最新等腰三角形三条边的关系(六篇)
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
等腰三角形三条边的关系篇一
(1)知识结构
(2)重点、难点分析
2、教法建议
(1)强化能力
(2)主动获取
(4)加深理解
(2)弄清三角形按边的相等关系的分类;
:直尺、微机
:谈话、探究式
1、阅读新课,回答问题
先让学生阅读教材的第一部分,然后回答下列问题:
(1)这一部分教材中的概念有哪些?(指出来并给予解释)
(2)等腰三角形与等边三角形有什么关系?
估计有的学生可能把等腰三角形和等边三角形看成独立的两类.
(3)写出三角形按边的相等关系分类的情况.
教师最后板书给出.
(要求学生之间可互相补充,从一开始就鼓励双边交流与多边交流)
2、发现并推导出三边关系定理
问题1:用长度为4cm、 10cm 、16cm的线绳(课前准备好的)能否搭建一个三角形?(让学生动手操作)
问题2:你能解释上述结果的原因吗?
定理:三角形两边的和大于第三边
(发现过程采用小步子原则,让学生在不知不觉中发现中的真理)
3、导出三边关系定理的推论及其它两种方法
(给每一个学生表现个人语言表达才能的机会)
能否简化上面定理及推论?从而得到如下两种判定方法:
4、三角形三边关系定理及推论的应用
例1 判断题:(出示投影)
(2)三角形可分为不等边三角形、等腰三角形和等边三角形
(3)已知三线段 满足 ,那么 为边可构成三角形
(本例主要考察学生对概念、定理及推论的理解程度,不要求做在本上,只需口答即可)
(本例要求学生说出解题思路,教师点到为止)
例3 一个等腰三角形的周长为18 .
(1) 已知腰长是底边长的2倍,求各边长.
(2) 其中一边长4 ,求其他两边长.
(教师的课堂教学应该是敢于放手,尽可能多地给学生创造展示自己的思维空间和时间)
例4 草原上有4口油井,位于四边形abcd的4个顶点,
如图1现在要建一个维修站h,试问h建在何处,
才能使它到4口油井的距离ha+hb+hc+hd为最小,
说明理由.
5、小结
(1)判断三条已知线段能否组成三角形
两边之差<第三边<两边之和
6、布置作业
a. 书面作业 p41#8、9
(ab+bc+cd+ad)<ac+bd<ab+bc+cd+ad
2、用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?(提示:由上面方法2,a+b+c2a 又a+b+c3a得出a的范围,所以可知最多可以由7根火柴棒组成)
等腰三角形三条边的关系篇二
一、创设生活情境,揭示课题
(课件出示:教师上班路线图)
生1:我认为老师走第二条路近,因为第一条和第三条路都是弯的,只有第二条路是直的。
生2:我也认为老师走第二条路近。
生:三角形。
师:老师走一、三两条路就好比走了三角形的两条边,而走第二条路好比走了三角形的一条边,三角形的三条边有什么关系呢?我们是否可以从三角形的三条边的关系来解释老师上班走哪条路近的问题呢?这节课,我们就来研究三角形边的关系。(板书课题:三角形边的关系)
二、开展探索活动,体验边的关系
1.发现问题。
师:老师手里有一根吸管,想把它随意剪成三段,什么是随意呢?
生1:随自己的意思,可长可短。
师:把这根吸管随意剪成三段,能围成三角形吗?
生2:能。
生3:不一定。
师:每人从材料袋中,取出一根吸管来剪一剪、围一围。
(学生活动,教师巡视了解情况,有的围成,有的围不成)
师:看来不是随意剪成三段就能围成三角形的,这里面肯定有学问,大家想研究吗?(想)那谁愿意把没围成的作品提供给大家研究?(一学生将作品呈上)
师:有谁觉得能围成,想来帮帮他?(一学生上来帮助,教师也帮助围,还是围不成)
师:怎么会围不成呢?是什么原因?请同桌同学小声商量一下。
生4:因为其中的两根吸管太短了,再长一些就围得成了。
2.进行猜想。
生1:我认为当两根吸管的长度和等于第三根时才可以围成。(板书)
生2:我认为当两根吸管的长度和大于第三根时才可以围成。(板书)
生3:我认为要随便的两根吸管的长度和都大于第三根时才可以围成。(板书:随便)
生:可以做实验来验证一下。
3.实验验证。
生1:可以量一量,剪一剪。
生2:把一根吸管对折剪开,其中的一段再平分成两段。
生3:拿三根一样长的吸管就可以了。
师:这样的话,两根吸管的长度和还等于第三根吗?
