数学知识点初三(十四篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
数学知识点初三篇一
抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
总体:要考察的全体对象称为总体。
个体:组成总体的每一个考察对象称为个体。
样本:被抽取的所有个体组成一个样本。
样本容量:样本中个体的数目称为样本容量。
频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
频率:频数与数据总数的比为频率。
组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。
1、数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。
(1)通过调查收集数据的一般步骤:
①明确调查问题
②确定调查对象
③选择调查方法
④展开调查
⑤记录结果
⑥得出结论
(2)收集数据常用的方法:
①民意调查:如投票选举
②实地调查:如现场进行观察、收集、统计数据
③媒体调查:报纸、电视、电话、网络等调查都是媒体调查。
2、数据的表示方法:
(1)统计表:直观地反映数据的分布规律
(2)折线图:反映数据的变化趋势
(3)条形图:反映每个项目的具体数据
(4)扇形图:反映各部分在总体中所占的百分比
(5)频数分布直方图:直观形象地反映频数分布情况
(6)频数分布折线图:在频数分布直方图的基础上,取每一个长方形上边的中点,和左右频数为零与直方图相距半个组距的两个点
3、调查方式:
(1)全面调查,优点是可靠,、真实;
(2)抽样调查,优点是省时、省力,减少破坏性;随机抽样调查具有广泛性和代表性。。
4、总体和样本:
(1)总体:要考察的所有对象
(2)个体:组成总体的每一个考察对象
(3)样本:从总体中抽出的所有实际被调查的对象组成一个样本。
(4)样本容量:样本中给个体的数目
5、组距:每个小组两个端点之间的距离
6、画直方图的一般步骤:
(1)计算最大值与最小值的差;
(2)决定组距与组数,先根据数据个数确定组距,再计算组数,
注意无论整除与否,组数总是比商的整数位数多1;
(3)确定分点,并分组;
(4)列频数分布表;
(5)绘制频数分布直方图
填空题答题技巧
要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。
对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。
解答题答题技巧
(1)仔细审题。注意题目中的关键词,准确理解考题要求。
(2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。
(3)给出结论。注意分类讨论的问题,最后要归纳结论。
(4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。
1、同号两数相加,取相同的符号,并把绝对值相加;
2、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
3、一个数与0相加,仍得这个数。
数学知识点初三篇二
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。
在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
①确定公因式。②确定商式③公因式与商式写成积的形式。
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
数学知识点初三篇三
一、整十数、整百数的除法
1.熟练在掌握整十数、整百数的除法计算。
2.知道除法算式中各部分的名称:被除数、除数、商。
3.一道除法算式能用不同的方式表示:
例:183
(1)18除以3除以的前面是被除数、除以的后面是除数
(2)3除18除的前面是除数,除的后面是被除数
(3)18被3除
辨别:30除一个数,商和余数都是2,求这个数?
(求被除数)
30除以一个数,商和余数都是2,求这个数?
(求除数)
4.了解除法是乘法的逆运算,因此一道乘法算式能写两道除法算式
例:907=6306307=906309=70
反之,乘法并不是除法的逆运算。
二、两位数或三位数被一位数除p34-42
1.横式p34、39:
两位数分拆方法:1、我们把被除数分拆成能够被除数除尽的最大整十数。
2、把剩下的整十数与个位上的数合起来再被除数去除。
因此,分拆时一般先看除数,
除数是2被除数一般可分出20、40、60、80
除数是3被除数一般可分出30、60、90
除数是4被除数一般可分出40、80
当无法分出整十数时,可按乘法口决表进行分拆,便于口算。
