到这个争论停止时,我真正提出这节课讨论的地方时,又成了他们不太关心的话题了。在这些地方为了将学生的注意转移,我耽误了一些时间,这些可都是我在备课时没有预料到的。
第二,太高估学生了。在讲完例题,练习时我出了“3×5+50
20—3×5”这两题,大部分学生都会做,并有学生说出了“先乘除,后加减”。我肯定了他的说法,还重复了一遍。在总结算法时,我也说出了先乘除,后加减。于是在作业中就有学生这样算:
60÷2×3
=60÷6
=10
这真的是先“乘”“除”。看来,我的数学语言真的是值得仔细斟酌推敲了。
针对以上情况,我觉得在下节课首先要明确算法,算式中有乘法和加减法,应先算乘法;第二,针对出现的错误情况展示,进行纠错;第三,算法强化练习。
透过学生作业,仔细分析错误的原因,就可以看到自己课堂中的不足之处了,
看来今后再改学生作业时,不要一味的图批改速度了,还要仔细分析一下,从中找出自己在课堂教学中的失误点。
《不含括号的混合运算》教案反思篇二
教学内容:
小学数学四年级上册第70~71页例1和“试一试”“练一练”,练习十一第1~4题。
教学目标:
1.使学生联系现实问题中的数量关系,理解和掌握不含括号的三步混合运算的运算顺序,并能正确地进行计算。
2.使学生在按顺序进行计算和运用学过的计算解决实际问题的过程中,进一步增强策略意识,感受数学的应用价值,提高解决实际问题的能力。
教学重难点:
使学生初步掌握含有两级运算不带括号的混合运算的运算顺序,能按顺序计算比较容易的计算式题。
教学过程:
1.出示情境图
从图中你知道了哪些信息?
2. 引入课题
从刚才的两道题可以知道:没有括号的算式里,如果只有乘、除法或者只有加、减法,就按从左往右的顺序运算;如果有加或减,又有乘或除,就要先算乘、除,再算加、减。今天我们根据这些运算顺序的规定,来继续学习不含括号的混合运算。(板书课题)
(二)、出示例题
1.谈话:同学们喜欢跳绳和打乒乓球吗?为了丰富同学们的课余生活,李老师正在体育用品商店为同学们购买跳绳和乒乓球拍呢!我们一起去看看吧!
出示情境图,提问:从图中你知道了什么?这道题要求的问题是什么?
再问:想一想,要求李老师一共要付多少元,要先算什么?请按自己的想法列式解答,并与同学交流。
指名板演,并组织讲评。
提问:如果列综合算式解答这道题,综合算式可以怎么列?
根据学生的回答,板书:12×3+15×4。
2.揭示课题:这是一道不含括号的三步混合运算式题。(板书课题:不含括号的三步计算式题)这样的算式应按怎样的顺序进行计算呢?
(三)、展开
启发:你会算这样的混合运算式题吗?请同学们先根据例题中的填空想一想,这道算式可以按怎样的顺序计算?再试着算一算。
学生尝试计算,教师巡视,并指名板演。(包括分步算出两个积与同时算出两个积的两种情况)
是买跳绳要付的钱,“15×4”算出的是买乒乓球拍要付的钱,都要先算出来,然后把买跳绳要付的钱和买乒乓球拍要付的钱加起来,得到李老师一共要付的钱。)
比较:他们的计算过程有什么不同的地方?
追问:谁的计算过程更简略一些?
指出:这两名同学在计算时的运算顺序都是正确的,不过同时计算两个乘积能使计算过程简略一些。
2.教学“试一试”。
(1)出示“试一试”。
谈话:这里还有一道混合运算的算式,你能试一试吗?先算出结果,再和同桌说说,你是按怎样的顺序计算的。
学生尝试计算,教师巡视,并根据需要指名板演。
反馈:我们请这两名同学分别说说各是按怎样的顺序计算的。
追问:你觉得按这样的顺序计算正确吗?能联系实际问题中的数量关系来说说为什么可以这样算吗?(“12×3”算出的是买跳绳要(2)反馈:我们看同学在黑板上的计算过程,与你的计算过程相同吗?能说说这道题的运算顺序吗?
