最新17.1勾股定理说课稿 勾股定理说课稿一等奖(6篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
17.1勾股定理说课稿 勾股定理说课稿一等奖篇一
勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:
1、理解并掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、培养学生观察、比较、分析、推理的能力。
4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
勾股定理的证明和应用。
勾股定理的证明。
教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:
以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
:本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:
1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。
2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。
教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。
2、教师引导学生按照要求进行拼图,观察并分析;
(1)这两个图形有什么特点?
(2)你能写出这两个图形的面积吗?
(3)如何运用勾股定理?是否还有其他形式?
这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。
1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。
2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
17.1勾股定理说课稿 勾股定理说课稿一等奖篇二
勾股定理就就是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它就就是直角三角形的一条非常重要的性质,就就是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,就就是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:
1、理解并掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、培养学生观察、比较、分析、推理的能力。
4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
教学重点:勾股定理的证明和应用。
教学难点:勾股定理的证明。
教法和学法就就是体现在整个教学过程中的,本课的教法和学法体现如下特点:
1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:
(一)创设情境 以古引新
1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾就就是3,股就就是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。
2、就就是不就就是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。
(二)初步感知 理解教材
教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
(三)质疑解难 讨论归纳
1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。
2、教师引导学生按照要求进行拼图,观察并分析;
(1)这两个图形有什么特点?
(2)你能写出这两个图形的面积吗?
(3)如何运用勾股定理?就就是否还有其他形式?
这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。
(四)巩固练习 强化提高
1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。
2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
(五)归纳总结 练习反馈
引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
17.1勾股定理说课稿 勾股定理说课稿一等奖篇三
一、说教材
(一)教材分析
本节内容选自人教版八年级数学下册第17章第二节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判定定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法来证明几何问题的思想,为将来学习解析几何埋下了伏笔。
(二)教学目标
根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。
知识技能:
理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形。
了解逆命题的概念,以及原命题为真时,它的逆命题不一定为真。
过程方法:
1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程
2、通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用
3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
情感态度:
在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神
(三)学情分析
尽管已到初二下学期的学生知识增多,能力增强,但思维的局限性还很大,能力之间也有差距,而利用“构造法”证明勾股定理的逆定理学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,而勾股定理逆定理的应用是本节重点
重点:勾股定理逆定理的应用
难点:勾股定理逆定理的证明
二、说教法学法
数学课程不仅注重知识、技能,以及情感意识和创造力的培养,同样注重社会实践和体验,教学要遵循以教师为主导,学生为主体的原则,因此我采用的教法学法如下:
在教学中以小组合作,自主探索为形式,采用“提问引导法”,通过“提出疑问”来启发诱导学生,让学生自觉主动地去分析问题、解决问题,学生在操作过程中不断“发现问题——解决问题”,变学生“学会”为“会学”.这样不仅使学生学习目标明确,而且能够培养他们的`合作精神和自主学习的能力。根据学法指导自主性和差异性原则,本节我主要采用自主探究学习法,通过设计一系列问题,引导学生主动探究新知,体现学习自主性,从不同层面发掘不同学生的不同能力。
三、说教学准备
1、多媒体教学课件
2、纸片、直尺、圆规等
3、对学生事先分组
四、说教学过程
根据本课教学内容以及数学课程学科特点,结合八年级学生的实际认知水平,我设计了如下六个教学环节:
(一)复习提问、引入新课
问题1:前面我们学习了勾股定理,你能说出它的题设和结论吗?
问题2:若一个三角形三边具有a2+b2=c2,能否确定这个三角形是直角三角形?
(二)动手操作、观察猜想
探究一:分组做实验
第一组同学每人画一个边长为3cm、4 cm、5 cm的三角形;
第二组同学每人画一个边长为2.5 cm、6 cm、7.5 cm的三角形;
第三组同学每人画一个边长为4 cm、7.5 cm、8.5 cm的三角形;
第四组同学每人画一个边长为2 cm、5 cm、6 cm的三角形。
问题1:观察这些三角形,它们分别是什么形状呢?并测量验证
问题2:前三个三角形三边具有怎样的关系呢?
问题3: 结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?
学生活动:动手、观察、测量、思考、猜想
设计意图:由特殊到一般,归纳猜想得出勾股定理的逆命题,既培养学生动手操作能力和寻求解决数学问题的一般方法,又体验了数与形的内在联系。
(三)实践验证,归纳证明
教师出示问题
问题1:对于一个真命题,它的逆命题是否也为真?学生举例说明。
勾股定理的逆命题是否也正确?怎么证明?
问题2:三边长度分别3cm,4cm,5cm的三角形与以3cm,4cm为直角边的直角三角形之间有什么关系,你是怎样得到的?(出示纸片)
问题3:你能否借鉴问题2的方法来证明勾股定理的逆命题呢?