三位数分拆方法:先分整百的,再分整十的,最后分单个的;整百的不够分,和整十的合起来再分,整十的不够分,和单个的合起来继续分。分的时候还要考虑是否方便口算。
(注意:与两位数乘一位数横式不同的地方在于没有列出加法算式)
2.竖式:
方法:(1)从被除数的高位除起
(2)被除数最高位上的数比除数小时,就看前两位,除到哪一位,商就写在哪一位上。
(3)当十位或个位不够商1时,要用0来占位。(商中间或末尾有0的除法)
(4)余数要比除数小
(注意部分步骤可以省略)
例:p37p41例3
步骤:一商、二乘、三减、四比、五落
验算方法:通过被除数=除数商+余数来验证被除数与原题中的是否一致。验算时用竖式。
分析:第一题:商中间为0
第二题:被除数末尾是0,前面能被除尽,0应写在8的下方。
第三题:1,被除数末尾0除以任何一个数=0,个位商0
2,被除数末尾0前面能被除尽,0应写在4的下方。
第四题:少了落的步骤。
p41/例3/38072被除数中间为0,被除数最高位能被除尽,中间的0不需要落下。
3.估商是几位数:
主要看被除数的最高位和除数的关系:
如果被除数最高位除数或者=除数,被除数是几位数,商就是几位数
如果被除数最高位除数,被除数是几位数,商就比它小一位数
例:735□,要使商是两位数,除数可以填();要使商是三位数,除数可以填()。
4.被除数、除数、商、余数之间关系
(1)余数必须比除数小
例:◎□=95,□里最小填();
在一道有余数的除法里,除数是8,商是25,那么被除数最大是()。
(2)被除数=除数商+余数
除数=(被除数-余数)商
商=(被除数-余数)除数
例:28□=□3,□=()
5.商中间或末尾有0的除法:
例:3□26,要使商的末尾是0,□里可以填()。
分析:商的末尾是0,被除数个位上的数比除数小,不够商1
因此,除到被除数的十位必须除尽,没有余数。
想:3□6没有余数
例:□214,当□里填()时,商末尾有0。
分析:商的末尾是0,被除数个位上的数比除数小,不够商1
因此,除到被除数的十位必须除尽,没有余数
想:□24没有余数分两种情况:最高位比除数小时:□填1、3
最高位比除数大时:□填:5、7、9
例:6□43,要使商的中间是0,□里可以填()。
分析:商中间是0,则被除数的十位上的数比除数小,不够商1
因此,除到被除数的百位必须除尽,63=2
例:□214,当□里填()时,商中间有0。
分析:商中间是0,则被除数的十位上的数比除数小,不够商1
因此,除到被除数的百位必须除尽
想:□4没有余数□可以填4或8
5.p43除法的估算
例:1386商在20到30之间
步骤;1,根据除数找小于被除数却能被除数除尽的最大数
因此138估成1201206=20
2,另一个商比估算出的第一个商大十
因此20+10=30
(也可以根据除数找大于被除数却能被除数除尽的最小数
1806=30)
常见错误:例5255=105估算:商在104到114之间
分析:根据精确计算的结果写出的估算答数
改正:商在100到110之间。
6.除法的应用p44
做题时需要注意问题,一般情况下,余数要占一份的就加1,如讲到坐船、坐车的题目。余数不够一份的,就去尾。如讲到做裤子、扎花等问题。
辨析:8个篮球装一箱,767个篮球至少可以装几箱?
分析:7678=95箱7个
题中的至少说明余数也需要占一份7个也需要一个箱子装,因此需要加1,共有96箱。
8个篮球装一箱,767个篮球最多可以装几箱?
分析:题中的最多说明余数不需要占一份。7个没有装满一箱,因此最多可以装95箱。
7.单价、数量、总价p45、46
(1)能从题目中分析出单价、数量及总价
(2)能够根据问题,灵活应用单价数量=总价
总价数量=单价
总价单价=数量
(3)拓展:能用小数表示元、角分
例:3元:3.00元小数点左边为元,小数点右边第一位为角
第二位为分
1元5角:1.50元10元5分:10.05元
总结:小编为大家整理的小学数学知识点:三上第四单元知识点梳理相关内容大家一定要牢记,以便不断提高自己的数学成绩,祝大家学习愉快。
数学知识点初三篇四
什么叫做单项式和多项式?
不含加、减运算的整式,叫做单项式。特殊的,单独一个数或一个字母
多项式。例如:4x+7,3x2+5,6x2+7x+2等都是多项式。
约数倍数:
(1)最大公约最小公倍数(2)约数个数决定法则 (常考内容)
质数合数:
(1)质数、合数的概念和判断(2)分解质因数(重点)
余数问题:
(1)带余除式的理解和运用;(2)同余的性质和运用;(3)中国剩余定理奇偶问题:(1)奇偶与四则运算;(2)奇偶性质在实际解题过程中的应用完全平方数:(1)完全平方数的判断和性质(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)
整除问题:
(1)数的整除的特征和性质 (新初一分班常考内容)
(2)位值原理的应用(用字母和数字混合表示多位数)
这四个问题我们需要掌握到什么样的程度?