提问:你觉得计算时还要注意些什么?
3.引导归纳。
谈话:今天我们学习的混合运算,都是不含括号的算式。请同学们想一想,在没有括号的算式里,如果既有乘、除法,又有加、减法,要按怎样的顺序计算?先在小组里互相说一说。
学生交流后,再指名说一说。
(四)、练习
1.做“练一练”
先指名说说每道题的运算顺序,再要求独立完成计算,并组织交流。
2.做“练一练”第2题。
先让学生通过独立思考找出错误,并改正,再组织全班交流,重点说说每道题分别错在哪里。
3.做练习十一第3题。
学生读题,理解题意。
提问:“人均居住面积”是什么意思?知道问题要求什么了吗?
让学生列综合算式解答。
指名回答算式,(板书算式)并说说算式中每一步表示的意思。
四、总结
提问:今天这节课,我们学习了什么内容?在没有括号的算式里,要先算乘除再算加减,为了使计算简便,前面和后面的乘或除可以同时计算,同时脱式。你有哪些收获?
《不含括号的混合运算》教案反思篇三
教学目标
1、使学生理解和掌握不含括号的混合运算的运算顺序,能正确地进行三步混合运算的计算;
2、能用所学知识解决相关的实际问题,使学生感受数学与生活的联系,产生自主探索的兴趣;
3、培养学生认真、严谨的学习习惯。
教学重点 使学生理解和掌握不含括号的混合运算的运算顺序,能正确地进行三步混合运算的计算。
教学难点 使学生理解和掌握不含括号的混合运算的运算顺序
教学方法 尝试练习法、合作学习法。
课前准备 ppt、小黑板等。
教学过程:
一、直接导入新课,板书课题。
1、师:同学们,知道我们今天要学习什么新的内容吗?你对混合运算已有了哪些认识?
2、说一说下面各题应先算什么。
(1)180-120÷6 (2)15×9÷6(3)168÷(15+6)
二、自主探究
1、师:去过商店吗?下面我们一起去一家文具店看看。
出示:(图片)
钢笔:12元 三角尺:2元 文具盒:20元
2、师:能看懂吗?能试着编一道应用题吗?
生思考,指名回答。
3、现在老师要买5支钢笔和10把三角尺,一共要付多少元?怎样解答?请列出综合算式。
学生口答,师板书。师:会计算吗?试一试。
有针对性地指名板演,其余在自己本子上完成。
集体评议。师:你是怎样想的?这样算行吗?
4、师:你能再接着提问吗?该怎样算?
同桌交流,指名说说。师:对于刚才学习的混合运算,你有什么收获?
5、出示:试一试
150+120÷6×5
学生独立完成,做完后集体评议。师:你是怎样算的?为什么?
6、总结:刚才的这几道题目都没有括号(补充完整课题),想一想,在没有括号的算式里,应怎样计算?
三、巩固提高
1、完成“想想做做”第1题
(1)小组交流:这些题分别应先算什么,再算什么?
(2)独立完成计算,指名4人板演。
(3)集体订正,反馈、改正。
2、完成“想想做做”第2题
先找一找错在哪里,再改正。做完后,同桌交流,集体评议。
3、完成“想想做做”第3题(出示)
师:观察,每组算式有联系吗?估计一下它们的答案可能会怎么样?同桌每人选择一组算一算,看看有什么发现?
做完后,交流:你的估计正确吗?能说说为什么吗?
4、完成“想想做做”第4题和第5题
学生先列式解答,再交流自己的思考过程和解题方法,集体订正。
四、总结质疑
1、师:本课学习了什么?你有哪些收获?你还想学习什么?
2、布置作业:“想想做做”第6题和补充的混合运算题。