最新初一数学知识点上册(十二篇)
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
初一数学知识点上册篇一
⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b+a
三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c)
初一数学知识点上册篇二
1.平行四边形
2.平行四边形的性质,等腰梯形的性质与判定
1.定义:两组对边分别平行的四边形叫平行四边形
2.平行四边形的性质
(1)平行四边形的对边平行且相等;
(2)平行四边形的邻角互补,对角相等;
(3)平行四边形的对角线互相平分;
菱形的判定定理:
1.一组邻边相等的平行四边形是菱形(rhombus)。
2.对角线互相垂直的平行四边形是菱形。
矩形的性质:
①矩形的四个角都是直角.
②矩形的对角线相等.
③矩形具有平行四边形的所有性质.
一、梯形的定义、性质及判定:
1.定义:只有一组对边平行的四边形叫做梯形.两腰相等的梯形叫做等腰梯形;有一个角是直角的梯形叫做直角梯形.
【n 边形内角和公式】
n 边形内角和等于 (n-2)×180°.
【n 边形外角和定理】
n 边形的外角和等于 360°.
1.用形状、大小完全相同的三角形可以密铺.因为三角形的内角和为180°,所以,用6个这样的三角形就可以组合起来镶嵌成一个平面.
圆
1、定义:圆是到定点的距离等于定长的点的集合
2、点与圆的位置关系:
如果⊙o的半径为r,点p到圆心o的距离为d,那么
点p在圆内,则dr;
点p在圆上,则dr;
点p在圆外,则dr;反之亦成立。
初一数学知识点上册篇三
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
(2)有理数的分类:①②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数0和正整数;a>0a是正数;a<0a是负数;
a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.
数轴是规定了原点、正方向、单位长度的一条直线.
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0a+b=0a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;
(3);;
(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数>0,小数-大数<0.
乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
(1)加法的交换律:a+b=b+a;
(2)加法的结合律:(a+b)+c=a+(b+c).
减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
(1)乘法的交换律:ab=ba;
(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
(3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;
(4)据规律底数的小数点移动一位,平方数的小数点移动二位.
把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.
是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.
初一数学知识点上册篇四
1、两组对边平行的四边形是平行四边形。
2、性质:
(1)平行四边形的对边相等且平行;
(2)平行四边形的对角相等,邻角互补;
(3)平行四边形的对角线互相平分。
3、判定:
(1)两组对边分别平行的四边形是平行四边形:
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形:
(5)对角线互相平分的四边形是平行四边形。
4、对称性:平行四边形是中心对称图形。
初一数学知识点上册篇五
普查:为了一定的目的而对考察对象进行的全面调查.
总体:所要考察对象的全体称为总体
个休:组成总体的每一个考察对象称为个体.
抽样调查:从总体中抽取部分个体进行调查.
样本:总体中抽取的一部分个体叫做总体的一个样本.
样本容量:样本中个体的数目.
频数:每个对象出现的次数
频率:每个对象出现的次数与总次数的比值
初一数学知识点上册篇六
本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
1、正数(positionnumber):大于0的数叫做正数。
2、负数(negationnumber):在正数前面加上负号-的数叫做负数。
3、0既不是正数也不是负数。
4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。
数轴满足以下要求:
(1)在直线上任取一个点表示数0,这个点叫做原点(origin);
(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
(3)选取适当的长度为单位长度。
6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
8、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.
(3)一个数同0相加,仍得这个数。
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a.
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
表达式:(a+b)+c=a+(b+c)
9、有理数减法法则:减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)
10、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.
乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)
乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
表达式:a(b+c)=ab+ac
11、倒数
1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1.
12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.
13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。
根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0.
14、有理数的混合运算顺序
(1)先乘方,再乘除,最后加减的顺序进行;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即010),n是正整数)。
16、近似数(approximatenumber):
17、有理数可以写成m/n(m、n是整数,n0)的形式。另一方面,形如m/n(m、n是整数,n0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n0)表示。
初一数学知识点上册篇七
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
10.平行线:在同一平面内,不相交的两条直线叫做平行线。
11.命题:判断一件事情的语句叫命题。
12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
13.假命题:条件和结果相矛盾的命题是假命题。
14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
16.定理与性质
对顶角的性质:对顶角相等。
17.垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
19.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
20.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
21.命题的扩展
三种命题
(1)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。
(2)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。
(3)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。
四种命题的相互关系
(1)四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。
(2)四种命题的真假关系:
两个命题互为逆否命题,它们有相同的真假性。两个命题为互逆命题或互否命题,它们的真假性没有关系
命题之间的关系
(1)能够判断真假的陈述句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题。
(2)“若p,则q”形式的命题中p叫做命题的条件,q叫做命题的结论。
(3)命题的分类:
a:原命题:一个命题的本身称之为原命题,如:若x>1,则f(x)=(x-1)2单调递增。
b:逆命题:将原命题的条件和结论颠倒的新命题,如:若f(x)=(x-1)2单调递增,则x>1.
c:否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序,
如:若x小于1,则f(x)=(x-1)2不单调递增。
d:逆否命题:将原命题的条件和结论颠倒,然后再将条件和结论全否定的新命题,
如:若f(x)=(x-1)2不单调递增,则x小于1.