学生活动:观察思考,动手操作,分组讨论,交流合作(教师引导学生主动探索,在师生互动中完成证明,得到勾股定理的逆定理)
设计意图:把“构造直角三角形”这一方法的获取过程交给学生,让他们在不断的尝试、探究的过程中,亲身体验参与发现的愉悦,有效地突破本节的难点。
17.1勾股定理说课稿 勾股定理说课稿一等奖篇四
尊敬的各位评委、老师,您们好。
我是临沂市苍山县实验中学的**。今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。
(一) 教材的地位与作用
从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生们认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;
勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生们热爱祖国悠久文化的情感。
(二)重点与难点
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
教学方法 叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此老师们利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导 为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
我国的数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
第一步 情境导入 古韵今风
给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二步 追溯历史 解密真相
勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此教师应引导学生利用“割”和“补”的方法求正方形c的面积,为下一步探索复杂图形的面积做铺垫。
突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。教师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面 “勾三股四弦五”的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形c的面积时,学生将展示“割”的方法, “补”的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。
使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当∠α为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。
以上三个环节层层深入步步引导,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。
感性认识未必是正确的,推理验证证实我们的猜想。
第三步 推陈出新 借古鼎新
教材中直接给出“赵爽弦图”的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生是学习的主体,教师是组织者、引导者与合作者”这一教学理念。学生会发现两种证明方案。
方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。板书勾股定理,进而给出字母表示,培养学生的符号意识。
教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。利用勾股树动态演示,让学生欣赏数学的精巧、优美。
第四步 取其精华 古为今用
我按照“理解—掌握—运用”的梯度设计了如下三组习题。
(1)对应难点,巩固所学;(2)考查重点,深化新知;(3)解决问题,感受应用
第五步 温故反思 任务后延
在课堂接近尾声时,我鼓励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。
然后布置作业,分层作业体现了教育面向全体学生的理念。
在探究活动中,教师评价、学生自评与互评相结合,从而体现评价主体多元化和评价方式的多样化。
本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。
采用 “七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。
以上就是我对《勾股定理》这一课的设计说明,有不足之处请评委老师们指正,谢谢大家。
17.1勾股定理说课稿 勾股定理说课稿一等奖篇五
各位考官,大家好,我是x号考生,今天我说课的内容是《勾股定理的逆定理》。根据新课程标准,我将以教什么,怎么教,为什么这么教为思路开展我的说课,首先,我先来说说我对教材的理解。
教材分析是上好一堂课的前提条件,在上好一堂课之前,我首先谈一谈对教材的理解。
“勾股定理的逆定理”一节?是在上节“勾股定理”之后继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化。勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。
中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。学生此前学习了三角形有关的知识,掌握了直角三角形的性质和勾股定理,学生在此基础上学习勾股定理的逆定理可以加深理解。
根据数学课标的要求和教材的具体内容结合学生实际我确定了如下教学目标。
【知识与技能】
理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。利用勾股定理的逆定理判定一个三角形是不是直角三角形。
【过程与方法】
通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
【情感态度与价值观】
通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
重点:勾股定理逆定理的应用;
难点:探究勾股定理逆定理的证明过程。
科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。基于此,我准备采用的教法是讲练结合法,小组讨论法。
(一)导入新课
在导入新课环节,我会采用温故知新的导入方法,先让学生回顾勾股定理有关知识,并引入本节课的课题——勾股定理逆定理。
【设计意图】通过复习回顾能很好地将新旧知识联系起来,使学生形成对知识的系统的认识。并且由旧知开始,能很好地帮助学生克服畏难情绪。
(二)探究新知
