最新初二数学下册知识点(五篇)
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
初二数学下册知识点篇一
1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2.全等三角形的性质: 全等三角形的对应角相等、对应边相等。
3.三角形全等的判定公理及推论有:
(1)“边角边”简称“sas”
(2)“角边角”简称“asa”
(3)“边边边”简称“sss”
(4)“角角边”简称“aas”
(5)斜边和直角边相等的两直角三角形(hl)。
4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).
在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解和比较发现全等三角形的奥妙之处。在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
5.等腰三角形的判定:等角对等边。
6.等边三角形角的特点:三个内角相等,等于60°,
7.等边三角形的判定: 三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形
有两个角是60°的三角形是等边三角形。
8.直角三角形中,30°角所对的直角边等于斜边的'一半。
9.直角三角形斜边上的中线等于斜边的一半。
本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。
初二数学下册知识点篇二
1、分式的定义:如果a、b表示两个整式,并且b中含有字母,那么式子b叫做分式。
2、对于分式概念的理解,应把握以下几点:
(1)分式是两个整式相除的商。其中分子是被除式,分母是除式,分数线起除号和括号的作用;
(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;
(3)分母不能为零。
3、分式有意义、无意义的条件
(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。
4、分式的值为0的条件:
当分式的分子等于0,而分母不等于0时,分式的值为0。即,使b=0的条件是:a=0,b≠0。
5、有理式整式和分式统称为有理式。整式分为单项式和多项式。
分类:有理式
单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。
初二数学下册知识点篇三
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
(1)具有平行四边形、矩形、菱形的一切性质;
(2)正方形的四个角都是直角,四条边都相等;
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;
(4)正方形是轴对称图形,有4条对称轴;
(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;
(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
(1)判定一个四边形是正方形的主要依据是定义,途径有两种:
先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:
先证明它是平行四边形;
再证明它是菱形(或矩形);
最后证明它是矩形(或菱形)。
初二数学下册知识点篇四
1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。
2.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。
3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5.数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0
1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
2.正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。
3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。
4.已知两点坐标求函数解析式:待定系数法
1.加权平均数:加权平均数的计算公式。 权的理解:反映了某个数据在整个数据中的重要程度。
2.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
3. 众数:一组数据中出现次数最多的数据就是这组数据的众数(mode)。
4. 极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
5.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
初二数学下册知识点篇五
1、平行线的性质
一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补.
也可以简单的说成:
两直线平行,同位角相等;
两直线平行,内错角相等;
两直线平行,同旁内角互补。
2、判定平行线
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
也可以简单说成:
同位角相等两直线平行
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
其他两条可以简单说成:
内错角相等两直线平行
同旁内角相等两直线平行
1、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数
2、平均数
平均数:一般地,对于n个数,我们把它们的和与n之商叫做这n个数的算术平均数,简称平均数。
加权平均数。
3、众数
一组数据中出现次数最多的那个数据叫做这组数据的众数。
4、中位数
一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。