从近几年的来看,虽然一些重点中学对以上的几个问题考察较多,但是难度通常不大,中等难度题目出现的频率很高,通常在60%以上,因此我们的同学只要夯实基础,对于这样的一张新初一分班试卷的完成应该是能取得很好的成绩的。对此,酷学网给出学生建议:如果我们的孩子不是要搞竞赛,只是为了进入重点中学,中等题的掌握绝对是我们的重点,不能盲目追求难度,否则容易适得其反。
数学知识点初三篇五
一、角的定义
“静态”概念:有公共端点的两条射线组成的图形叫做角。
“动态”概念:角可以看作是一条射线绕其端点从一个位置旋转到另一个位置所形成的图形。
如果一个角的两边成一条直线,那么这个角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做钝角;大于0小于直角的角叫做锐角。
二、角的换算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、补角的概念和性质:
概念:如果两个角的和是一个平角,那么这两个角叫做互为补角。
如果两个角的和是一个直角,那么这两个角叫做互为余角。
说明:互补、互余是指两个角的数量关系,没有位置关系。
性质:同角(或等角)的余角相等;
同角(或等角)的补角相等。
四、角的比较方法:
角的大小比较,有两种方法:
(1)度量法(利用量角器);
(2)叠合法(利用圆规和直尺)。
五、角平分线:从一个角的顶点引出的一条射线。把这个角分成相等的两部分,这条射线叫做这个角的平分线。
常见考法
(1)考查与时钟有关的问题;(2)角的计算与度量。
误区提醒
角的度、分、秒单位的换算是60进制,而不是10进制,换算时易受10进制影响而出错。
【典型例题】(20xx云南曲靖)从3时到6时,钟表的时针旋转角的度数是( )
【答案】3时到6时,时针旋转的是一个周角的1/4,故是90度 ,本题选c.
数学知识点初三篇六
一、数学知识点:方阵问题
1、概念和分类
学生排队,士兵列队,横着排叫做行,竖着排叫做列。如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵。
方阵包括实心方阵和空心方阵。如果方阵排满物体,叫做实心方阵;如果方阵的中间不排物体,叫做空心方阵。而实心方阵的每一层又可以单独看成一个空心方阵,因此空心方阵的规律对它也是适用的。
2、基本规律
(1)方阵不论哪一层,每边上的人(或物)数量都相同,每向里一层,每边上的人数就少2,
四周上的人数就少8。(可应用等差数列相关知识进行解题)
(2)每层总数=[每边人(或物)数-1]×4
每边人(或物)数=每层总数÷4+1
(3)实心方阵
总人(或物)数=每边人(或物)数×每边人(或物)数
(4)空心方阵
总人(或物)数=(最外层每边人(或物)数-层数)×层数×4
总人(或物)数=(最外层人(或物)数+最内层人(或物)数)*层数/2
最外层每边数=总人(或物)数÷4÷层数+层数
二、数学知识点:鸡兔同笼
1、鸡兔同笼问题的来历
这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?
你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?
2、鸡兔同笼的解题思路
(1)砍足法
解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只).显然,鸡的只数就是35-12=23(只)了。
数学知识点初三篇七
小升初数学知识点定义定理公式:
小学数学定义定理公式
三角形的面积=底高2。公式s=ah2
正方形的面积=边长边长公式s=aa
长方形的面积=长宽公式s=ab
平行四边形的面积=底高公式s=ah
梯形的面积=(上底+下底)高2公式s=(a+b)h2
内角和:三角形的内角和=180度。
长方体的体积=长宽高公式:v=abh
长方体(或正方体)的体积=底面积高公式:v=abh
正方体的体积=棱长棱长棱长公式:v=aaa
圆的周长=直径公式:l=r
圆的面积=半径半径公式:s=r2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:s=ch=rh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:s=ch+2s=ch+2r2
圆柱的体积:圆柱的体积等于底面积乘高。公式:v=sh
圆锥的体积=1/3底面积高。公式:v=1/3sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
数学知识点初三篇八
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合
1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。
数学知识点初三篇九
(1)两个平面互相平行的定义:空间两平面没有公共点
(2)两个平面的位置关系:
两个平面平行——没有公共点;两个平面相交——有一条公共直线。
a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。
棱锥的性质:
(1)侧棱交于一点。侧面都是三角形
(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:
1、分散的人或事物聚集到一起;使聚集:紧急~。
2、数学名词。一组具有某种共同性质的数学元素:有理数的~。
3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(cantor,g、f、p、,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。
集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。集合
集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。
集合与集合之间的关系
某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。
数学知识点初三篇十
一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节
主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。
二、平面向量和三角函数
对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。
三、数列
数列这个板块,重点考两个方面:一个通项;一个是求和。
四、空间向量和立体几何
在里面重点考察两个方面:一个是证明;一个是计算。
五、概率和统计
概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……事件;独立事件和独立重复事件发生的概率。
六、解析几何
这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。
七、压轴题
同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。
数学知识点初三篇十一
重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的`证明、定积分的几何应用和物理应用。
主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。数一还要求会伯努利方程、欧拉公式等。