一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题去提示本节课的探究宗旨,演示古代埃及人把一根长绳打上等距离的13个结,然后便得到一个直角三角形这是为什么?这个问题一出现,马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视激发了学生的兴趣,因而全身心地投入到学习中来创造了我要学的气氛,同时也说明了几何知识来源于实践不失时机地让学生感到数学就在身边。
因为几何来源于现实生活,对初二学生来说选择适当的时机让他们从个体实践经验中开始学习可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。
这样设计是因为勾股定理逆定理的证明方法是学生第一次见,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。
接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等顺利作出了辅助直角三角形,整个证明过程自然无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程。这样学生不是被动接受勾股定理的逆定理?因而使学生感到自然、亲切。学生的学习兴趣和学习积极性有所提高,使学生确实在学习过程中享受到自我创造的快乐。
在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍充分发挥教科书的作用养成学生看书的习惯这也是在培养学生的自学能力。
(三)巩固提高
本着由浅入深的原则安排了三个题目。演示第一题比较简单(判断下列三条线段组成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)让学生口答让所有的学生都能完成。
第二题则进了一层用字母代替了数字,绕了一个弯,既可以检查本课知识又可以提高灵活运用以往知识的能力。
思维提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈调节教法同时注意加强有针对性的个别指导把发展学生的思维和随时把握学生的学习效果结合起来。
(四)小结作业
在小结环节,我会随机询问学生勾股定理的逆定理是什么?如果判断一个三角形是不是直角三角形,以及勾股定理的逆定理的应用需要注意点什么等问题,先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法培养能力方面比如辅助线的添法。
设计意图:这样设计可以帮助学生以反思的形式回忆本节课所学的知识,加深对知识的印象,有利于学生良好的数学学习习惯的养成。
由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。第一组是基础题,我会用ppt出示关于勾股定理的逆定理的计算题目,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。第二组是开放性题目,让学生课后思考总结一下判定一个三角形是直角三角形的方法。
17.1勾股定理说课稿 勾股定理说课稿一等奖篇六
1. 教材的地位和作用
华师大版八年级上直角三角形三边关系是学生在学习数的开方和整式的乘除后的一段内容,它是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个直角三角形三条边之间的数量关系,为后面解直角三角形的作好铺垫,它也是几何中最重要的定理,它将形和数密切联系起来,在数学的发展中起着重要的作用。
因此他的教育教学价值就具体体现在如下三维目标中:
知识与技能:
1、经历勾股定理的探索过程,体会数形结合思想。
2、理解直角三角形三边的关系,会应用勾股定理解决一些简单的实际问题。
过程与方法:
1、经历观察—猜想—归纳—验证等一系列过程,体会数学定理发现的过程,由特殊到一般的解决问题的方法。
2、在观察、猜想、归纳、验证等过程中培养学生的数学语言表达能力和初步的逻辑推理能力。
情感、态度与价值观:
1、通过对勾股定理历史的了解,感受数学文化,激发学习兴趣。
2、在探究活动中,体验解决问题方法的多样性,培养学生的合作意识和然所精神。
3、让学生通过动手实践,增强探究和创新意识,体验研究过程,学习研究方法,逐步养成一种积极的生动的,自助合作探究的学习方式。
由于八年级的学生具有一定分析能力,但活动经验不足,所以
本节课教学重点:勾股定理的探索过程,并掌握和运用它。
教学难点:分割,补全法证面积相等,探索勾股定理。
要上好一堂课,就是要把所确定的三维目标有机地溶入到教学过程中去,所以我采用了“引导探究式”的教学方法:
先从学生熟知的生活实例出发,以生活实践为依托,将生活图形数学化,然后由特殊到一般地提出问题,引导学生在自主探究与合作交流中解决问题,同时也真正体现了数学课堂是学生自己的课堂。
学法:我想通过“操作+思考”这样方式,有效地让学生在动手、动脑、自主探究与合作交流中来发现新知,同时让学生感悟到:学习任何知识的最好方法就是自己去探究。
1、 故事引入新课,激起学生学习兴趣。
牛顿,瓦特的故事,让学生科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。毕达哥拉斯的发现引入新课。
2、探索新知
在这里我设计了四个内容:
①探索等腰直角三角形三边的关系
②边长为3、4、5为边长的直角三角形的三边关系
③学生画两直角边为2,6的直角三角形,探索三边的关系
④三边为a、b、c的直角三角形的三边的关系,(证明)
⑤勾股定理历史介绍,让学生体会勾股定理的文化价值。
体现从特殊到一般的发现问题的过程。
3、新知运用:
①举出勾股定理在生活中的运用。(老师讲解勾股定理在生活中的运用)
②在直角三角形中,已知∠ b=90° ,ab=6,bc=8,求ac.
③要做一个人字梯,要求人字梯的跨度为6米,高为4米,请问怎么做?
④如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.
4、小结本课:
学完了这节课,你有什么收获?
老师补充:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。数学来源于实践,而又应用于实践。解决一个问题的方法是多样性的,我们要多思考。 勾股定是数学史上的明珠,证明方法有很多种,我们将在下一节课学习它。
教学设计主要是体现从特殊到一般的知识形成过程,探索问题的设计上有点难,第二个问题应加个3,3为直角边的等腰直角三角形让学生分割或者补全,这样过度,降低3,4为直角边的探索探索;在2,6为直角边时,这个问题可以不用设计进去,就为后面的练习留足时间。探索时间较长,整个课程推行进度较慢,练习较少。
对学生的启发不够,对学生的关注不够,学生对问题的思考不能及时想出来,没有及时很好的引导,启发,应让学生多一些思考的空间,并及时交给思考的方法。学生反应不是太好,能力差,也或许是因为问题设计的较难,没有很好的体现出探究。
预期的目标没有很好的达成,学生虽然掌握了勾股定理,但探索热情没有点燃,思维能力,动手能力,探索精神没有很好的得到发展。