生4:大于第三根,可以用做第二个实验的材料。
师:现在就请同桌合作完成实验,特别注意是否要“随便的两根”。
(学生实验,教师巡视指导)
师:实验结束了,我们来开个实验结果发布会吧!谁愿意第一个上来发布实验结果。
生5:我们做第一个实验。先挑选两根一样长的吸管,并把其中一根平均剪成两段,我们发现两根吸管的长度和等于第三根时不能围成三角形。(学生边说边演示围的过程)
师:大家的实验结果与他们一样吗?
生6:我们的实验结果是:两根吸管的长度和等于第三根时能围成三角形。(学生上台演示围的过程)
生7:老师,他们的实验材料有问题,两根吸管的长度和已经大于第三根了,所以这个实验的结果是错的。
师:数学是非常严谨的学科,来不得半点马虎,我们一定要认真仔细。
生8:老师,我们的实验结果也是围成的。(学生上台演示围的过程)
师:对于他们这一组的实验情况,同学们有什么想说的吗?
生9:老师,他们在围的时候,两根吸管的端点根本没有接触,其实是没有围成三角形。
师:老师请你们再试试好吗?(这一组学生按要求再试了一次,果然围不成)
师:现在你们想重新发布实验结果吗?
生10:两根吸管的长度和等于第三根时不能围成三角形。
师:虽然这组同学的实验有问题,但他们敢于发表自己的观点来解决疑问,学习就是要有这种精神才会进步。
师:谁来发布第二个实验结果?
生11:当两根吸管的长度和大于第三根时可以围成三角形。(学生边说边演示围的过程,大部分学生表示赞同)
生12:我觉得你说的不对。这是我开始没有围成三角形的那三根吸管,其中一根短的吸管与一根长的吸管的长度和也是大于第三根的,可是却围不成三角形。所以,要随便的两根吸管的长度和都大于第三根时才可以围成三角形。(全班学生都赞同他的想法)
生13:任何两根吸管的长度和大于第三根时,可以围成三角形。
师:我们可以把“随便”、“任何”说成“任意”。(板书:任意)
4.得出结论。
师:那么,对于已经围成的三角形,是否意味着任意两边的和都大于第三边呢?请大家拿出课前画好的三角形量一量、算一算。
生1:我量出三角形的三条边分别是3厘米、2厘米、2.6厘米,经过计算发现,三角形任意两边的和都大于第三边。(全班学生同意他的发现)
师:同学们,通过我们的实验验证,你能得出三角形边的关系吗?
生2:三角形任意两边的和大于第三边。(板书)
三、应用知识,解决问题
1.教师上班路线问题。
生1:老师走第一条和第三条路好比走了三角形的两条边,而走第二条路好比走了三角形的一条边,因为三角形任意两边的和大于第三边,所以走第二条路是最近的。
师:看来,生活中的数学问题还真不少,我们可以用学到的知识解决生活中的数学问题。
2.小明、小华四人小组正在开展学习活动,让我们也一起参加吧!
下面四组小棒能围成三角形吗?
(1)出示“1厘米、2厘米、3厘米”的一组小棒。
师:这组小棒能围成三角形吗?
生1:不能。因为1厘米加2厘米等于3厘米,两根小棒的长度和等于第三根,所以这组小棒围不成三角形。
师:1厘米加3厘米大于2厘米,怎么会围不成呢?
生2:要任意两根小棒的长度和大于第三根才行,只要有两根小棒的长度和不大于第三根就不能围成三角形。
(2)出示“2厘米、4厘米、5厘米”的一组小棒。
师:这组小棒能围成三角形吗?
生3:能围成三角形。因为2厘米加4厘米大于5厘米,2厘米加5厘米大于4厘米,4厘米加5厘米大于2厘米,所以这组小棒能围成三角形。
师:大家的想法都跟他一样吗?
