2022年小学数学公开课教案详案(3篇)
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。那么我们该如何写一篇较为完美的教案呢?下面是小编为大家带来的优秀教案范文,希望大家可以喜欢。
小学数学公开课教案详案篇1
一、教材分析
本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标
1、知识目标:了解多边形内角和公式。
2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点
重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:
引导发现法、讨论法五、教具、学具
教具:多媒体课件
学具:三角板、量角器
六、教学媒体:
大屏幕、实物投影七、教学过程:
(一)创设情境,设疑激思
师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?
活动一:探究四边形内角和。
在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。
方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。
方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。
接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?
活动二:探究五边形、六边形、十边形的内角和。
学生先独立思考每个问题再分组讨论。
关注:
(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)
方法1:把五边形分成三个三角形,3个180的和是540。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。
方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。
师:你真聪明!做到了学以致用。
交流后,学生运用几何画板演示并验证得到的方法。
得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。
(二)引申思考,培养创新
师:通过前面的讨论,你能知道多边形内角和吗?
活动三:探究任意多边形的内角和公式。
思考:
(1)多边形内角和与三角形内角和的关系?
(2)多边形的边数与内角和的关系?
(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。
发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。
得出结论:多边形内角和公式:(n-2)·180。
(三)实际应用,优势互补
1、口答:(1)七边形内角和()
(2)九边形内角和()
(3)十边形内角和()
2、抢答:(1)一个多边形的内角和等于1260,它是几边形?
(2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。
3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?
(四)概括存储
学生自己归纳总结:
1、多边形内角和公式
2、运用转化思想解决数学问题
3、用数形结合的思想解决问题
(五)作业:
练习册第93页1、2、3八、教学反思:
1、教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变
学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变
整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。
小学数学公开课教案详案篇2
教学目标:
1、会用待定系数法求反比例函数的解析式。
2、通过实例进一步加深对反比例函数的认识,能结合具体情境,体会反比例函数的意义,理解比例系数的具体的意义。
3、会通过已知自变量的值求相应的反比例函数的值。运用已知反比例函数的值求相应自变量的值解决一些简单的问题。
重点:用待定系数法求反比例函数的解析式。
难点:例3要用科学知识,又要用不等式的知识,学生不易理解。
教学过程:
一。复习
1、反比例函数的定义:
判断下列说法是否正确(对‖√‖,错‖3‖)
(1)一矩形的面积为20cm2,相邻的两条边长分别为x(cm)和y(cm),变量y是变量x的反比例函数。(2)圆的面积公式s??r2中,s与r成正比例。(3)矩形的长为a,宽为b,周长为C,当C为常量时,a是b的反比例函数。方形的边长为x,高为y,当其体积V为常量时,y是x的反比例函数。(4)一个正四棱柱的底面正
定时,商和除数成反比例。(5)当被除数(不为零)一
(6)计划修建铁路1200km,则铺轨天数y(d)是每日铺轨量x(km/d)的反比例函数。
2、思考:如何确定反比例函数的解析式?
(1)已知y是x的反比例函数,比例系数是3,则函数解析式是_______
(2)当m为何值时,函数4是反比例函数,并求出其函数解析式.y?2m?2关键是确定比例系数!x
二。新课
1、例2:已知变量y与x成反比例,且当x=2时y=9,写出y与x之间的函数解析式和自变量的取值范围。小结:要确定一个反比例函数y?k的解析式,只需求出比例系数k。如果已知一对自变量与函数的对应值,x
3时,y=2,求这个函数的解析式和自变量的取值范围。4就可以先求出比例系数,然后写出所要求的反比例函数。2.练习:已知y是关于x的反比例函数,当x=?
3、说一说它们的求法:
(1)已知变量y与x-5成反比例,且当x=2时y=9,写出y与x之间的函数解析式。
(2)已知变量y-1与x成反比例,且当x=2时y=9,写出y与x之间的函数解析式。
4、例3、设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(Ω),通过电流的强度为I(A)。
(1)已知一个汽车前灯的电阻为30Ω,通过的电流为0.40A,求I关于R的函数解析式,并说明比例系数的实际意义。
(2)如果接上新灯泡的电阻大于30Ω,那么与原来的相比,汽车前灯的亮度将发生什么变化?
在例3的教学中可作如下启发:
(1)电流、电阻、电压之间有何关系?
(2)在电压U保持不变的前提下,电流强度I与电阻R成哪种函数关系?
(3)前灯的亮度取决于哪个变量的大小?如何决定?
先让学生尝试练习,后师生一起点评。
三。巩固练习:
1、当质量一定时,二氧化碳的体积V与密度p成反比例。且V=5m3时,p=1.98kg/m3
(1)求p与V的函数关系式,并指出自变量的取值范围。
(2)求V=9m3时,二氧化碳的密度。
四。拓展:
1、已知y与z成正比例,z与x成反比例,当x=-4时,z=3,y=-4.求:
(1)Y关于x的函数解析式;
(2)当z=-1时,x,y的值。
2、已知y?y1?y2,y1与x成正例,y2与x成反比例,并且x?2与x?3时,y的
值都等于10,求y与x之间的函数关系。
五。交流反思
求反比例函数的解析式一般有两种情形:一种是在已知条件中明确告知变量之间成反比例函数关系,如例2;另一种是变量之间的关系由已学的数量关系直接给出,如例3中的I?
六。布置作业:P4B组
小学数学公开课教案详案篇3
教学目的
1、通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2、使学生会列一元一次方程解决一些简单的应用题。
3、会判断一个数是不是某个方程的解。
重点、难点
1、重点:会列一元一次方程解决一些简单的应用题。
2、难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授
问题1:某校初中一年级328名 师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)
列方程:设需要租用x辆客车,可得44x+64=328
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
三、巩固练习
教科书第3页练习1、2。
四、小结
本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业
教科书第3页,习题6.1第1、3题。