(4)命题的否定
命题的否定是只将命题的结论否定的新命题,这与否命题不同。
(5)4种命题及命题的否定的真假性关系
原命题和逆否命题等价,否命题和逆命题等价,命题的否定与原命题的真假性相反。
充分条件与必要条件
(1)“若p,则q”为真命题,叫做由p推出q,记作p=>q,并且说p是q的充分条件,q是p的必要条件。
(2)“若p,则q”为假命题,叫做由p推不出q,记作p≠>q,并且说p不是q的充分条件(或p是q的非充分条件),q不是p的必要条件(或q是p的非必要条件)。
充要条件
如果既有p=>q,又有q=>p,就记作p<=>q,并且说p是q的充分必要条件(或q是p的充分必要条件),简称充要条件。
如数轴所示,化简下列各数
|a|,|b|,|c|,|a-b|,|a-c|,|b+c|
解:由题知道,因为a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,
所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c
3.绝对值的性质
任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的`数是0.即:a=0<═>|a|=0;
⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;
⑶任何数的绝对值都不小于原数。即:|a|≥a;
⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;
⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;
⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;
⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)
经典考题
已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值
解:因为|a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0
所以|a+3|=0,|2b-2|=0,|c-1|=0
即a=-3,b=1,c=1
所以a+b+c=-3+1+1=-1
4.有理数大小的比较
⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;
⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数
初一数学知识点上册篇八
1、角:由公共端点的两条射线所组成的图形叫做角.
2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类
锐角 直角 钝角 平角 周角
范围 090=90 90 =180=360
5、角的比较方法
(1)度量法
(2)叠合法
6、角的和、差、倍、分及其近似值
7、画一个角等于已知角
(1)借助三角尺能画出15的倍数的角,在0~180之间共能画出11个角.
(2)借助量角器能画出给定度数的角.
(3)用尺规作图法.
8、角的平线线
定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.
图形:
符号:
9、互余、互补
(1)若2=90,则1与2互为余角.其中1是2的余角,2是1的余角.
(2)若2=180,则1与2互为补角.其中1是2的补角,2是1的补角.
(3)余(补)角的性质:等角的补(余)角相等.
10、方向角
(1)正方向
(2)北(南)偏东(西)方向
(3)东(西)北(南)方向
初一数学知识点上册篇九
1.同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。
2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3.整式的加减:有括号的先算括号里面的,然后再合并同类项。
4.幂的运算:
5.整式的乘法:
1)单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。
2)单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。
3)多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
6.整式的除法
1)单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
2)多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。
四、因式分解——把一个多项式化成几个整式的积的形式
1)提公因式法:(公因式——多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。取各项系数的最大公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。
2)公式法:a.平方差公式;b.完全平方公式
初一数学知识点上册篇十
:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1.
:几个单项式的和叫多项式。
:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
:不含字母的项叫做常数项。
(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
:
(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a.先确认按照哪个字母的指数来排列。
b.确定按这个字母向里排列,还是向外排列。
(3)整式:
单项式和多项式统称为整式。
多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。
所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。
(1)判断几个单项式或项,是否是同类项,就要掌握两个条件:
①所含字母相同。
②相同字母的次数也相同。
(2)同类项与系数无关,与字母排列的顺序也无关。
(3)所有常数项都是同类项。
初一数学知识点上册篇十一
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的关系
4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线性质
(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
初一数学知识点上册篇十二
1、单项式:表示数与字母的积的代数式。另外规定单独的一个数或字母也是单项式。
单项式中的数字因数叫做单项式的系数。注意系数包括前面的符号,系数是1时通常省略, 是系数, 的系数是
单项式的次数是指所有字母的指数的和。
2、多项式:几个单项式的和叫做多项式。 (几次几项式)
每一个单项式叫做多项式的项,注意项包括前面的符号。
多项式的次数:多项式中次数最高的项的次数。项的次数是几就叫做几次项,其中不含字母的项叫做常数项。
3、整式;单项式与多项式统称为整式。(最明显的特征:分母中不含字母)
减:①先去括号; (注意括号前有数字因数)
②再合并同类项。 (系数相加,字母与字母指数不变)
1、同底数幂相乘:底数不变,指数相加。
2、幂的乘方:底数不变,指数相乘。
3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘。
4、零指数幂:任何一个不等于0的数的0次幂等于1。 ( ) 注意00没有意义。
5、负整数指数幂: ( 正整数, )
6、同底数幂相除:底数不变,指数相减。 ( )
注意:以上公式的正反两方面的应用。
:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式。
运用乘法的分配率,把这个单项式乘以多项式的每一项。
:连同各项的符号把其中一个多项式的各项乘以另一个多项式的每一项。
两数的和乘以这两数的差,等于这两数的平方差。
即:一项符号相同,另一项符号相反,等于符号相同的平方减去符号相反的平方。
两数的和(或差)的平方,等于这两数的平方和再加上(或减去)两数积的2倍。
常见错误:
:把单项式的系数相除,相同的字母相除,只在被除式中出现的字母则连同它的指数作为商的一个因式。
:连同各项的符号,把多项式的各项都除以单项式。