生4:我觉得太麻烦了,只要算最短的两根小棒的长度和是否大于第三根就行了。
师:说说你的理由。
生4:因为如果连较短的两根小棒的长度和也大于第三根,那么最长与最短的小棒长度和、较长两根小棒的长度和肯定大于第三根。
师:谢谢你找到这么好的判断方法,我们就用这个方法来判断以下三组线段能否围成三角形。(题略)
3.蚂蚁搬家路线问题。
师:同学们的本领越来越大,蚂蚁要请我们去帮忙了。原来蚂蚁正从低处往高处搬家,搬着搬着就吵了起来,都说自己搬家走的是最近的一条路,我们给它们当裁判好吗?请大家仔细观察。(课件演示四只蚂蚁爬的路线)
师:谁来判断一下呢?
生1:我说是1号蚂蚁爬的路最近。
生2:我说是2号蚂蚁爬的路最近。
生3:我说是1号和4号蚂蚁爬的路最近。
……
师:为了慎重起见,我看还是利用老师提供给大家的立方体模型,四人小组合作探究。(学生合作,教师巡视指导)
生4:我觉得应该是3号蚂蚁爬的路最近。
生5:我还是觉得2号蚂蚁爬的路最近。
师:老师发现有一组同学把立方体模型打开来观察,我们也来试一试。
生6:老师,是3号蚂蚁爬的路最近。
师:谁能用今天学到的知识来解释呢?
生7:我们把立方体模型打开后,发现1号、2号和4号蚂蚁爬的路相当于三角形的两条边,而3号蚂蚁爬的路相当于三角形的一条边,所以3号蚂蚁爬的路最近。
(教师利用课件在大屏幕上演示)
4.寻找合适的小棒问题。
生1:3厘米。
生2:7厘米。
生3:6厘米。
……
师:有这么多种答案,你能用一句话或一种表示方法来概括一下吗?同桌同学商量—下。
生4:一定要大于2厘米,这样它与3厘米加起来就大于5厘米了。
生5:我有补充。这根小棒的长度不但要大于2厘米,还要小于8厘米。如果是8厘米也不行,因为3厘米加5厘米等于8厘米。
师:谢谢你们替老师想得这么周到,选择小棒的长度肯定在2厘米到8厘米之间。
四、课堂小结,课外延伸
生2:我知道可以用猜想、实验的方法来学习数学知识。
……
师:同学们确实学到了很多本领。老师把这个游戏的网址告诉大家,在这个网站里有许多跟学习配套的游戏,既好玩还可以提高数学能力,请同学们课外去试一试。(板书:略)
等腰三角形三条边的关系篇三
(1)知识结构
(2)重点、难点分析
2、教法建议
(1)强化能力
(2)主动获取
(4)加深理解
目标:
(2)弄清三角形按边的相等关系的分类;
(4)通过三角形三边关系定理的学习,培养学生转化的能力;
用具:直尺、微机
方法:谈话、探究式
过程:
1、阅读新课,回答问题
先让学生阅读教材的第一部分,然后回答下列问题:
(1)这一部分教材中的数学概念有哪些?(指出来并给予解释)
(2)等腰三角形与等边三角形有什么关系?
估计有的学生可能把等腰三角形和等边三角形看成独立的两类.
(3)写出三角形按边的相等关系分类的情况.
(要求学生之间可互相补充,从一开始就鼓励双边交流与多边交流)
2、发现并推导出三边关系定理
问题1:用长度为4cm、 10cm 、16cm的线绳(课前准备好的)能否搭建一个三角形?(让学生动手操作)
问题2:你能解释上述结果的原因吗?
定理:三角形两边的和大于第三边
(发现过程采用小步子原则,让学生在不知不觉中发现数学中的真理)
3、导出三边关系定理的推论及其它两种方法
(给每一个学生表现个人数学语言表达才能的机会)
能否简化上面定理及推论?从而得到如下两种判定方法:
4、三角形三边关系定理及推论的应用
例1 判断题:(出示投影)
(2)三角形可分为不等边三角形、等腰三角形和等边三角形
(3)已知三线段 满足 ,那么 为边可构成三角形
(本例主要考察学生对概念、定理及推论的理解程度,不要求做在本上,只需口答即可)
(本例要求学生说出解题思路,点到为止)
例3 一个等腰三角形的周长为18 .
(1) 已知腰长是底边长的2倍,求各边长.
(2) 其中一边长4 ,求其他两边长.
