最新高中数学教学简案(大全五篇)
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
高中数学教学简案篇一
其实很多同学在平时学习中也重视课本,概念公式也记住了但是任然感觉学习没有多大效果,还不如多做两道题目有意义,可是做题有无从思考,于是陷入了一个死循环。那么课本该怎么学呢?
①概念公式的拓展以及知识点之间的联系
核心是概念的外延和概念之间的联系,大家知道一般概念定理基本可以分成四块:文字+图形+式子+运算,而一般的题目也是由这四块文字+图形+式子+运算构成的,这就是解题与课本学习之间的对应的地方,所以概念学习就要从这四个方面入手挖掘突破,对于相关的学习挖掘方法我们给大家通过函数单调性做了一个简单示范,可参见樊瑞军相关视频讲解。
②课本题型归纳
大家知道高中数学的课本题目根据难易程度有a,b两组,这些题目都是经过专家组慎重选择的,并不是胡乱选择的,而且高考试题的编制基本是通过课本深度改编的,所以我们在学习过程中首先要进行题型方面的归纳梳理,掌握这些题目的深层含义,并在后续的练习中不断深化和补充题型,那么所谓的基础题型基本就没有问题了。这就是课本学习中的第二个突破口基础题型掌握,对于题型的梳理方法我们通过必修二直线与圆这部分给大家做了详细示范,详细可参见视频讲解。
③运算提升
运算是高中数学解题必须的一个过程,而且会直接关系到考试成绩的好坏,但是运算基本不会在课本直接呈现,而是要通过解题不断归纳总结梳理,樊瑞军认为高中数学运算主要分四块:
1、高中数学基本式子变形处理如整式类,分式类,根式类等;
2、初高中各类方程及方程组突破;
3、各类简单,复杂及含参不等式突破;
4、特殊类式子处理。
④图形突破
图形特别是函数图形不仅在高考的选择题中直接考察更是解答题中必备的,但高考的考察一般都要高于课本,这就需要在课本学习的基础上进行拓展,图形突破主要包括画图,认识图形,图形拓展方法,图形处理及图形计算五个方面。
考试层面
一般的考试试卷和高考真题都是我们学习最好的积累归纳素材,考试试卷不仅能帮助我们把握学习方向,更能够检查学习效果。
高中数学的题目数量非常庞大,要想单纯通过做题突破高考,对于绝大多数考生来说确实难以实现,随着高考的改革,高考已把考查的'重点放在创造型、能力型的考查上,因此要精做习题,学会选择,有助于判断高考题目与平时常见题目的异同,增强判断题目信度的能力,在遇到即将来临的期中期末考试和未来的高考中哪些内容是高频命题点,哪些是冷门的,有哪些基本题型,一本书学完了哪些还没有掌握好都要有一个大致标记,以便于后续继续学习归纳。当你做完一道习题后可以思考:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?
高中数学的题目数量非常庞大,要想单纯通过做题突破高考,对于绝大多数考生来说确实难以实现,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上,因此要精做习题,学会选择,有助于判断高考题目与平时常见题目的异同,增强判断题目信度的能力,在遇到即将来临的期中期末考试和未来的高考中哪些内容是高频命题点,哪些是冷门的,有哪些基本题型,一本书学完了哪些还没有掌握好都要有一个大致标记,以便于后续继续学习归纳。当你做完一道习题后可以思考:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?