规律记忆:即根据事物的内在联系,找出规律性的东西来进行记忆。比如,识记长度单位、面积单位、体积单位的化法和聚法。化法和聚法是互逆联系,即高级单位的数值率=低级单位的数值,低级单位的数值÷进率=高级单位的数值。掌握了这两条规律,化聚问题就迎刃而解了。规律记忆,需要学生开动脑筋对所学的有关材料进行加工和组织,因而记忆牢固。
列表记忆:就是把某些容易混淆的识记材料列成表格,达到记忆之目的。这种方法具有明显性、直观性和对比性。比如,要识记质数、质因数、互质数这三个概念的区别,就可列成表来帮助学生记忆。
养成良好的学习数学习惯,多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法,中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
逐步形成“以我为主”的学习模式,数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
要建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
数学知识点初三篇十二
由于空集是任何非空集合的真子集,因此b=?时也满足b?a。解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
忽视集合元素的三性致误
集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
混淆命题的否定与否命题
命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
充分条件、必要条件颠倒致误
对于两个条件a,b,如果a?b成立,则a是b的充分条件,b是a的必要条件;如果b?a成立,则a是b的必要条件,b是a的充分条件;如果a?b,则a,b互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。
“或”“且”“非”理解不准致误
命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q假?p假或q假(概括为一假即假);綈p真?p假,綈p假?p真(概括为一真一假)。求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。
函数的单调区间理解不准致误
在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
判断函数奇偶性忽略定义域致误
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
函数零点定理使用不当致误
如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。
三角函数的单调性判断致误
对于函数y=asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。
忽视零向量致误
零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。
向量夹角范围不清致误
解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。
an与sn关系不清致误
在数列问题中,数列的通项an与其前n项和sn之间存在下列关系:an=s1,n=1,sn-sn-1,n≥2。这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
对数列的定义、性质理解错误
等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和sn=an2+bn+c(a,b,c∈r),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,sm,s2m-sm,s3m-s2m(m∈nx)是等差数列。
数列中的最值错误
数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。数列的通项an与前n项和sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。
错位相减求和项处理不当致误
错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理。
不等式性质应用不当致误
在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误。
忽视基本不等式应用条件致误
利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件。对形如y=ax+bx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的'符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到。
数学知识点初三篇十三
1.通过现实的数学活动,培养学生辨认方向的意识,进一步发展空间观念。
2.结合具体情境,使学生认识东、南、西、北、东北、西北、东南和西南八个方向,能够用给定的一个方向(东、南、西或北)辨认其余的七个方向,并能用这些词语描述物体所在的方向。
3.使学生会看简单的路线图,并能描述行走的路线。
《测量》单元备课
知识点 我的例子 提醒注意
认识东、南、西、北四个方向,能够用给定的一个方向辩认其余的三个方向,并能用这些词语描述物体所在的方向。 站在操场上,前面是东、后右是西,左面是北,右面是南。站在操场上,东面是旗台,南是书店,西面是大门,北面是体育馆。 东和西相对,南和北相对,而且东南西北是按顺时针的方向的。
知道地图上的方向 在地图上,通常是上北,下南,左西,右东。
注意方向的相对性,和顺时针。
学会看简单的路线图,并能描述行走的路线。 从课室去洗手间,先向东走20米,再向北走10 米。 注意把方向和路程相结合来说。
认识东北、东南、西北、西南四个方向,能够用给定的一个方向辩认其它七个方向,并能用这些词语打描述物体所在的方向。 西北 北 东北
西 东
西南 南 东南 注意记住方向的顺时针方向和相对性。
学会看简单的路线图(八个方向),并能打描述行走的路线。
如:邮局在火车站的东南方向,从火车站出发,向东南方向走,先到站前街,再到邮局。
注意每个地方,可以先通过十字路线确定方向,再观察。
数学知识点初三篇十四
三角形的重心
已知:△abc中,d为bc中点,e为ac中点,ad与be交于o,co延长线交ab于f。求证:f为ab中点。
证明:根据燕尾定理,s(△aob)=s(△aoc),又s(△aob)=s(△boc),∴s(△aoc)=s(△boc),再应用燕尾定理即得af=bf,命题得证。
重心的几条性质:
1.重心和三角形3个顶点组成的3个三角形面积相等。
2.重心到三角形3个顶点距离的平方和最小。
3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((x1+x2+x3)/3,(y1+y2+y3)/3);空间直角坐标系——横坐标:(x1+x2+x3)/3 纵坐标:(y1+y2+y3)/3 竖坐标:(z1+z2+z3)/3
4.重心到顶点的距离与重心到对边中点的距离之比为2:1。
5.重心是三角形内到三边距离之积最大的点。
如果用塞瓦定理证,则极易证三条中线交于一点。