(数学的课堂应该是敢于放手,尽可能多地给学生创造展示自己的思维空间和时间)
例4 草原上有4口油井,位于四边形abcd的4个顶点,
如图1现在要建一个维修站h,试问h建在何处,
才能使它到4口油井的距离ha+hb+hc+hd为最小,
说明理由.
5、小结
(1)判断三条已知线段能否组成三角形
两边之差<第三边<两边之和
6、布置作业
a. 书面作业 p41#8、9
(ab+bc+cd+ad)<ac+bd<ab+bc+cd+ad
2、用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?(提示:由上面方法2,a+b+c2a 又a+b+c3a得出a的范围,所以可知最多可以由7根火柴棒组成)
设计:
等腰三角形三条边的关系篇四
1.三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2.三角形外心o、重心g和垂心h三点共线,且og︰gh=1︰2。(此直线称为三角形的欧拉线(euler line))
3.垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4.垂心分每条高线的两部分乘积相等。
3、 垂心h关于三边的对称点,均在△abc的外接圆上。
4、 △abc中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且ah·hd=bh·he=ch·hf。
5、 h、a、b、c四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。
6、 △abc,△abh,△bch,△ach的外接圆是等圆。
等腰三角形三条边的关系篇五
1、教材分析
(1)知识结构
(2)重点、难点分析
2、教法建议
(1)强化能力
(2)主动获取
由定理获得了:判断三条线段构成一个三角形的一种方法,除了这一种方法外,是否还有其它的判断方法呢?从而激荡起学生思维浪花:方法是什么呢?学生最初可能很快得到“推论”,此时瓜熟蒂落,顺理成章地引出教材中的推论.在此基础上,让学生通过讨论,简化上述两种方法,由此得到下面两种方法.这里,学生若感到困难,教师可适当做提示.方法3:已知线段 , ( ),若第三条线段c满足 - 2a 又a+b+c3a得出a的范围,所以可知最多可以由7根火柴棒组成)
等腰三角形三条边的关系篇六
(1)知识结构
(2)重点、难点分析
2、教法建议
(1)强化能力
(2)主动获取
(4)加深理解
(2)弄清三角形按边的相等关系的分类;
:直尺、微机
:谈话、探究式
1、阅读新课,回答问题
先让学生阅读教材的第一部分,然后回答下列问题:
(1)这一部分教材中的概念有哪些?(指出来并给予解释)
(2)等腰三角形与等边三角形有什么关系?
估计有的学生可能把等腰三角形和等边三角形看成独立的两类.
(3)写出三角形按边的相等关系分类的情况.
教师最后板书给出.
(要求学生之间可互相补充,从一开始就鼓励双边交流与多边交流)
2、发现并推导出三边关系定理
问题1:用长度为4cm、 10cm 、16cm的线绳(课前准备好的)能否搭建一个三角形?(让学生动手操作)
问题2:你能解释上述结果的原因吗?
定理:三角形两边的和大于第三边
(发现过程采用小步子原则,让学生在不知不觉中发现中的真理)
3、导出三边关系定理的推论及其它两种方法
(给每一个学生表现个人语言表达才能的机会)
能否简化上面定理及推论?从而得到如下两种判定方法:
4、三角形三边关系定理及推论的应用
例1 判断题:(出示投影)
(2)三角形可分为不等边三角形、等腰三角形和等边三角形
(3)已知三线段 满足 ,那么 为边可构成三角形
(本例主要考察学生对概念、定理及推论的理解程度,不要求做在本上,只需口答即可)
(本例要求学生说出解题思路,教师点到为止)
例3 一个等腰三角形的周长为18 .
(1) 已知腰长是底边长的2倍,求各边长.
(2) 其中一边长4 ,求其他两边长.
(教师的课堂教学应该是敢于放手,尽可能多地给学生创造展示自己的思维空间和时间)
例4 草原上有4口油井,位于四边形abcd的4个顶点,
如图1现在要建一个维修站h,试问h建在何处,
才能使它到4口油井的距离ha+hb+hc+hd为最小,
说明理由.
5、小结
(1)判断三条已知线段能否组成三角形
两边之差<第三边<两边之和
6、布置作业
a. 书面作业 p41#8、9
(ab+bc+cd+ad)<ac+bd<ab+bc+cd+ad
2、用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?(提示:由上面方法2,a+b+c2a 又a+b+c3a得出a的范围,所以可知最多可以由7根火柴棒组成)