不论我们是高一还是高二甚至是高三,高考都是我们最后的冲刺的目标,所以我们在平时的学习过程中要始终面向高考,经常做高考题目,因为高考真题在考查知识点时的切入点,综合程度以及题型与平时的练习题还是有一道差异,而且能帮助我们正确地的掌握高考知识点的难度和基本题型。我们平时的复习资料中,有相当的习题已超出高考难度或者与高考方向偏离较大,针对这些题目我们可以舍弃,而集中精力突破真正我们该突破的内容。
学习数学核心在于如何思考,重视老师对该题目的分析和归纳,然而有很多同学往往忽视问题的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。听课虽然认真,但费力,听完后满脑子的计算过程,支离破碎。所以当教师解答习题时,学生要重视问题的思考分析。另外,当题目的答案给出时,并不代表问题的解答完毕,还要花一定的时间认真总结、归纳理解。要把这些解题策略全部纳入自己的脑海成为永久地记忆,变为自己解决这一类型问题的经验和技能。同时也解决了学生中会听课而不会做题目的坏毛病。
对于每一次考试和单元模拟要积累一定的考试经验,掌握一定的考试技巧,在每一次考试中要锻炼自己的承受能力、接受能力、解决问题以及应对一些突发情况等综合能力。只有在平时的考试中不断总结,那么在高考的考场上就会得心应手,避免考试发挥失常等的发生。
高中数学考试中的选择题、填空题是基础,共76分是整个考试得分的基础,在平时学习过程中不但要在会接的基础上提高解题速度,还要归纳总结选择题的热门题型,解题技巧等。
选择题方法技巧主要通过选项布局特征,选择题快速运算技巧,选择题题目特征与核心解法,选择题中的结论这四个方面进行归纳突破。
对于解答题而言高考的题型以及命题方式等都是非常成熟的,要在平时学习中对于解答题中的一般思考方法,热门题型,基础知识点,体现的基本运算,涵盖的基本图形以及书写要点要求等六个方面进行归纳,对于解题思考,运算,图形等相关方面我们在前面都做了一些分析,我们在后面将继续给大家总结归纳,相关可关注樊瑞军微信公众号或者个人微信号,数学学科是能在短时间内提高成绩的一门学科,数学是高考中三科综合科之中一门拉开综合成绩的重要学科,学数学要重视方法,不能盲目随波逐流。
学好数学要制定好计划,不但要有高中三年的计划,也要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,不要急于求成每一天甚至一星期全面突破一个考点,研究该知识点考查的不同侧面、不同角度以及高考的难度,不断地归纳、反思、回顾,集中精力提前突破高考中的常考点和重难点。
预习
如果你想把数学学好,单纯地做学校发的资料是远远不够的。去学校旁边买一本侧重讲解的参考书。在老师讲课之前,先把课本中要学习的内容看一遍(用心看),定义、公式可能记不住对吗?对,看着写着,一遍不行再来一遍,把这些基础弄清楚为止。之后看你买的参考书,这比课本上所讲解的又深了一个层次,每讲解一个知识点,都会有一两个例题。看完后,把课本、参考书上面的知识点再回顾一遍,做课本后面的习题。
听课
你的预习基本可以让你明白90%了,至于课堂,有的放矢吧。你的选择有很多,如果你的知识点掌握的已经很好,你可以再进行回顾,也可以自己找题做;如果你的知识点掌握的不是太好,你可以跟着老师再把知识点记忆一下。当老师拓展新的知识点时要认真听,再听一下,加深理解。
复习
对于各科而言,复习都很重要。拿数学来说,好多同学认为就是不断的刷题。其实不然,当你要做课后习题的时候,首先应先温习教材知识点,之后看你的课本后面是否有做错的题目,如果有,再做一遍,最后就是找题做了。
高中数学教学简案篇二
1、结合实际问题情景,理解分层抽样的必要性和重要性;
2、学会用分层抽样的方法从总体中抽取样本;
3、并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。
通过实例理解分层抽样的方法。
分层抽样的步骤。
一、问题情境
1、复习简单随机抽样、系统抽样的概念、特征以及适用范围。
2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?
二、学生活动
能否用简单随机抽样或系统抽样进行抽样,为什么?
指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。
由于样本的容量与总体的个体数的比为100∶2500=1∶25,
所以在各年级抽取的个体数依次是。即40,32,28。
三、建构数学
1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。
说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;
②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。
2、三种抽样方法对照表:
类别
共同点
各自特点
相互联系
适用范围
简单随机抽样
抽样过程中每个个体被抽取的概率是相同的
从总体中逐个抽取
总体中的个体数较少
系统抽样
将总体均分成几个部分,按事先确定的规则在各部分抽取
在第一部分抽样时采用简单随机抽样
总体中的个体数较多
分层抽样
将总体分成几层,分层进行抽取
各层抽样时采用简单随机抽样或系统
总体由差异明显的几部分组成
3、分层抽样的步骤:
(1)分层:将总体按某种特征分成若干部分。
(2)确定比例:计算各层的个体数与总体的个体数的比。
(3)确定各层应抽取的样本容量。
(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本。
四、数学运用
1、例题。
例1(1)分层抽样中,在每一层进行抽样可用_________________。
(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;
②某班期中考试有15人在85分以上,40人在60-84分,1人不及格。现欲从中抽出8人研讨进一步改进教和学;
③某班元旦聚会,要产生两名“幸运者”。
对这三件事,合适的抽样方法为
a、分层抽样,分层抽样,简单随机抽样
b、系统抽样,系统抽样,简单随机抽样
c、分层抽样,简单随机抽样,简单随机抽样
d、系统抽样,分层抽样,简单随机抽样
例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:
很喜爱
喜爱
一般
不喜爱
电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?
解:抽取人数与总的比是60∶12000=1∶200,
则各层抽取的人数依次是12.175,22.835,19.63,5.36,
取近似值得各层人数分别是12,23,20,5。
然后在各层用简单随机抽样方法抽取。
答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人
数分别为12,23,20,5。
说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值。
(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名。为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本。
分析:(1)总体容量较小,用抽签法或随机数表法都很方便。
(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样。
(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法。
五、要点归纳与方法小结
本节课学习了以下内容:
1、分层抽样的概念与特征;
2、三种抽样方法相互之间的区别与联系。
高中数学教学简案篇三
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与 、 、 终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。
本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。
(1)基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;
(2)能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;
(3)创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;
(4)个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。
1.教学重点
理解并掌握诱导公式。
2.教学难点
正确运用诱导公式,求三角函数值,化简三角函数式。
高中数学优秀教案高中数学教学设计与教学反思
“授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析。
1.教法
数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。
在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。
2.学法
“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题。
在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题 简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。
3.预期效果
本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。
(一)创设情景
1.复习锐角300,450,600的三角函数值;
2.复习任意角的三角函数定义;
3.问题:由xx,你能否知道sin2100的值吗?引如新课。
设计意图
高中数学优秀教案 高中数学教学设计与教学反思。
自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。
(二)新知探究
1. 让学生发现300角的终边与2100角的终边之间有什么关系;
2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;
2100与sin300之间有什么关系。
设计意图:由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫。
(三)问题一般化
探究一
1.探究发现任意角的终边与的终边关于原点对称;
2.探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;
3.探究发现任意角与的三角函数值的关系。
设计意图:首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进。
(四)练习
利用诱导公式(二),口答三角函数值。
喜悦之后让我们重新启航,接受新的挑战,引入新的问题。
(五)问题变形
由sin3000= -sin600 出发,用三角的定义引导学生求出 sin(-3000),sin150 0值,让学生联想若已知sin3000= -sin600 ,能否求出sin(-3000),sin150 0)的值。
高中数学教学简案篇四
【知识与技能】
在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+dx+ey+f=0表示圆的条件。
【过程与方法】
通过对方程x+y+dx+ey+f=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。
【情感态度与价值观】
渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
【重点】
掌握圆的一般方程,以及用待定系数法求圆的一般方程。
【难点】
二元二次方程与圆的一般方程及标准圆方程的关系。
(一)复习旧知,引出课题
1、复习圆的标准方程,圆心、半径。
2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?
高中数学教学简案篇五
1.明确等差数列的定义。
2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题。
3.培养学生观察、归纳能力。
1. 等差数列的概念;
2. 等差数列的通项公式;
等差数列“等差”特点的理解、把握和应用;
投影片1张;
(i)复习回顾
师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)
(ⅱ)讲授新课
师:看这些数列有什么共同的特点?
1,2,3,4,5,6; ①
10,8,6,4,2,…; ②
生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)
对于数列②-2n(n≥1)(n≥2)
对于数列③(n≥1)(n≥2)
共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。
一、定义:
等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2,。
二、等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:
若将这n-1个等式相加,则可得:
即:即:即:……
由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)
数列②:(n≥1)
数列③:(n≥1)
由上述关系还可得:即:则:=如:三、例题讲解
例1:(1)求等差数列8,5,2…的第20项
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
(ⅲ)课堂练习
生:(口答)课本p118练习3
(书面练习)课本p117练习1
师:组织学生自评练习(同桌讨论)
(ⅳ)课时小结
师:本节主要内容为:①等差数列定义。
即(n≥2)
②等差数列通项公式 (n≥1)
推导出公式:
(v)课后作业
一、课本p118习题3.2 1,2
二、1.预习内容:课本p116例2p117例4
2.预习提纲:
①如何应用等差数列的定义及通项公式解决一些相关问题?
②等差数列有哪些性质?